1
|
Du X, Gao H, Jaffe D, Zhang H, Gamper N. M-type K + channels in peripheral nociceptive pathways. Br J Pharmacol 2018; 175:2158-2172. [PMID: 28800673 PMCID: PMC5980636 DOI: 10.1111/bph.13978] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Pathological pain is a hyperexcitability disorder. Since the excitability of a neuron is set and controlled by a complement of ion channels it expresses, in order to understand and treat pain, we need to develop a mechanistic insight into the key ion channels controlling excitability within the mammalian pain pathways and how these ion channels are regulated and modulated in various physiological and pathophysiological settings. In this review, we will discuss the emerging data on the expression in pain pathways, functional role and modulation of a family of voltage-gated K+ channels called 'M channels' (KCNQ, Kv 7). M channels are increasingly recognized as important players in controlling pain signalling, especially within the peripheral somatosensory system. We will also discuss the therapeutic potential of M channels as analgesic drug targets. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc/.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Haixia Gao
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - David Jaffe
- Department of Biology, UTSA Neurosciences InstituteUniversity of Texas at San AntonioSan AntonioTXUSA
| | - Hailin Zhang
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
| | - Nikita Gamper
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of EducationHebei Medical UniversityShijiazhuangChina
- The Key Laboratory of New Drug Pharmacology and ToxicologyShijiazhuangHebei ProvinceChina
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
2
|
P2X and P2Y receptors—role in the pathophysiology of the nervous system. Int J Mol Sci 2014; 15:23672-704. [PMID: 25530618 PMCID: PMC4284787 DOI: 10.3390/ijms151223672] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022] Open
Abstract
Purinergic signalling plays a crucial role in proper functioning of the nervous system. Mechanisms depending on extracellular nucleotides and their P2 receptors also underlie a number of nervous system dysfunctions. This review aims to present the role of purinergic signalling, with particular focus devoted to role of P2 family receptors, in epilepsy, depression, neuropathic pain, nervous system neoplasms, such as glioma and neuroblastoma, neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease and multiple sclerosis. The above-mentioned conditions are associated with changes in expression of extracellular ectonucleotidases, P2X and P2Y receptors in neurons and glial cells, as well as releasing considerable amounts of nucleotides from activated or damaged nervous tissue cells into the extracellular space, which contributes to disturbance in purinergic signalling. The numerous studies indicate a potential possibility of using synthetic agonists/antagonists of P2 receptors in treatment of selected nervous system diseases. This is of particular significance, since numerous available agents reveal a low effectiveness and often produce side effects.
Collapse
|
3
|
Burnstock G, Di Virgilio F. Purinergic signalling and cancer. Purinergic Signal 2014; 9:491-540. [PMID: 23797685 DOI: 10.1007/s11302-013-9372-5] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/06/2013] [Indexed: 01/24/2023] Open
Abstract
Receptors for extracellular nucleotides are widely expressed by mammalian cells. They mediate a large array of responses ranging from growth stimulation to apoptosis, from chemotaxis to cell differentiation and from nociception to cytokine release, as well as neurotransmission. Pharma industry is involved in the development and clinical testing of drugs selectively targeting the different P1 nucleoside and P2 nucleotide receptor subtypes. As described in detail in the present review, P2 receptors are expressed by all tumours, in some cases to a very high level. Activation or inhibition of selected P2 receptor subtypes brings about cancer cell death or growth inhibition. The field has been largely neglected by current research in oncology, yet the evidence presented in this review, most of which is based on in vitro studies, although with a limited amount from in vivo experiments and human studies, warrants further efforts to explore the therapeutic potential of purinoceptor targeting in cancer.
Collapse
|
4
|
Du X, Gamper N. Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol 2013; 11:621-40. [PMID: 24396338 PMCID: PMC3849788 DOI: 10.2174/1570159x113119990042] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design.
Collapse
Affiliation(s)
- Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3β and secretases. Neurobiol Aging 2012; 33:1816-28. [DOI: 10.1016/j.neurobiolaging.2011.09.040] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022]
|
6
|
Linley JE, Rose K, Ooi L, Gamper N. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Arch 2010; 459:657-69. [DOI: 10.1007/s00424-010-0784-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 02/06/2023]
|
7
|
Lakshmi S, Joshi PG. Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 2006; 141:179-89. [PMID: 16730415 DOI: 10.1016/j.neuroscience.2006.03.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 12/18/2022]
Abstract
Extracellular ATP has been reported to potentiate the neurite outgrowth induced by nerve growth factor. In the present study the neurotrophic effect of ATP and other nucleotides was examined in mouse neuroblastoma neuro2a cells which lack nerve growth factor receptor. Exposure of neuro2a cells to ATP resulted in a dramatic increase in neurite bearing cells as compared with untreated control cells. Experiments performed with purinergic receptor agonists and antagonists suggest that the ATP stimulates neurite outgrowth via P2 receptors. Neurite outgrowth was completely blocked by P2 receptor antagonist suramin whereas the P1 receptor antagonist CGS15943 was ineffective. P1 receptor agonist 5'-(N-ethylcarboxamido)adenosine failed to induce neurite outgrowth. The potency order of different P2 receptor agonists was ATP=ATPgammaS>ADP>>2Me-S-ATP. It was insensitive to UTP and antagonist pyridoxal phosphate-6-azo (benzene-2,4-disulfonic acid) suggesting the involvement of P2Y11 receptor in the observed neuritogenic effect. The signaling pathway leading to ATP-induced neuritogenesis was investigated. The neuritogenic effect of ATP is independent of rise in intracellular Ca(2+) as pharmacological profile of neuritogenic P2Y receptor does not match with that of P2Y2 receptor associated with [Ca(2+)](i) signaling cascade. Exposure of cells to ATP caused activation of Src kinase, phospholipase Cgamma and extracellular signal-regulated kinases ERK1/2. Mitogen-activated protein kinase (MAPK) inhibitor U0126 drastically reduced the number of neurite bearing cells in ATP-treated cultures implying that the neurotrophic effect of ATP is mediated by MAPK. Our results demonstrate that ATP can stimulate neurite outgrowth independent of other neurotrophic factors and can be an effective trophic agent.
Collapse
Affiliation(s)
- S Lakshmi
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560 029, India
| | | |
Collapse
|
8
|
Sak K, Illes P. Neuronal and glial cell lines as model systems for studying P2Y receptor pharmacology. Neurochem Int 2005; 47:401-12. [PMID: 16081187 DOI: 10.1016/j.neuint.2005.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 05/31/2005] [Indexed: 11/18/2022]
Abstract
Investigation of the role of extracellular nucleotides in nervous system has been one of the main topics of the P2Y receptor research throughout the years. In parallel to numerous studies on primary culture systems, various neuronal and non-neuronal cell lines have been used to model in vitro the processes mediated by extracellular nucleotides. In this review article, a survey of expression profiles of G protein-coupled P2Y receptor subtypes in nervous-system-derived cell lines is presented, by analysing the receptor expression at the mRNA, protein, and functional level. The variability of receptor expression profiles in established cell lines is further discussed, bringing forward some general properties for neuronal and glial malignant cell lines.
Collapse
Affiliation(s)
- Katrin Sak
- Rudolf-Boehm Institute of Pharmacology and Toxicology, and Interdisciplinary Center for Clinical Research, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany.
| | | |
Collapse
|
9
|
Lakshmi S, Joshi PG. Co-activation of P2Y2 receptor and TRPV channel by ATP: implications for ATP induced pain. Cell Mol Neurobiol 2005; 25:819-32. [PMID: 16133936 DOI: 10.1007/s10571-005-4936-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
1. Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli. 2. ATP-induced Ca2+ signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2+ from ER and Ca2+ influx through a fast inactivating channel. The Ca2+ response was induced by P2Y receptor agonists in the order of potency ATP>or=UTP>or=ATPgammaS>ADP and was inhibited by suramin and PPADS. The P2X receptor agonist alpha beta methyl ATP was ineffective. 3. The Ca2+ influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2+ transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2+ response. 4. Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.
Collapse
Affiliation(s)
- Srihasam Lakshmi
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, India
| | | |
Collapse
|
10
|
Filtz TM, Niibori Y. Desensitization of angiotensin-stimulated inositol phosphate accumulation in human vascular smooth muscle cells. Eur J Pharmacol 2005; 502:11-9. [PMID: 15464085 DOI: 10.1016/j.ejphar.2004.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 08/09/2004] [Accepted: 08/18/2004] [Indexed: 10/26/2022]
Abstract
The effect of angiotensin II treatment on desensitization of phospholipase C (PLC)-mediated inositol phosphate accumulation has not been quantitated in human aortic vascular smooth muscle (HVSM) cells. We determined the angiotensin II pretreatment dose dependency and time course for desensitization of PLC activation in HVSM cells and the effect of protein kinase C (PKC) activators on angiotensin II-mediated inositol phosphate accumulation. Our results with PKC activators and direct G protein stimulators suggest that PKC activation may play a negative feedback role in desensitization of angiotensin II-activated signaling in HVSM cells by modifying the Gq transducer, PLC-beta effector, or related proteins in the signaling pathway. However, neither angiotensin II nor PKC activator affected basal phosphorylation levels of PLC-beta1 or PLC-beta3 in HVSM cells; PLC-beta isoenzymes were shown to be phosphorylated in unstimulated cells independent of PKC inhibition. We suggest that desensitization of G protein-stimulated inositol phosphate accumulation in HVSM differs from other cell types in which phosphorylation of PLC-beta isoenzymes accompanies desensitization.
Collapse
Affiliation(s)
- Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Building, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
11
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
12
|
Fredholm BB, Assender JW, Irenius E, Kodama N, Saito N. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells. Cell Mol Neurobiol 2003; 23:379-400. [PMID: 12825834 DOI: 10.1023/a:1023644822539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The effect of adenosine analogues and of nucleotides, alone or in combination, on intracellular calcium, accumulation of inositol (1,4,5) trisphosphate (InsP3), and on activation of protein kinase C (PKC) was studied in DDT1 MF2 cells derived from a Syrian hamster myosarcoma. These cells were found to express mRNA for A1 and some as yet unidentified P2Y receptor(s). 2. Activation of either receptor type stimulated the production of InsP3 and raised intracellular calcium in DDT1 MF2 cells. Similarly, the A1 selective agonist N6-cyclopentyladenosine (CPA) increased PKC-dependent phosphorylation of the substrate MBP(4-14) and induced a PKC translocation to the plasma membrane as determined using [3H]-phorbol dibutyrate (PDBu) binding in DDT1 MF-2 cells. However, neither adenosine nor CPA induced a significant translocation of transiently transfected gamma-PKC-GFP from the cytosol to the cell membrane. In contrast to adenosine analogues, ATP and UTP also caused a rapid but transient translocation of gamma-PKC-GFP and activation of PKC. 3. Doses of the A1 agonist CPA and of ATP or UTP per se caused barely detectable increases in intracellular Ca2+ but when combined, they caused an almost maximal stimulation. Similarly, adenosine (0.6 microM) and UTP (or ATP, 2.5 microM), which per se caused no detectable translocation of either gamma- or epsilon-PKC-GFP, caused when combined a very clear-cut translocation of both PKC subforms, albeit with different time courses. These results show that simultaneous activation of P2Y and adenosine A1 receptors synergistically increases Ca2+ transients and translocation of PKC in DDT1 MF-2 cells. Since adenosine is rapidly formed by breakdown of extracellular ATP, such interactions may be biologically important.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine Triphosphate/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cricetinae
- Drug Synergism
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate/metabolism
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Luminescent Proteins
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Isoforms/drug effects
- Protein Isoforms/metabolism
- Protein Kinase C/drug effects
- Protein Kinase C/metabolism
- Protein Transport/drug effects
- Protein Transport/physiology
- Purinergic P1 Receptor Agonists
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P2/drug effects
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Recombinant Fusion Proteins/pharmacology
- Tumor Cells, Cultured
- Uridine Triphosphate/metabolism
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Section of Molecular Neuropharmacology, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Sak K, Webb TE. A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 2002; 397:131-6. [PMID: 11747319 DOI: 10.1006/abbi.2001.2616] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the first cloning of P2Y receptor sequences in 1993 it has become apparent that this family of G-protein-coupled receptors is omnipresent. At least 25 individual sequences entered in the GenBank sequence database encode P2Y receptors from a variety of species ranging from the little skate Raja erinacea to man. In man, six receptor subtypes have been cloned and found to be functionally active (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), and P2Y(12)). In this article a review of the P2Y receptor subtypes is presented considering both their sequences and the pharmacological profiles of the encoded receptors expressed in heterologous expression systems.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, Tartu University, Ulikooli 18, Tartu 50090, Estonia
| | | |
Collapse
|
14
|
Wu W, Pan SL, Tsai YJ, Chiu CT, Wang CC, Yang CM. Uncoupling of ATP-induced inositol phosphate formation and Ca(2+) mobilization by phorbol ester in canine cultured tracheal epithelial cells. Cell Signal 2001; 13:555-63. [PMID: 11483408 DOI: 10.1016/s0898-6568(01)00181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The regulation of the increase in inositol phosphates (IPs) production and intracellular Ca(2+) concentration ([Ca(2+)](i)) by protein kinase C (PKC) was investigated in canine cultured tracheal epithelial cells (TECs). Pretreatment of TECs with phorbol 12-myristate 13-acetate (PMA, 1 microM) for 30 min attenuated the ATP- and UTP-induced IPs formation and Ca(2+) mobilization. The concentrations of PMA that gave half-maximal (EC(50)) inhibition of ATP- and UTP-induced IPs accumulation and an increase in [Ca(2+)](i) were 5-10 and 4-12 nM, respectively. Prior treatment of TECs with staurosporine (1 microM), a PKC inhibitor, partially inhibited the ability of PMA to attenuate ATP- and UTP-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Furthermore, analysis of cell extracts by Western blotting with antibodies against different PKC isozymes revealed that TECs expressed PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, -theta, and -zeta. With PMA treatment of the cells for various times, translocation of PKC-alpha, -betaI, -betaII, -gamma, -delta, -epsilon, and -theta from the cytosol to the membrane was seen after 5- and 30-min and 2- and 4-h treatment. However, 6-h treatment caused a partial down-regulation of these PKC isozymes. PKC-zeta was not significantly translocated and down-regulated at any of the times tested. In conclusion, these results suggest that activation of PKC may inhibit the phosphoinositide (PI) hydrolysis and consequently attenuate the [Ca(2+)](i) increase or inhibit independently both responses to ATP and UTP. The translocation of PKC-alpha, -betaI, -betaII, -delta, -epsilon, -gamma, and -theta induced by PMA caused an attenuation of ATP- and UTP-induced IPs accumulation and Ca(2+) mobilization in TECs.
Collapse
Affiliation(s)
- W Wu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
15
|
Ikeda Y, Ueno A, Naraba H, Matsuki N, Oh-Ishi S. Intracellular Ca2+ increase in neuro-2A cells and rat astrocytes following stimulation of bradykinin B2 receptor. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:140-5. [PMID: 11128036 DOI: 10.1254/jjp.84.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Murine neuroblastoma cell line Neuro-2A cells and rat brain astrocytes showed a dose-dependent increase in intracellular Ca2+ in response to bradykinin, when assessed by a single cell image analyzing system. The Ca2+ increase in Neuro-2A cells by bradykinin was also examined by a suspension fluorescent assay using fura-2 loading. The Ca2+ increase in both cases was suppressed by a bradykinin B2 receptor antagonist, Hoe 140, but not by a B1 receptor antagonist, des-Arg-Hoe 140, suggesting that the effect occurred via specific B2 receptor activation. RT-PCR for bradykinin B2 receptor mRNA showed that both Neuro-2A cells and the astrocytes expressed B2 receptor mRNA. Binding of [3H]bradykinin to Neuro-2A cells was assessed, and a specific binding constant of 0.75 nM was determined. Furthermore, the increase in [Ca2+]i by bradykinin could be caused by a release of Ca2+ from storage sites in the endoplasmic reticulum, since thapsigargin and U-73122 attenuated the effect of bradykinin in Neuro-2A as well as in astrocytes. These results indicate that both astrocytes and neuroblastoma Neuro-2A cells stimulated by bradykinin could express a bradykinin B2 receptor-mediated intracellular Ca2+ increase leading to signal transduction.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
16
|
Sak K, Webb TE, Samuel K, Kelve M, Järv J. Only pyrimidinoceptors are functionally expressed in mouse neuroblastoma cell lines. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 1999; 1:203-8. [PMID: 10425227 DOI: 10.1006/mcbr.1999.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of UTP, UDP, ATP, and ADP to influence inositol phospholipid hydrolysis in neuroblastoma origin cell lines was assessed. The mouse neuroblastoma lines N1E 115, Neuro 2a, and NB4 1A3 and the rat glioma/mouse neuroblastoma hybrid line NG108-15 gave robust responses to both UTP and UDP, which were essentially equipotent. Thus a range of cell lines of mouse neuroblastoma origin express a pyrimidine-selective P2Y receptor. The NG108-15 cells were the only cell type tested at which ATP and ADP displayed activity with EC50 values of greater than 100 microM, compared with values of 0.58 and 1.25 microM for UTP and UDP, respectively. In contrast to the cell lines derived from mouse neuroblastoma, the human neuroblastoma lines SH-SY5Y and SK-N-SH did not respond to any nucleotides, although both responded well to carbachol.
Collapse
Affiliation(s)
- K Sak
- Institute of Chemical Physics, Tartu University, Estonia.
| | | | | | | | | |
Collapse
|
17
|
Meller N, Altman A, Isakov N. New perspectives on PKCtheta, a member of the novel subfamily of protein kinase C. Stem Cells 1998; 16:178-92. [PMID: 9617893 DOI: 10.1002/stem.160178] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Members of the protein kinase C (PKC) family of serine/threonine protein kinases have been implicated in numerous cellular responses in a large variety of cell types. Expression patterns of individual members and differences in their cofactor requirements and potential substrate specificity suggest that each isoenzyme may be involved in specific regulatory processes. The PKCtheta isoenzyme exhibits a relatively restricted expression pattern with high protein levels found predominantly in hematopoietic cells and skeletal muscle. PKCtheta was found to be expressed in T, but not B lymphocytes, and to colocalize with the T-cell antigen receptor (TCR) at the site of contact between the antigen-responding T cell and the antigen-presenting cell (APC). Colocalization of PKCtheta with the TCR was selective for this isoenzyme and occurred only upon antigen-mediated responses leading to T-cell activation and proliferation. PKCtheta was found to be involved in the regulation of transcriptional activation of early-activation genes, predominantly AP-1, and its cellular distribution and activation were found to be regulated by the 14-3-3 protein. Other findings indicated that PKCtheta can associate with the HIV negative factor (Nef) protein, suggesting that altered regulation of PKCtheta by Nef may contribute to the T-cell impairments that are characteristic of infection by HIV. PKCtheta is expressed at relatively high levels in skeletal muscle, where it is suggested to play a role in signal transduction in both the developing and mature neuromuscular junction. In addition, PKCtheta appears to be involved in the insulin-mediated response of intact skeletal muscle, as well as in experimentally induced insulin resistance of skeletal muscle. Further studies suggest that PKCtheta is expressed in endothelial cells and is involved in multiple processes essential for angiogenesis and wound healing, including the regulation of cell cycle progression, formation and maintenance of actin cytoskeleton, and formation of capillary tubes. Here, we review recent progress in the study of PKCtheta and discuss its potential role in various cellular responses.
Collapse
Affiliation(s)
- N Meller
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|