1
|
Ofori JK, Salunkhe VA, Bagge A, Vishnu N, Nagao M, Mulder H, Wollheim CB, Eliasson L, Esguerra JLS. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci Rep 2017; 7:44986. [PMID: 28332581 PMCID: PMC5362944 DOI: 10.1038/srep44986] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs have emerged as important players of gene regulation with significant impact in diverse disease processes. In type-2 diabetes, in which impaired insulin secretion is a major factor in disease progression, dysregulated microRNA expression in the insulin-secreting pancreatic beta cell has been widely-implicated. Here, we show that miR-130a-3p, miR-130b-3p, and miR-152-3p levels are elevated in the pancreatic islets of hyperglycaemic donors, corroborating previous findings about their upregulation in the islets of type-2 diabetes model Goto-Kakizaki rats. We demonstrated negative regulatory effects of the three microRNAs on pyruvate dehydrogenase E1 alpha (PDHA1) and on glucokinase (GCK) proteins, which are both involved in ATP production. Consequently, we found both proteins to be downregulated in the Goto-Kakizaki rat islets, while GCK mRNA expression showed reduced trend in the islets of type-2 diabetes donors. Overexpression of any of the three microRNAs in the insulin-secreting INS-1 832/13 cell line resulted in altered dynamics of intracellular ATP/ADP ratio ultimately perturbing fundamental ATP-requiring beta cell processes such as glucose-stimulated insulin secretion, insulin biosynthesis and processing. The data further strengthen the wide-ranging influence of microRNAs in pancreatic beta cell function, and hence their potential as therapeutic targets in type-2 diabetes.
Collapse
Affiliation(s)
- Jones K Ofori
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Vishal A Salunkhe
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Annika Bagge
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Neelanjan Vishnu
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Mototsugu Nagao
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Hindrik Mulder
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Molecular Metabolism, Department of Clinical Sciences-Malmö, Lund University, Malmö, 20502, Sweden
| | - Claes B Wollheim
- Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences-Malmö, Lund University, Malmö, 205 02, Sweden.,Lund University Diabetes Centre, Skåne University Hospital, Lund and Malmö, Sweden
| |
Collapse
|
2
|
Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 2007; 101:1248-57. [PMID: 17403141 DOI: 10.1111/j.1471-4159.2007.04489.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (<or=4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
3
|
Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci 2006; 28:432-46. [PMID: 16943666 DOI: 10.1159/000094169] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/03/2006] [Indexed: 01/08/2023] Open
Abstract
Mitochondria play a central role in cerebral energy metabolism, intracellular calcium homeostasis and reactive oxygen species generation and detoxification. Following traumatic brain injury (TBI), the degree of mitochondrial injury or dysfunction can be an important determinant of cell survival or death. Literature would suggest that brain mitochondria from the developing brain are very different from those from mature animals. Therefore, aspects of developmental differences in the mitochondrial response to TBI can make the immature brain more vulnerable to traumatic injury. This review will focus on four main areas of secondary injury after pediatric TBI, including excitotoxicity, oxidative stress, alterations in energy metabolism and cell death pathways. Specifically, we will describe what is known about developmental differences in mitochondrial function in these areas, in both the normal, physiologic state and the pathologic state after pediatric TBI. The ability to identify and target aspects of mitochondrial dysfunction could lead to novel neuroprotective therapies for infants and children after severe TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
4
|
Buerstatte CR, Behar KL, Novotny EJ, Lai JC. Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:139-45. [PMID: 11154769 DOI: 10.1016/s0165-3806(00)00134-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was initiated to test the hypothesis that the development of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity, like that of pyruvate dehydrogenase complex, is one of the late developers of tricarboxylic acid (TCA) cycle enzymes. The postnatal development of KGDHC in rat brain exhibits four distinct region-specific patterns. The age-dependent increases in olfactory bulb (OB) and hypothalamus (HYP) form one pattern: low in postnatal days (P) 2 and 4, KGDHC activity rose linearly to attain adult level at P30. The increases in mid-brain (MB) and striatum (ST) constitute a second pattern: being <40% of adult level at P2 and P4, KGDHC activity rose steeply between P10 and P17 and attained adult level by P30. The increases in cerebellum (CB), cerebral cortex (CC), and hippocampus (HIP) form a third pattern: being 25-30% of adult level at P2 and P4, KGDHC activity doubled between P10 and P17 and rose to adult level by P30. KGDHC activity development is unique in pons and medulla (PM): being >60% of the adult level at P2, it rose rapidly to adult level by P10. Thus, KGDHC activity develops earlier in phylogenetically older regions (PM) than in phylogenetically younger regions (CB, CC, HIP). Being lowest in activity among all TCA cycle enzymes, KGDHC activity in any region at any age will exert a limit on the maximum TCA cycle flux therein. The results may have functional and pathophysiological implications in control of brain glucose oxidative metabolism, energy metabolism, and neurotransmitter syntheses.
Collapse
Affiliation(s)
- C R Buerstatte
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Campus Box 8334, Pocatello, ID 83209-8334, USA
| | | | | | | |
Collapse
|
5
|
Cullingford TE, Dolphin CT, Bhakoo KK, Peuchen S, Canevari L, Clark JB. Molecular cloning of rat mitochondrial 3-hydroxy-3-methylglutaryl-CoA lyase and detection of the corresponding mRNA and of those encoding the remaining enzymes comprising the ketogenic 3-hydroxy-3-methylglutaryl-CoA cycle in central nervous system of suckling rat. Biochem J 1998; 329 ( Pt 2):373-81. [PMID: 9425122 PMCID: PMC1219054 DOI: 10.1042/bj3290373] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have investigated, by RNase protection assays in rat brain regions and primary cortical astrocyte cultures, the presence of the mRNA species encoding the three mitochondrially located enzymes acetoacetyl-CoA thiolase, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mt. HMG-CoA synthase) and HMG-CoA lyase (HMG-CoA lyase) that together constitute the ketogenic HMG-CoA cycle. As a prerequisite we obtained a full-length cDNA encoding rat HMG-CoA lyase by degenerate oligonucleotide-primed PCR coupled to a modification of PCR-rapid amplification of cDNA ends (PCR-RACE). We report here: (1) the nucleotide sequence of rat mt. HMG-CoA lyase, (2) detection of the mRNA species encoding all three HMG-CoA cycle enzymes in all regions of rat brain during suckling, (3) approximately twice the abundance of mt. HMG-CoA synthase mRNA in cerebellum than in cortex in 11-day-old suckling rat pups, (4) significantly lower abundances of mt. HMG-CoA synthase mRNA in brain regions derived from rats weaned to a high-carbohydrate/low-fat diet compared with the corresponding regions derived from the suckling rat, and (5) the presence of mt. HMG-CoA synthase mRNA in primary cultures of neonatal cortical astrocytes at an abundance similar to that found in liver of weaned animals. These results provide preliminary evidence that certain neural cell types possess ketogenic potential and might thus have a direct role in the provision of fatty acid-derived ketone bodies during the suckling period.
Collapse
Affiliation(s)
- T E Cullingford
- Department of Neurochemistry, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | | | | | | | | | | |
Collapse
|
6
|
Pullikuth AK, Gill SS. Primary structure of an invertebrate dihydrolipoamide dehydrogenase with phylogenetic relationship to vertebrate and bacterial disulfide oxidoreductases. Gene 1997; 200:163-72. [PMID: 9373151 DOI: 10.1016/s0378-1119(97)00413-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrolipoamide dehydrogenase (E3) is a flavoprotein component of multi-enzyme complexes catalyzing oxidative decarboxylation of alpha-ketoacids in the Krebs' cycle. We have cloned a 2.4-kb E3 cDNA from an arthropod, Manduca sexta, that codes for 497 amino acids and translates to a 51-kDa protein in vitro. Sequences at and around the dinucleotide binding domains, disulfide active site and the C-terminal interface domain involved in substrate binding are highly conserved in Manduca E3. Phylogenetic analysis of protein sequences from the flavoprotein class of disulfide oxidoreductases family of enzymes suggests that in spite of the homologous nature of E3 and glutathione reductase (goR) in sequence and structure, E3 shares a common ancestor with mercuric reductase (merA), whereas goR is more related to trypanothione reductase (tryR) than to other members. All members, except goRs, seemed to be monophyletic. Plant goRs seemed to have arisen differently and are more closely related to tryRs than to bacterial and vertebrate goRs. Earlier speculation on the nature of origin of E3 in Pseudomonas is not supported by phylogenetic data. A possible structural relationship of Manduca E3 to other pyridine-binding proteins, such as the neurotransmitter transporters and channels, is proposed.
Collapse
Affiliation(s)
- A K Pullikuth
- Department of Entomology, University of California, Riverside 92521, USA
| | | |
Collapse
|
7
|
Zhu PP, Peterkofsky A. Sequence and organization of genes encoding enzymes involved in pyruvate metabolism in Mycoplasma capricolum. Protein Sci 1996; 5:1719-36. [PMID: 8844861 PMCID: PMC2143489 DOI: 10.1002/pro.5560050825] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The region of the genome of Mycoplasma capricolum upstream of the portion encompassing the genes for Enzymes I and IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was cloned and sequenced. Examination of the sequence revealed open reading frames corresponding to numerous genes involved with the oxidation of pyruvate. The deduced gene organization is naox (encoding NADH oxidase)-lplA (encoding lipoate-protein ligase)-odpA (encoding pyruvate dehydrogenase EI alpha)-odpB (encoding pyruvate dehydrogenase EI beta)-odp2(encoding pyruvate dehydrogenase EII)-dldH (encoding dihydrolipoamide dehydrogenase)-pta (encoding phosphotransacetylase)-ack (encoding acetate kinase)-orfA (an unknown open reading frame)-kdtB-ptsI-crr. Analysis of the DNA sequence suggests that the naox and lplA genes are part of a single operon, odpA and odpB constitute an additional operon, odp2 and dldH a third operon, and pta and ack an additional transcription unit. Phylogenetic analyses of the protein products of the odpA and odpB genes indicate that they are most similar to the corresponding proteins from Mycoplasma genitalium, Acholeplasma laidlawii, and Gram-positive organisms. The product of the odp2 gene contains a single lipoyl domain, as is the case with the corresponding proteins from M. genitalium and numerous other organisms. An evolutionary tree places the M. capricolum odp2 gene product in close relationship to the corresponding proteins from A. laidlawii and M.genitalium. The dldH gene encodes an unusual form of dihydrolipoamide dehydrogenase that contains an aminoterminal extension corresponding to a lipoyl domain, a property shared by the corresponding proteins from Alcaligenes eutrophus and Clostridium magnum. Aside from that feature, the protein is related phylogenetically to the corresponding proteins from A. laidlawii and M. genitalium. The phosphotransacetylase from M. capricolum is related most closely to the corresponding protein from M. genitalium and is distinguished easily from the enzymes from Escherichia coli and Haemophilus influenzae by the absence of the characteristic amino-terminal extension. The acetate kinase from M. capricolum is related evolutionarily to the homologous enzyme from M. genitalium. Map position comparisons of genes encoding proteins involved with pyruvate metabolism show that, whereas all the genes are clustered in M. capricolum, they are scattered in M. genitalium.
Collapse
Affiliation(s)
- P P Zhu
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|