1
|
Lin X, Mandal S, Nithun RV, Kolla R, Bouri B, Lashuel HA, Jbara M. A Versatile Method for Site-Specific Chemical Installation of Aromatic Posttranslational Modification Analogs into Proteins. J Am Chem Soc 2024; 146:25788-25798. [PMID: 39224092 PMCID: PMC11421021 DOI: 10.1021/jacs.4c08416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Posttranslational modifications (PTMs) of proteins play central roles in regulating the protein structure, interactome, and functions. A notable modification site is the aromatic side chain of Tyr, which undergoes modifications such as phosphorylation and nitration. Despite the biological and physiological importance of Tyr-PTMs, our current understanding of the mechanisms by which these modifications contribute to human health and disease remains incomplete. This knowledge gap arises from the absence of natural amino acids that can mimic these PTMs and the lack of synthetic tools for the site-specific introduction of aromatic PTMs into proteins. Herein, we describe a facile method for the site-specific chemical installation of aromatic PTMs into proteins through palladium-mediated S-C(sp2) bond formation under ambient conditions. We demonstrate the incorporation of novel PTMs such as Tyr-nitration and phosphorylation analogs to synthetic and recombinantly expressed Cys-containing peptides and proteins within minutes and in good yields. To demonstrate the versatility of our approach, we employed it to prepare 10 site-specifically modified proteins, including nitrated and phosphorylated analogs of Myc and Max proteins. Furthermore, we prepared a focused library of site-specifically nitrated and phosphorylated α-synuclein (α-Syn) protein, which enabled, for the first time, deciphering the role of these competing modifications in regulating α-Syn conformation aggregation in vitro. Our strategy offers advantages over synthetic or semisynthetic approaches, as it enables rapid and selective transfer of rarely explored aromatic PTMs into recombinant proteins, thus facilitating the generation of novel libraries of homogeneous posttranslationally modified proteins for biomarker discovery, mechanistic studies, and drug discovery.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaswati Mandal
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Raj V. Nithun
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rajasekhar Kolla
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Bouchra Bouri
- Protein
Production and Structure core facility, School of Life Sciences, École Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| | - Hilal A. Lashuel
- Laboratory
of Molecular and Chemical Biology of Neurodegeneration, Institute
of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Muhammad Jbara
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Scholefield M, Church SJ, Xu J, Cooper GJS. Metallomic analysis of brain tissues distinguishes between cases of dementia with Lewy bodies, Alzheimer's disease, and Parkinson's disease dementia. Front Neurosci 2024; 18:1412356. [PMID: 38988772 PMCID: PMC11233441 DOI: 10.3389/fnins.2024.1412356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Background Dementia with Lewy bodies (DLB) can be difficult to distinguish from Alzheimer's disease (AD) and Parkinson's disease dementia (PDD) at different stages of its progression due to some overlaps in the clinical and neuropathological presentation of these conditions compared with DLB. Metallomic changes have already been observed in the AD and PDD brain-including widespread decreases in Cu levels and more localised alterations in Na, K, Mn, Fe, Zn, and Se. This study aimed to determine whether these metallomic changes appear in the DLB brain, and how the metallomic profile of the DLB brain appears in comparison to the AD and PDD brain. Methods Brain tissues from ten regions of 20 DLB cases and 19 controls were obtained. The concentrations of Na, Mg, K, Ca, Zn, Fe, Mn, Cu, and Se were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Case-control differences were evaluated using Mann-Whitney U tests. Results were compared with those previously obtained from AD and PDD brain tissue, and principal component analysis (PCA) plots were created to determine whether cerebral metallomic profiles could distinguish DLB from AD or PDD metallomic profiles. Results Na was increased and Cu decreased in four and five DLB brain regions, respectively. More localised alterations in Mn, Ca, Fe, and Se were also identified. Despite similarities in Cu changes between all three diseases, PCA plots showed that DLB cases could be readily distinguished from AD cases using data from the middle temporal gyrus, primary visual cortex, and cingulate gyrus, whereas DLB and PDD cases could be clearly separated using data from the primary visual cortex alone. Conclusion Despite shared alterations in Cu levels, the post-mortem DLB brain shows very few other similarities with the metallomic profile of the AD or PDD brain. These findings suggest that while Cu deficiencies appear common to all three conditions, metal alterations otherwise differ between DLB and PDD/AD. These findings can contribute to our understanding of the underlying pathogenesis of these three diseases; if these changes can be observed in the living human brain, they may also contribute to the differential diagnosis of DLB from AD and/or PDD.
Collapse
Affiliation(s)
- Melissa Scholefield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Stephanie J Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jingshu Xu
- Faculty of Science, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Faculty of Science, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Llido JP, Jayanti S, Tiribelli C, Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants (Basel) 2023; 12:1525. [PMID: 37627520 PMCID: PMC10451892 DOI: 10.3390/antiox12081525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular redox status has a crucial role in brain physiology, as well as in pathologic conditions. Physiologic senescence, by dysregulating cellular redox homeostasis and decreasing antioxidant defenses, enhances the central nervous system's susceptibility to diseases. The reduction of free radical accumulation through lifestyle changes, and the supplementation of antioxidants as a prophylactic and therapeutic approach to increase brain health, are strongly suggested. Bilirubin is a powerful endogenous antioxidant, with more and more recognized roles as a biomarker of disease resistance, a predictor of all-cause mortality, and a molecule that may promote health in adults. The alteration of the expression and activity of the enzymes involved in bilirubin production, as well as an altered blood bilirubin level, are often reported in neurologic conditions and neurodegenerative diseases (together denoted NCDs) in aging. These changes may predict or contribute both positively and negatively to the diseases. Understanding the role of bilirubin in the onset and progression of NCDs will be functional to consider the benefits vs. the drawbacks and to hypothesize the best strategies for its manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Sri Jayanti
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Claudio Tiribelli
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| | - Silvia Gazzin
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| |
Collapse
|
5
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
7
|
The Proteome of Neuromelanin Granules in Dementia with Lewy Bodies. Cells 2022; 11:cells11223538. [PMID: 36428966 PMCID: PMC9688080 DOI: 10.3390/cells11223538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Neuromelanin granules (NMGs) are organelle-like structures present in the human substantia nigra pars compacta. In addition to neuromelanin, NMGs contain proteins, lipids and metals. As NMG-containing dopaminergic neurons are preferentially lost in Parkinson's disease and dementia with Lewy bodies (DLB), it is assumed that NMGs may play a role in neurodegenerative processes. Until now, this role is not completely understood and needs further investigation. We therefore set up an exploratory proteomic study to identify differences in the proteomic profile of NMGs from DLB patients (n = 5) compared to healthy controls (CTRL, n = 5). We applied a laser microdissection and mass-spectrometry-based approach, in which we used targeted mass spectrometric experiments for validation. In NMG-surrounding (SNSurr.) tissue of DLB patients, we found evidence for ongoing oxidative damage and an impairment of protein degradation. As a potentially disease-related mechanism, we found α-synuclein and protein S100A9 to be enriched in NMGs of DLB cases, while the abundance of several ribosomal proteins was significantly decreased. As S100A9 is known to be able to enhance the formation of toxic α-synuclein fibrils, this finding points towards an involvement of NMGs in pathogenesis, however the exact role of NMGs as either neuroprotective or neurotoxic needs to be further investigated. Nevertheless, our study provides evidence for an impairment of protein degradation, ongoing oxidative damage and accumulation of potentially neurotoxic protein aggregates to be central mechanisms of neurodegeneration in DLB.
Collapse
|
8
|
Halliwell B. Reflections of an Aging Free Radical Part 2: Meeting Inspirational People. Antioxid Redox Signal 2022; 38:792-802. [PMID: 35651275 DOI: 10.1089/ars.2022.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: During my long career in the field of redox biology, I met many inspiring people, especially Lester Packer. Recent Advances: This special issue of Antioxidants & Redox Signaling is dedicated to Lester Packer. Critical Issues: In this short review, I explore how Lester and other pioneers helped to develop the redox biology field and how I interacted with them. Future Directions: In our research to advance the field of redox biology, we stand on the shoulders of giants, including Lester Packer.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Jorgensen A, Baago IB, Rygner Z, Jorgensen MB, Andersen PK, Kessing LV, Poulsen HE. Association of Oxidative Stress-Induced Nucleic Acid Damage With Psychiatric Disorders in Adults: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022; 79:920-931. [PMID: 35921094 PMCID: PMC9350850 DOI: 10.1001/jamapsychiatry.2022.2066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Nucleic acid damage from oxidative stress (NA-OXS) may be a molecular mechanism driving the severely increased morbidity and mortality from somatic causes in adults with psychiatric disorders. OBJECTIVE To systematically retrieve and analyze data on NA-OXS across the psychiatric disorder diagnostic spectrum. DATA SOURCES The PubMed, Embase, and PsycINFO databases were searched from inception to November 16, 2021. A hand search of reference lists of relevant articles was also performed. STUDY SELECTION Key study inclusion criteria in this meta-analysis were as follows: adult human study population, measurement of any marker of DNA or RNA damage from oxidative stress, and either a (1) cross-sectional design comparing patients with psychiatric disorders (any diagnosis) with a control group or (2) prospective intervention. Two authors screened the studies, and 2 senior authors read the relevant articles in full and assessed them for eligibility. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. Two authors performed data extraction independently, and a senior coauthor was consulted in cases of disagreement. Data were synthesized with random-effects and multilevel meta-analyses. MAIN OUTCOMES AND MEASURES The predefined hypothesis was that individuals with psychiatric disorders have increased NA-OXS levels. The main outcome was the standardized mean differences (SMDs) among patients and controls in nucleic acid oxidation markers compared across diagnostic groups. Analyses were divided into combinations of biological matrices and nucleic acids. RESULTS Eighty-two studies fulfilled the inclusion criteria, comprising 205 patient vs control group comparisons and a total of 10 151 patient and 10 532 control observations. Overall, the data showed that patients with psychiatric disorders had higher NA-OXS levels vs controls across matrices and molecules. Pooled effect sizes ranged from moderate for urinary DNA markers (SMD = 0.44 [95% CI, 0.20-0.68]; P < .001) to very large for blood cell DNA markers (SMD = 1.12 [95% CI, 0.69-1.55; P < .001). Higher NA-OXS levels were observed among patients with dementias followed by psychotic and bipolar disorders. Sensitivity analyses excluding low-quality studies did not materially alter the results. Intervention studies were few and too heterogenous for meaningful meta-analysis. CONCLUSIONS AND RELEVANCE The results of this meta-analysis suggest that there is an association with increased NA-OXS levels in individuals across the psychiatric disorder diagnostic spectrum. NA-OXS may play a role in the somatic morbidity and mortality observed among individuals with psychiatric disorders.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ida Bendixen Baago
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Zerlina Rygner
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| | - Martin Balslev Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Mental Health Services Copenhagen, Copenhagen, Denmark,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cardiology, Copenhagen University Hospital, Hillerød, Denmark,Department of Endocrinology, Copenhagen University Hospital, Hillerød, Denmark
| |
Collapse
|
10
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
11
|
Bhatia S, Arslan E, Rodriguez-Hernandez L, Bonin R, Wells PG. DNA damage and repair and epigenetic modification in the role of oxoguanine glycosylase 1 (OGG1) in brain development. Toxicol Sci 2022; 187:93-111. [PMID: 35038743 DOI: 10.1093/toxsci/kfac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxoguanine glycosylase 1 (OGG1) repairs the predominant reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG). Human OGG1 polymorphisms resulting in reduced DNA repair associate with an increased risk for disorders like cancer and diabetes, but the role of OGG1 in brain development is unclear. Herein, we show that Ogg1 knockout mice at 2-3 months of age exhibit enhanced gene- and sex-dependent DNA damage (strand breaks) and decreased epigenetic DNA methylation marks (5-methylcytosine, 5-hydroxymethylcytosine), both of which were associated with increased cerebellar calbindin levels, reduced hippocampal postsynaptic function, altered body weight with age and disorders of brain function reflected in behavioural tests for goal-directed repetitive behaviour, anxiety and fear, object recognition and spatial memory, motor coordination and startle response. These results suggest that OGG1 plays an important role in normal brain development, possibly via both its DNA repair activity and its role as an epigenetic modifier, with OGG1 deficiencies potentially contributing to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shama Bhatia
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Eliyas Arslan
- Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Luis Rodriguez-Hernandez
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert Bonin
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Dept. of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Dept. of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Extra Virgin Olive Oil consumption from Mild Cognitive Impairment patients attenuates oxidative and nitrative stress reflecting on the reduction of the PARP levels and DNA damage. Exp Gerontol 2021; 156:111621. [PMID: 34748951 DOI: 10.1016/j.exger.2021.111621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
Oxidative/nitrative stress that results from the unbalance of the overproduction/clearance of reactive oxygen/nitrogen species (ROS/NOS), originated from a variety of endo- and/or exo-genous sources, can have detrimental effects on DNA and is involved in Alzheimer's disease (AD) pathology. An excellent marker of oxidative DNA lesions is 8-hydroxy-2'-deoxyguanosine (8-OHdG) while of nitrative stress the enzyme NOS2 (Nitric oxide synthase 2). Under massive oxidative stress, poly(ADP-ribose)polymerase 1 (PARP-1) enzyme activity, responsible for restoration of DNA damage, is augmented, DNA repair enzymes are recruited, and cell survival/or death is ensued through PARP-1 activation, which is correlated positively with neurodegenerative diseases. In this biochemical study the levels of PARP-1, 8-oxo-dG, and NOS2, Aβ1-42, and p-tau in their sera determined using Enzyme-Linked Immunosorbent Assay (ELISA). Patients diagnosed with Mild Cognitive Impairment participated in MICOIL clinical trial, were daily administered with 50 ml Extra Virgin Olive Oil (EVOO) for one year. All MCI patients' biomarkers that had consumed EVOO were tantamount to those of healthy participants, contrary to MCI patients who were not administered. EVOO administration in MCI patients resulted in the restoration of DNA damage and of the well-established "hallmarks" AD biomarkers, thanks probably to its antioxidant properties exhibiting a therapeutic potentiality against AD. Molecular docking simulations of the EVOO constituents on the crystal structure of PARP-1 and NOS-2 target enzymes were also employed, to study in silico the ability of the compounds to bind to these enzymes and explain the observed in vitro activity. In silico analysis has proved the binding of EVOO constituents on PARP-1and NOS-2 enzymes and their interaction with crucial amino acids of the active sites. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996. MICOIL GOV IDENTIFIER: NCT03362996.
Collapse
|
13
|
Abstract
Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.
Collapse
|
14
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
An ellagic acid isolated from Clerodendrum viscosum leaves ameliorates iron-overload induced hepatotoxicity in Swiss albino mice through inhibition of oxidative stress and the apoptotic pathway. Biomed Pharmacother 2018; 106:454-465. [PMID: 29990833 DOI: 10.1016/j.biopha.2018.06.133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 02/02/2023] Open
Abstract
Iron is a vital element required for normal cellular physiology in animal systems, but excess iron accumulation in the biological system accelerates oxidative stress, cellular toxicity, tissue injury and organ fibrosis, which ultimately leads to the generation of chronic liver diseases including cancer. A natural antioxidant, ellagic acid (EA) has been previously reported for its pharmacological properties; however, there is no significant evidence available that could illustrate its protective potential against iron-overload induced hepatotoxicity. In the present work, EA was evaluated for its in vitro free radical scavenging and iron chelation potentials. Further, EA was tested in vivo for its protective activity against iron overload-induced hepatotoxicity in Swiss albino mice by evaluating liver iron content, reactive oxygen species (ROS), liver antioxidant enzymes, serum marker levels, liver damage and fibrosis, histopathological study and finally western blotting analysis. EA treatment significantly decreased liver iron and serum ferritin levels. Elevated ROS levels, decreased antioxidant parameters and elevated serum markers were normalized upon treatment with EA. Cellular morphology, iron -overload and liver fibrosis were found to be effectively ameliorated. Finally, the protective effect of EA against iron overload-induced apoptosis was confirmed by western blotting when its treatment upregulated the expressions of caspase-3 and poly(ADP-ribose) polymerase (PARP) proteins. EA revealed hepatoprotective activity against iron overload-induced toxicity through scavenging free radicals, inhibiting excess ROS production, normalizing liver damage parameters and upregulating caspase-3, PARP expression. Collectively, our findings support the possible use of the natural antioxidant EA as a promising candidate against iron-overloaded diseases.
Collapse
|
16
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
17
|
Guo C, Ding P, Xie C, Ye C, Ye M, Pan C, Cao X, Zhang S, Zheng S. Potential application of the oxidative nucleic acid damage biomarkers in detection of diseases. Oncotarget 2017; 8:75767-75777. [PMID: 29088908 PMCID: PMC5650463 DOI: 10.18632/oncotarget.20801] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/27/2017] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are generated after exposure to harmful environmental factors and during normal cellular metabolic processes. The balance of the generating and scavenging of ROS plays a significant role in living cells. The accumulation of ROS will lead to oxidative damage to biomolecules including nucleic acid. Although many types of oxidative nucleic acid damage products have been identified, 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoG) has been commonly chosen as the biomarkers of oxidative damage to DNA and RNA, respectively. It has been demonstrated that oxidative damage to nucleic acid is an initiator in pathogenesis of numerous diseases. Thus, oxidative nucleic acid damage biomarkers have the potential to be utilized for detection of diseases. Herein, we reviewed the relationship of oxidative nucleic acid damage and development of various diseases including cancers (colorectal cancer, gastrointestinal cancer, breast cancer, lung cancer, epithelial ovarian carcinoma, esophageal squamous cell carcinoma), neurodegenerative disorders and chronic diseases (diabetes and its complications, cardiovascular diseases). The potential of oxidative nucleic acid damage biomarkers for detection of diseases and drug development were described. Moreover, the approaches for detection of these biomarkers were also summarized.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Peili Ding
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenyang Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Chi Pan
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Suzhan Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
18
|
Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, Zafar S, Carmona M, Del Rio JA, Zerr I, Gelpi E, Ferrer I. Dementia with Lewy Bodies: Molecular Pathology in the Frontal Cortex in Typical and Rapidly Progressive Forms. Front Neurol 2017; 8:89. [PMID: 28348546 PMCID: PMC5346561 DOI: 10.3389/fneur.2017.00089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/24/2017] [Indexed: 11/29/2022] Open
Abstract
Objectives The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. Methods Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of β-amyloid, tau, and synuclein species were used. Results The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer’s disease. Altered solubility and aggregation of α-synuclein, increased β-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble β-amyloid are found in DLB. However, increased soluble β-amyloid 1–40 and β-amyloid 1–42, and increased TNFα mRNA and protein expression, distinguish rpDLB. Conclusion Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.
Collapse
Affiliation(s)
- Paula Garcia-Esparcia
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Irene López-González
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - Oriol Grau-Rivera
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - María Francisca García-Garrido
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Anusha Konetti
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat , Barcelona , Spain
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Margarita Carmona
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain
| | - José Antonio Del Rio
- CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Molecular and Cellular Neurobiotechnology, Department of Cell Biology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, University Medical School, Georg-August University, German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - Isidro Ferrer
- Institute of Neuropathology, Service of Pathologic Anatomy, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain; CIBERNED, Network Centre for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Madrid, Spain; Department of Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 2016; 11:482-501. [PMID: 28086196 PMCID: PMC5228102 DOI: 10.1016/j.redox.2016.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies) by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset.
Collapse
Affiliation(s)
- Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Bastian Kochlik
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
20
|
Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model. Int J Mol Med 2015; 36:1369-76. [PMID: 26648012 DOI: 10.3892/ijmm.2015.2356] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/23/2015] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is second only to Alzheimer's disease as the most common and debilitating age-associated neurodegenerative disorder. Currently, no therapy has been shown to unequivocally retard or arrest the progression of the disease. The aim of the present study was to investigate the protective effect of piperine on the 1-methyl-4-phenyl-1,2,3,6‑tetrahydropyridine (MPTP)-induced Parkinson's mouse model. For MPTP treatment, the animals received repeated intraperitoneal injections (i.p.) of MPTP (30 mg/kg) solution for 7 days. Piperine (10 mg/kg) was administered orally for 15 days including 8 days of pretreatment. Motor behavior analysis was conducted with the rotarod test. The Morris water maze (MWM) was used to assess the cognitive learning ability of the mice. A histological examination was subsequently conducted. The results ddemonstrate that piperine treatment attenuated MPTP-induced deficits in motor coordination and cognitive functioning. Piperine also prevented MPTP-induced decreases in the number of tyrosine hydroxylase-positive cells in the substantia nigra. Additionally, piperine reduced the number of activated microglia, expression of cytokine IL-1β, and oxidative stress following MPTP treatment. An anti-apoptotic property of piperine was identified by maintaining the balance of Bcl-2/Bax. In conclusion, the results show that piperine exerts a protective effect on dopaminergic neurons via antioxidant, anti-apoptotic, and anti-inflammatory mechanisms in an MPTP-induced mouse model of PD. Thus, piperine is a potential therapeutic treatment for PD.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Hua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong-Dang Qu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
21
|
Herbs to curb cyclic nucleotide phosphodiesterase and their potential role in Alzheimer's disease. Mech Ageing Dev 2015; 149:75-87. [PMID: 26050556 DOI: 10.1016/j.mad.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/22/2015] [Accepted: 05/27/2015] [Indexed: 01/02/2023]
Abstract
Cyclic nucleotides viz., cAMP/cGMP has been well known to play important role in cellular function and deficiency in their levels has been implicated in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Phosphodiesterases (PDE) are the enzymes involved in the metabolism of cyclic nucleotides and the inhibition of phosphodiesterases is considered to be viable strategy to restore the level of cyclic nucleotides and their functions in the brain. Various synthetic PDE inhibitors had been used clinically for various disorders and also suggested to be useful candidates for treating neurological disorders. However, side effects of these synthetic PDE inhibitors have limited their use in clinical practice. Natural plant extracts or their bio-active compounds are considered to be safe and are widely acceptable. During the last decade, many plant extracts or their bio-active compounds were tested pre-clinically for PDE inhibitory activity and are reported to be equally potent in inhibiting PDE's, as that of synthetic compounds. The present review is aimed to discuss the potential plant extract/compounds with PDE inhibitory activity and critically discuss their potential role in Alzheimer's disease.
Collapse
|
22
|
Vemula V, Ni Z, Fedorova M. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide. Redox Biol 2015; 5:195-204. [PMID: 25974625 PMCID: PMC4434198 DOI: 10.1016/j.redox.2015.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 01/21/2023] Open
Abstract
Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated. Coumarin-hydrazide (CHH) chemical probe was used to label cellular carbonyls. CHH fluorescence microscopy allowed to monitor protein and lipid carbonyl distribution. CHH specificity towards protein- and lipid-bound carbonyls was demonstrated. CHH labeling and DNPH immunocytochemistry for microscopy imaging were compared.
Collapse
Affiliation(s)
- Venukumar Vemula
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Zhixu Ni
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
23
|
Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015; 5:472-84. [PMID: 25884116 PMCID: PMC4496681 DOI: 10.3390/biom5020472] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.
Collapse
|
24
|
Hallgren J, Pietrzak M, Rempala G, Nelson PT, Hetman M. Neurodegeneration-associated instability of ribosomal DNA. Biochim Biophys Acta Mol Basis Dis 2014; 1842:860-8. [PMID: 24389328 DOI: 10.1016/j.bbadis.2013.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR)-mediated instability of the repetitively organized ribosomal DNA (rDNA) has been proposed as a mediator of cell senescence in yeast triggering the DNA damage response. High individual variability in the content of human rDNA suggests that this genomic region remained relatively unstable throughout evolution. Therefore, quantitative real-time polymerase chain reaction was used to determine the genomic content of rDNA in post mortem samples of parietal cortex from 14 young and 9 elderly individuals with no diagnosis of a chronic neurodegenerative/neurological disease. In addition, rDNA content in that brain region was compared between 10 age-matched control individuals and 10 patients with dementia with Lewy bodies (DLB) which involves neurodegeneration of the cerebral cortex. Probing rRNA-coding regions of rDNA revealed no effects of aging on the rDNA content. Elevated rDNA content was observed in DLB. Conversely, in the DLB pathology-free cerebellum, lower genomic content of rDNA was present in the DLB group. In the parietal cortex, such a DLB-associated instability of rDNA was not accompanied by any major changes of cytosine-phosphate-guanine methylation of the rDNA promoter. As increased cerebro-cortical rDNA content was previously reported in Alzheimer's disease, neurodegeneration appears to be associated with instability of rDNA. The hypothetical origins and consequences of this phenomenon are discussed including possibilities that the DNA damage-induced recombination destabilizes rDNA and that differential content of rDNA affects heterochromatin formation, gene expression and/or DNA damage response. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Justin Hallgren
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - Maciej Pietrzak
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | - Grzegorz Rempala
- Division of Biostatistics, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
25
|
Lo KKW, Li SPY. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv 2014. [DOI: 10.1039/c3ra47611a] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Shrivastava P, Vaibhav K, Tabassum R, Khan A, Ishrat T, Khan MM, Ahmad A, Islam F, Safhi MM, Islam F. Anti-apoptotic and Anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson's Rat model. J Nutr Biochem 2013; 24:680-7. [DOI: 10.1016/j.jnutbio.2012.03.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 03/11/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
27
|
Proteasome and Neurodegeneratıve Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:397-414. [DOI: 10.1016/b978-0-12-397863-9.00011-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Butterfield DA, Sultana R. Methionine-35 of aβ(1-42): importance for oxidative stress in Alzheimer disease. JOURNAL OF AMINO ACIDS 2011; 2011:198430. [PMID: 22312456 PMCID: PMC3268025 DOI: 10.4061/2011/198430] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 04/14/2011] [Indexed: 01/09/2023]
Abstract
Alzheimer disease (AD) is an age-related progressive neurodegenerative disorder. This devastating disease is characterized by the presence of senile plaques (SP), neurofibrillary tangles (NFTs), and loss of synapses. Amyloid beta-peptide 1-42 (Aβ(1-42)) is the main component of SP and is pivotal to AD pathogenesis. Brain of subjects with AD and arguably its earliest manifestation, mild cognitive impairment (MCI), demonstrate increased levels of oxidative stress markers. Our laboratory combined these two aspects of AD and MCI and proposed the Aβ(1-42)-associated free radical oxidative stress hypothesis to explain oxidative stress under which the MCI and AD brain exist and the loss of synapses in both disorders. A large number of in vitro and in vivo studies showed that Aβ causes protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems. Methionine located at residue 35 of Aβ(1-42) is an important contributor to the oxidative stress associated with this neurotoxic peptide. In this paper, we summarize studies involving Met-35 of Aβ(1-42). Understanding the role of the single methionine residue of Aβ(1-42) may help in understanding underlying disease mechanisms in AD and MCI.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506-0055, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
29
|
Spencer WA, Jeyabalan J, Kichambre S, Gupta RC. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species. Free Radic Biol Med 2011; 50:139-47. [PMID: 21075203 PMCID: PMC3353411 DOI: 10.1016/j.freeradbiomed.2010.10.693] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 09/20/2010] [Accepted: 10/12/2010] [Indexed: 11/28/2022]
Abstract
There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest a possible contributory role of oxidatively generated DNA damage by dopamine and related catechol neurotransmitters/neurotoxins in neurodegeneration and cell death. We also found that a naturally occurring broad-spectrum antioxidant, ellagic acid, was substantially effective (nearly 50% inhibition) at low doses (1μM) at preventing this dopamine/Cu(II)-mediated oxidatively generated DNA damage. Because dietary ellagic acid has been found to reduce oxidative stress in rat brains, a neuroprotective role of this polyphenol is plausible.
Collapse
Affiliation(s)
- Wendy A. Spencer
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | | | | | - Ramesh C. Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202
- Correspondence to Dr. Ramesh Gupta, 304 E Delia Baxter II, 580 Preston Street, University of Louisville Medical School, Louisville, KY 40202. Telephone: 502-852-3682;
| |
Collapse
|
30
|
Potula R, Hawkins BJ, Cenna JM, Fan S, Dykstra H, Ramirez SH, Morsey B, Brodie MR, Persidsky Y. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. THE JOURNAL OF IMMUNOLOGY 2010; 185:2867-76. [PMID: 20668216 DOI: 10.4049/jimmunol.0903691] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Methamphetamine (METH) abuse is known to be associated with an inordinate rate of infections. Although many studies have described the association of METH exposure and immunosuppression, so far the underlying mechanism still remains elusive. In this study, we present evidence that METH exposure resulted in mitochondrial oxidative damage and caused dysfunction of primary human T cells. METH treatment of T lymphocytes led to a rise in intracellular calcium levels that enhanced the generation of reactive oxygen species. TCR-CD28 linked calcium mobilization and subsequent uptake by mitochondria in METH-treated T cells correlated with an increase in mitochondrion-derived superoxide. Exposure to METH-induced mitochondrial dysfunction in the form of marked decrease in mitochondrial membrane potential, increased mitochondrial mass, enhanced protein nitrosylation and diminished protein levels of complexes I, III, and IV of the electron transport chain. These changes paralleled reduced IL-2 secretion and T cell proliferative responses after TCR-CD28 stimulation indicating impaired T cell function. Furthermore, antioxidants attenuated METH-induced mitochondrial damage by preserving the protein levels of mitochondrial complexes I, III, and IV. Altogether, our data indicate that METH can cause T cell dysfunction via induction of oxidative stress and mitochondrial injury as underlying mechanism of immune impairment secondary to METH abuse.
Collapse
Affiliation(s)
- Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer's disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2010; 2006:31372. [PMID: 17047303 PMCID: PMC1559913 DOI: 10.1155/jbb/2006/31372] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The overall aim of this article is to review current therapeutic strategies for treating AD, with a focus on mitochondrially targeted antioxidant treatments. Recent advances in molecular, cellular, and animal model studies of AD have revealed that amyloid precursor protein derivatives, including amyloid beta (A beta) monomers and oligomers, are likely key factors in tau hyperphosphorylation, mitochondrial oxidative damage, inflammatory changes, and synaptic failure in the brain tissue of AD patients. Several therapeutic strategies have been developed to treat AD, including anti-inflammatory, antioxidant, and antiamyloid approaches. Among these, mitochondrial antioxidant therapy has been found to be the most efficacious in reducing pathological changes and in not producing adverse effects; thus, mitochondrial antioxidant therapy is promising as a treatment for AD patients. However, a major limitation in applying mitochondrial antioxidants to AD treatment has been the inability of researchers to enhance antioxidant levels in mitochondria. Recently, however, there has been a breakthrough. Researchers have recently been able to promote the entry of certain antioxidants-including MitoQ, MitoVitE, MitoPBN, MitoPeroxidase, and amino acid and peptide-based SS tetrapeptides-into mitochondria, several hundred-fold more than do natural antioxidants. Once in the mitochondria, they rapidly neutralize free radicals and decrease mitochondrial toxicity. Thus, mitochondrially targeted antioxidants are promising candidates for treating AD patients.
Collapse
Affiliation(s)
- P. Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences
Institute, Oregon Health & Science University, 505 NW 185th
Avenue, Beaverton, OR 97006, USA
- *P. Hemachandra Reddy:
| |
Collapse
|
32
|
Cooke MS, Evans MD, Mistry N, Lunec J. Role of dietary antioxidants in the prevention of in vivo oxidative DNA damage. Nutr Res Rev 2009; 15:19-42. [PMID: 19087397 DOI: 10.1079/nrr200132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological evidence consistently shows that diets high in fresh fruit and vegetables significantly lower cancer risk. Given the postulated role of oxidative DNA damage in carcinogenesis, the assumption has been made that it is the antioxidant properties of food constituents, such as vitamin C, E and carotenoids, which confer protection. However, epidemiological studies with specific antioxidants, either singly or in combination, have not, on the whole, supported this hypothesis. In contrast, studies examining the in vitro effect of antioxidants upon oxidative DNA damage have generally been supportive, in terms of preventing damage induction. The same, however, cannot be said for the in vivo intervention studies where overall the results have been equivocal. Nevertheless, recent work has suggested that some dietary antioxidants may confer protective properties through a novel mechanism, unrelated to their conventional free-radical scavenging abilities. Upregulation of antioxidant defence, xenobiotic metabolism, or DNA-repair genes may all limit cellular damage and hence promote maintenance of cell integrity. However, until further work has clarified whether dietary supplementation with antioxidants confers a reduced risk of cancer and the mechanism by which this effect is exerted, the recommendation for a diet rich in fruit and vegetables remains valid empirically.
Collapse
Affiliation(s)
- M S Cooke
- Oxidative Stress Group, Division of Chemical Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester LE2 7LX, UK.
| | | | | | | |
Collapse
|
33
|
Uversky VN, Eliezer D. Biophysics of Parkinson's disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 2009; 10:483-99. [PMID: 19538146 PMCID: PMC3786709 DOI: 10.2174/138920309789351921] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/05/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive movement disorder that results from the loss of dopaminergic neurons in the substantia nigra, a small area of cells in the mid-brain. PD is a multifactorial disorder with unknown etiology, in which both genetic and environmental factors play important roles. Substantial evidence links alpha-synuclein, a small highly conserved presynaptic protein with unknown function, to both familial and sporadic PD. Rare familial cases of PD are associated with missense point mutations in alpha-synuclein, or with the hyper-expression of the wild type protein due to its gene duplication/triplication. Furthermore, alpha-synuclein was identified as the major component of amyloid fibrils found in Lewy body and Lewy neurites, the characteristic proteinaceous deposits that are the diagnostic hallmarks of PD. alpha-Synuclein is abundant in various regions of the brain and has two closely related homologs, beta-synuclein and gamma-synuclein. When isolated in solution, the protein is intrinsically disordered, but in the presence of lipid surfaces alpha-synuclein adopts a highly helical structure that is believed to mediate its normal function(s). A number of different conformational states of alpha-synuclein have been observed. Besides the membrane-bound form, other critical conformations include a partially-folded state that is a key intermediate in aggregation and fibrillation, various oligomeric species, and fibrillar and amorphous aggregates. A number of intrinsic and extrinsic factors that either accelerate or inhibit the rate of alpha-synuclein aggregation and fibrillation in vitro are known. There is a strong correlation between the conformation of alpha-synuclein (induced by various factors) and its rate of fibrillation. The aggregation process appears to be branched, with one pathway leading to fibrils and another to oligomeric intermediates that may ultimately form amorphous deposits. The molecular basis of Parkinson's disease appears to be tightly coupled to the aggregation of alpha-synuclein and the factors that affect its conformation. This review focuses on the contributions of Prof. Anthony L. Fink to the field and presents some recent developments in this exciting area.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Institite for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| |
Collapse
|
34
|
Kumar P, Devi U, Ali S, Upadhya R, Pillai S, Raja A, Rao S, Rao A. Plasma protein oxidation in patients with brain tumors. Neurol Res 2008; 31:270-3. [PMID: 19040803 DOI: 10.1179/174313209x382296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Proteins can undergo numerous covalent changes on exposure to oxidants. Oxidative modification of protein in vivo may affect a variety of cellular functions. Protein oxidation in vivo is a natural consequence of aerobic life. Oxygen radicals and other activated oxygen species generated as byproducts of cellular metabolism or from environmental sources cause modifications to the amino acids of proteins that generally result in loss of protein function/enzymatic activity. It is now well known that reactive oxygen species (ROS) play a key role in human cancer development. Moreover, the brain is especially vulnerable to ROS mediated injury. METHOD Therefore, in the present study, protein oxidation was assessed in the plasma of 17 patients with brain tumors and 16 age and gender-matched controls by measuring protein thiols and protein carbonyls spectrophotometrically. RESULTS There was a significant decrease in protein thiols and carbonyls in malignant cases of brain tumors when compared with the control group. No significant change in protein thiols was noted in benign cases compared to controls. A comparison of levels in benign and malignant cases for both the parameters also showed no significant difference. DISCUSSION Thus, free radical toxicity does lead to protein oxidation in patients with brain tumors.
Collapse
Affiliation(s)
- Prem Kumar
- Department of Biochemistry, Kasturba Medical College and Hospital, Manipal 576104, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2008; 30:2-10. [PMID: 18978338 DOI: 10.1093/carcin/bgn250] [Citation(s) in RCA: 464] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA readily, generating a variety of DNA lesions, such as oxidized bases and strand breaks. If not properly removed, DNA damage can be potentially devastating to normal cell physiology, leading to mutagenesis and/or cell death, especially in the case of cytotoxic lesions that block the progression of DNA/RNA polymerases. Damage-induced mutagenesis has been linked to various malignancies. The major mechanism that cells use to repair oxidative damage lesions, such as 8-hydroxyguanine, formamidopyrimidines, and 5-hydroxyuracil, is base excision repair (BER). The BER pathway in the nucleus is well elucidated. More recently, BER was shown to also exist in the mitochondria. Here, we review the association of BER of oxidative DNA damage with aging, cancer and other diseases.
Collapse
Affiliation(s)
- Scott Maynard
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
36
|
Polyglutamine gene function and dysfunction in the ageing brain. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:507-21. [PMID: 18582603 DOI: 10.1016/j.bbagrm.2008.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
Abstract
The coordinated regulation of gene expression and protein interactions determines how mammalian nervous systems develop and retain function and plasticity over extended periods of time such as a human life span. By studying mutations that occur in a group of genes associated with chronic neurodegeneration, the polyglutamine (polyQ) disorders, it has emerged that CAG/glutamine stretches play important roles in transcriptional regulation and protein-protein interactions. However, it is still unclear what the many structural and functional roles of CAG and other low-complexity sequences in eukaryotic genomes are, despite being the most commonly shared peptide fragments in such proteomes. In this review we examine the function of genes responsible for at least 10 polyglutamine disorders in relation to the nervous system and how expansion mutations lead to neuronal dysfunction, by particularly focusing on Huntington's disease (HD). We argue that the molecular and cellular pathways that turn out to be dysfunctional during such diseases, as a consequence of a CAG expansion, are also involved in the ageing of the central nervous system. These are pathways that control protein degradation systems (including molecular chaperones), axonal transport, redox-homeostasis and bioenergetics. CAG expansion mutations confer novel properties on proteins that lead to a slow-progressing neuronal pathology and cell death similar to that found in other age-related conditions such as Alzheimer's and Parkinson's diseases.
Collapse
|
37
|
Ramesh T, Begum VH. Protective effect of Sesbania grandiflora against cigarette smoke-induced oxidative damage in rats. J Med Food 2008; 11:369-75. [PMID: 18598182 DOI: 10.1089/jmf.2006.205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sesbania grandiflora, commonly known as "sesbania" and "agathi," is widely used in Indian traditional medicine for the treatment of a broad spectrum of diseases. In the present study, we evaluated the possible protective effect of an aqueous suspension of S. grandiflora (ASSG) leaves against cigarette smoke-induced oxidative damage in rats. Adult Wistar-Kyoto rats were exposed to cigarette smoke for a period of 90 days and treated with ASSG (1,000 mg/kg of body weight/day, p.o) for a period of 3 weeks. The levels of protein carbonyl and activities of cytochrome P450, NADPH oxidase, and xanthine oxidase were significantly increased, whereas the levels of total thiol, protein thiol, non-protein thiol, nucleic acids, and tissue protein were significantly reduced in lung, liver, kidney, and heart of cigarette smoke-exposed rats as compared with control rats. Plasma nitric oxide levels, measured as nitrite plus nitrate, were significantly increased in cigarette smoke-exposed rats when compared to the control rats. The above changes were ameliorated to near control in the treatment group. These results suggest that supplementation with ASSG reversed the cigarette smoke-induced oxidative damage in rats through its antioxidant potential. These results provide further support for the traditional use of S. grandiflora in the treatment of smoke-related diseases.
Collapse
Affiliation(s)
- T Ramesh
- Department of Siddha Medicine, Faculty of Sciences, Tamil University, Thanjavur, Tamil Nadu, India.
| | | |
Collapse
|
38
|
Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J Neurosci 2007; 27:12989-99. [PMID: 18032672 DOI: 10.1523/jneurosci.3400-07.2007] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress has been implicated as a key trigger of neuronal apoptosis in stroke and neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. The Bcl-2 homology 3 (BH3)-only subfamily of Bcl-2 genes consists of multiple members that can be activated in a cell-type- and stimulus-specific manner to promote cell death. In the present study, we demonstrate that, in cortical neurons, oxidative stress induces the expression of the BH3-only members Bim, Noxa, and Puma. Importantly, we have determined that Puma-/- neurons, but not Bim-/- or Noxa-/- neurons, are remarkably resistant to the induction of apoptosis by multiple oxidative stressors. Furthermore, we have determined that Bcl-2-associated X protein (Bax) is also required for oxidative stress induced cell death and that Puma plays a dominant role in regulating Bax activation. Specifically, we have established that the induction of Puma, but not Bim or Noxa, is necessary and sufficient to induce a conformational change in Bax to its active state, its translocation to the mitochondria and mitochondrial membrane permeabilization. Finally, we demonstrate that whereas both Puma and Bim(EL) can bind to the antiapoptotic family member Bcl-X(L), only Puma was found to associate with Bax. This suggests that in addition to neutralizing antiapoptotic members, Puma may play a dominant role by complexing with Bax and directly promoting its activation. Overall, we have identified Puma as a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis, and suggest that Puma may be an effective therapeutic target for the treatment of a number of neurodegenerative conditions.
Collapse
|
39
|
Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2007; 11:943-53. [PMID: 16547587 DOI: 10.1007/s10495-006-6715-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP(+))-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP(+) significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP(+)-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP(+)-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson's disease (PD).
Collapse
Affiliation(s)
- J Chen
- Department of Physiology, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, 510080, P R China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schmalhausen EV, Zhlobek EB, Shalova IN, Firuzi O, Saso L, Muronetz VI. Antioxidant and prooxidant effects of quercetin on glyceraldehyde-3-phosphate dehydrogenase. Food Chem Toxicol 2007; 45:1988-93. [PMID: 17559999 DOI: 10.1016/j.fct.2007.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 04/10/2007] [Accepted: 04/23/2007] [Indexed: 11/24/2022]
Abstract
Anti- and prooxidant properties of quercetin under different conditions were investigated using glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme containing essential cysteine residues. Quercetin was shown to produce hydrogen peroxide in aqueous solutions at pH 7.5, this resulting in the oxidation of the cysteine residues of the enzyme. Quercetin significantly increased oxidation of GAPDH observed in the presence of ferrous ions, particularly when FeSO(4) was added to the solution containing GAPDH and quercetin. The results suggest the formation of hydroxyl radical in the case of the addition of FeSO(4) to a quercetin solution. At the same time, quercetin protects GAPDH from oxidation in the presence of ascorbate and Fe(3+). In the absence of metals, quercetin protects SH-groups of GAPDH from oxidation by the superoxide anion generated by the system containing xanthine/xanthine oxidase.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
41
|
Lim KS, Jenner A, Halliwell B. Quantitative gas chromatography mass spectrometric analysis of 2′-deoxyinosine in tissue DNA. Nat Protoc 2006; 1:1995-2002. [PMID: 17487188 DOI: 10.1038/nprot.2006.301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies examining DNA deamination have published levels of 2'-deoxyinosine that illustrated a large variation between studies. Most of them are the result of artifactual DNA deamination that occurs during the process of sample preparation, particularly acid hydrolysis. This protocol for measurement of 2'-deoxyinosine describes the use of nuclease P1 and alkaline phosphatase to achieve release of nucleosides from DNA, followed by HPLC prepurification with subsequent gas chromatography-mass spectrometry analysis of the nucleosides. It has been used in the measurement of the levels of 2'-deoxyinosine in DNA of commercial sources and DNA from cells and animal tissues, and gives values ranging from 3 to 7 2'-deoxyinosine per 10(6) 2-deoxyadenosine. This protocol should take approximately 7 days to complete.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
42
|
Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 2006; 8:2007-19. [PMID: 17034346 DOI: 10.1089/ars.2006.8.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neurodegenerative diseases that afflict humans affect different part of the nervous system and have different symptoms and prognoses, yet they have certain things in common. One of them is defects in the clearance of abnormal or other "unwanted" proteins, particularly affecting the proteasome system. In this review, I advance two concepts: (a) that defects in protein clearance can be a fundamental cause of neurodegeneration, and (b) that because proteasome inhibitors are widespread in nature, their ingestion may contribute to "spontaneous" neurodegeneration.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Lim KS, Huang SH, Jenner A, Wang H, Tang SY, Halliwell B. Potential artifacts in the measurement of DNA deamination. Free Radic Biol Med 2006; 40:1939-48. [PMID: 16716895 DOI: 10.1016/j.freeradbiomed.2006.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 01/10/2006] [Accepted: 01/23/2006] [Indexed: 01/13/2023]
Abstract
Attack on DNA by some reactive nitrogen species results in deamination of adenine and guanine, leading to the formation of hypoxanthine and xanthine, respectively. Published levels of these products in cellular DNA have varied widely. Although these two deamination products are often measured by GC-MS analysis, the procedure of acid hydrolysis to release DNA bases for derivatization poses a risk of artifactual deamination of the DNA. In this study, we demonstrated the artifactual formation of these two deamination products during acid hydrolysis and hence developed a method for detecting and measuring 2'-deoxyinosine, the nucleoside of hypoxanthine. Our assay for 2'-deoxyinosine employs nuclease P1 and alkaline phosphatase to achieve release of the nucleosides from DNA, followed by HPLC prepurification with subsequent GC-MS analysis of the nucleosides. This assay detected an increase in the levels of 2'-deoxyinosine in DNA when commercial salmon testis DNA was treated with nitrous acid. We also used it to measure levels in various rat tissues of both normal and endotoxin-treated rats, but could not find increased 2'-deoxyinosine formation in tissues even though *NO production was substantially increased.
Collapse
Affiliation(s)
- Kok Seong Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
| | | | | | | | | | | |
Collapse
|
44
|
Reddy PH. Amyloid precursor protein-mediated free radicals and oxidative damage: Implications for the development and progression of Alzheimer's disease. J Neurochem 2006; 96:1-13. [PMID: 16305625 DOI: 10.1111/j.1471-4159.2005.03530.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a late-onset dementia that is characterized by the loss of memory and an impairment of multiple cognitive functions. Advancements in molecular, cellular, and animal model studies have revealed that the formation of amyloid beta (Abeta) and other derivatives of the amyloid precursor protein (APP) are key factors in cellular changes in the AD brain, including the generation of free radicals, oxidative damage, and inflammation. Recent molecular, cellular, and gene expression studies have revealed that Abeta enters mitochondria, induces the generation of free radicals, and leads to oxidative damage in post-mortem brain neurons from AD patients and in brain neurons from cell models and transgenic mouse models of AD. In the last three decades, tremendous progress has been made in mitochondrial research and has provided significant findings to link mitochondrial oxidative damage and neurodegenerative diseases such as AD. Researchers in the AD field are beginning to recognize the possible involvement of a mutant APP and its derivatives in causing mitochondrial oxidative damage in AD. This article summarizes the latest research findings on the generation of free radicals in mitochondria and provides a possible model that links Abeta proteins, the generation of free radicals, and oxidative damage in AD development and progression.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| |
Collapse
|
45
|
Anekonda TS, Reddy PH. Can herbs provide a new generation of drugs for treating Alzheimer's disease? ACTA ACUST UNITED AC 2005; 50:361-76. [PMID: 16263176 DOI: 10.1016/j.brainresrev.2005.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 09/09/2005] [Accepted: 09/16/2005] [Indexed: 01/13/2023]
Abstract
The overall aim of this review is to discuss cellular mechanisms at work in the progression of AD and current therapeutic strategies for treating AD, with a focus on the potential efficacy of herbal treatments. Recent advances in molecular, cellular, and animal model studies have revealed that formation of the 4-kDa amyloid beta peptide is a key factor in the development and progression of AD. Several cellular changes have been identified that are related to amyloid beta plaques and neurofibrillary tangles found in the autopsied brains of AD patients and in AD animal models. Several therapeutic strategies have been developed to treat AD, including anti-inflammatory, anti-oxidant, and anti-amyloid approaches. Recently, herbal treatments have been tested in animal and cellular models of AD and in clinical trials with AD subjects. In AD animal models and cell models, herbal extracts appear to have fewer adverse effects than beneficial effects on A beta and cognitive functions. These extracts have multi-functional properties (pro-cholinergic, anti-oxidant, anti-amyloid, and anti-inflammatory), and their use in the treatment of AD patients looks promising. The chemical compositions of herbs and their potential for alleviating or reducing symptoms of AD or for affecting the disease mechanism need to be further studied.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
46
|
Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis of Alzheimer's disease? ACTA ACUST UNITED AC 2005; 49:618-32. [PMID: 16269322 DOI: 10.1016/j.brainresrev.2005.03.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 12/11/2022]
Abstract
This review summarizes recent findings that suggest a causal connection between mitochondrial abnormalities and sporadic Alzheimer's disease (AD). Genetic causes of AD are known only for a small proportion of familial AD patients, but for a majority of sporadic AD patients, genetic causal factors are still unknown. Currently, there are no early detectable biomarkers for sporadic AD, and there is a lack of understanding of the pathophysiology of the disease. Findings from recent genetic studies of AD pathogenesis suggest that mitochondrial defects may play an important role in sporadic AD progression, and that mitochondrial abnormalities and oxidative damage may play a significant role in the progression of familial AD. Findings from biochemical studies, in vitro studies, gene expression studies, and animal model studies of AD are reviewed, and the possible contribution of mitochondrial mutations to late-onset sporadic AD is discussed.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
47
|
Wirtz M, Schumann CA, Schellenträger M, Gäb S, Vom Brocke J, Podeschwa MAL, Altenbach HJ, Oscier D, Schmitz OJ. Capillary electrophoresis-laser induced fluorescence analysis of endogenous damage in mitochondrial and genomic DNA. Electrophoresis 2005; 26:2599-607. [PMID: 15929058 DOI: 10.1002/elps.200410397] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen molecules are formed in vivo as by-products of normal aerobic metabolism. All organisms dependent on oxygen are inevitably exposed to these species so that DNA damage can occur in both genomic and mitochondrial DNA (mtDNA). In order to determine endogenous DNA damage we have developed an analytical method that involves the isolation and hydrolysis of genomic DNA or mtDNA, the labeling of modified and unmodified nucleotides and micellar electrokinetic chromatography with laser-induced fluorescence detection. With this method we have found etheno-adenine, thymine glycol, uracil, hypoxanthine, and 5-methylcytosine. These were identified by the addition of internal standards to the genomic or mtDNA. There are a large number of other signals in the electropherograms of mtDNA that we have never found in genomic DNA analysis because they are at lower concentration in the genome. In the DNA of untreated patients with chronic lymphocytic leukemia (CLL), uracil and high levels of etheno-adenine were found, which can be explained by antioxidant enzyme alterations and oxidative stress in the CLL lymphocytes.
Collapse
Affiliation(s)
- Michaela Wirtz
- Department of Analytical Chemistry, University of Wuppertal, Wuppertal, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Le Pecheur M, Bourdon E, Paly E, Farout L, Friguet B, London J. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice. FEBS Lett 2005; 579:3613-8. [PMID: 15961078 DOI: 10.1016/j.febslet.2005.05.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 05/18/2005] [Accepted: 05/19/2005] [Indexed: 11/20/2022]
Abstract
Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.
Collapse
Affiliation(s)
- Marie Le Pecheur
- EA3508, Modèles de dérégulation génique: Trisomie 21 et Hyperhomocysteinémie. Université Paris 7, Denis Diderot, Campus Jussieu, Tour 54, 2 étage, couloir 54/53, Case 7104, 2, place Jussieu, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Neurodegenerative disease and the repair of oxidatively damaged DNA. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Abstract
DNA base excision repair (BER) is the main pathway for repair of endogenous damage in human cells. It was expected that a number of degenerative diseases could derive from BER defects. On the contrary, the link between BER defects and human pathology is elusive and the literature is full of conflicting results. The fact that most studies have investigated DNA variations but not their functional consequences has probably contributed to this confusing picture. From a functional point of view, it is likely that gross BER defects are simply not compatible with life and only limited reductions can be observed. Notwithstanding those limits, the pathological consequences of partial BER defects might be widespread and significant at the population level. This starts to emerge in particular for colorectal and lung cancer.
Collapse
Affiliation(s)
- Guido Frosina
- Department of Aetiology and Epidemiology, Mutagenesis Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|