1
|
Wang Q, Zhang Y, Xue H, Zeng Y, Lu G, Fan H, Jiang L, Wu J. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat Commun 2024; 15:4017. [PMID: 38740759 DOI: 10.1038/s41467-024-48250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.
Collapse
Affiliation(s)
- Qian Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Eguibar JR, Cortes C, Hernandez VH, Lopez-Juarez A, Piazza V, Carmona D, Kleinert-Altamirano A, Morales-Campos B, Salceda E, Roncagliolo M. 4-aminopyridine improves evoked potentials and ambulation in the taiep rat: A model of hypomyelination with atrophy of basal ganglia and cerebellum. PLoS One 2024; 19:e0298208. [PMID: 38427650 PMCID: PMC10906851 DOI: 10.1371/journal.pone.0298208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/21/2024] [Indexed: 03/03/2024] Open
Abstract
The taiep rat is a tubulin mutant with an early hypomyelination followed by progressive demyelination of the central nervous system due to a point mutation in the Tubb4a gene. It shows clinical, radiological, and pathological signs like those of the human leukodystrophy hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Taiep rats had tremor, ataxia, immobility episodes, epilepsy, and paralysis; the acronym of these signs given the name to this autosomal recessive trait. The aim of this study was to analyze the characteristics of somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) in adult taiep rats and in a patient suffering from H-ABC. Additionally, we evaluated the effects of 4-aminopyridine (4-AP) on sensory responses and locomotion and finally, we compared myelin loss in the spinal cord of adult taiep and wild type (WT) rats using immunostaining. Our results showed delayed SSEPs in the upper and the absence of them in the lower extremities in a human patient. In taiep rats SSEPs had a delayed second negative evoked responses and were more susceptible to delayed responses with iterative stimulation with respect to WT. MEPs were produced by bipolar stimulation of the primary motor cortex generating a direct wave in WT rats followed by several indirect waves, but taiep rats had fused MEPs. Importantly, taiep SSEPs improved after systemic administration of 4-AP, a potassium channel blocker, and this drug induced an increase in the horizontal displacement measured in a novelty-induced locomotor test. In taiep subjects have a significant decrease in the immunostaining of myelin in the anterior and ventral funiculi of the lumbar spinal cord with respect to WT rats. In conclusion, evoked potentials are useful to evaluate myelin alterations in a leukodystrophy, which improved after systemic administration of 4-AP. Our results have a translational value because our findings have implications in future medical trials for H-ABC patients or with other leukodystrophies.
Collapse
Affiliation(s)
- Jose R. Eguibar
- Laboratorio de Neurofisiología de la Conducta y Control Motor, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México
- Dirección General de Desarrollo Internacional, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México
| | - Carmen Cortes
- Laboratorio de Neurofisiología de la Conducta y Control Motor, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México
| | - Victor H. Hernandez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, México
| | - Alejandra Lopez-Juarez
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, México
| | - Valeria Piazza
- Centro de Investigaciones en Óptica, A.C., León, Gto, México
| | - Diego Carmona
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Gto, México
- Centro de Investigaciones en Óptica, A.C., León, Gto, México
| | | | - Blanca Morales-Campos
- Departamento de Fisiología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Pue, México
| | - Emilio Salceda
- Revista Elementos, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México
| | - Manuel Roncagliolo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Robles-Gómez ÁA, Ordaz B, Lorea-Hernández JJ, Peña-Ortega F. Deleterious and protective effects of epothilone-D alone and in the context of amyloid β- and tau-induced alterations. Front Mol Neurosci 2023; 16:1198299. [PMID: 37900942 PMCID: PMC10603193 DOI: 10.3389/fnmol.2023.1198299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-β (Aβ) and hyperphosphorylated tau (P-tau) are Alzheimer's disease (AD) biomarkers that interact in a complex manner to induce most of the cognitive and brain alterations observed in this disease. Since the neuronal cytoskeleton is a common downstream pathological target of tau and Aβ, which mostly lead to augmented microtubule instability, the administration of microtubule stabilizing agents (MSAs) can protect against their pathological actions. However, the effectiveness of MSAs is still uncertain due to their state-dependent negative effects; thus, evaluating their specific actions in different pathological or physiological conditions is required. We evaluated whether epothilone-D (Epo-D), a clinically used MSA, rescues from the functional and behavioral alterations produced by intracerebroventricular injection of Aβ, the presence of P-tau, or their combination in rTg4510 mice. We also explored the side effects of Epo-D. To do so, we evaluated hippocampal-dependent spatial memory with the Hebb-Williams maze, hippocampal CA1 integrity and the intrinsic and synaptic properties of CA1 pyramidal neurons with the patch-clamp technique. Aβ and P-tau mildly impaired memory retrieval, but produced contrasting effects on intrinsic excitability. When Aβ and P-tau were combined, the alterations in excitability and spatial reversal learning (i.e., cognitive flexibility) were exacerbated. Interestingly, Epo-D prevented most of the impairments induced Aβ and P-tau alone and combined. However, Epo-D also exhibited some side effects depending on the prevailing pathological or physiological condition, which should be considered in future preclinical and translational studies. Although we did not perform extensive histopathological evaluations or measured microtubule stability, our findings show that MSAs can rescue the consequences of AD-like conditions but otherwise be harmful if administered at a prodromal stage of the disease.
Collapse
Affiliation(s)
- Ángel Abdiel Robles-Gómez
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México City, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Mexico
| | | | | |
Collapse
|
4
|
The opposite effect of convulsant drugs on neuronal and endothelial nitric oxide synthase - A possible explanation for the dual proconvulsive/anticonvulsive action of nitric oxide. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:59-74. [PMID: 36692466 DOI: 10.2478/acph-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) participates in processes such as endothelium-dependent vasodilation and neurotransmission/neuromodulation. The role of NO in epilepsy is controversial, attributing it to anticonvulsant but also proconvulsant properties. Clarification of this dual effect of NO might lead to the development of new antiepileptic drugs. Previous results in our laboratory indicated that this contradictory role of NO in seizures could depend on the nitric oxide synthase (NOS) isoform involved, which could play opposite roles in epileptogenesis, one of them being proconvulsant but the other anticonvulsant. The effect of convulsant drugs on neuronal NO (nNO) and endothelial NO (eNO) levels was investigated. Considering the distribution of neuronal and endothelial NOS in neurons and astrocytes, resp., primary cultures of neurons and astrocytes were used as a study model. The effects of convulsant drugs pentylenetetrazole, thiosemicarbazide, 4-aminopyridine and bicuculline on NO levels were studied, using a spectrophotometric method. Their effects on NO levels in neurons and astrocytes depend on the concentration and time of treatment. These convulsant drugs caused an increase in nNO, but a decrease in eNO was proportional to the duration of treatment in both cases. Apparently, nNO possesses convulsant properties mediated by its effect on the glutamatergic and GABAergic systems, probably through GABAA receptors. Anticonvulsant properties of eNO may be the consequence of its effect on endothelial vasodilation and its capability to induce angiogenesis. Described effects last as seizures do. Considering the limitations of these kinds of studies and the unexplored influence of inducible NO, further investigations are required.
Collapse
|
5
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
6
|
Zhai J, Zhou YY, Lagrutta A. Sensitivity, specificity and limitation of in vitro hippocampal slice and neuron-based assays for assessment of drug-induced seizure liability. Toxicol Appl Pharmacol 2021; 430:115725. [PMID: 34536444 DOI: 10.1016/j.taap.2021.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
An effective in vitro screening assay to detect seizure liability in preclinical development can contribute to better lead molecule optimization prior to candidate selection, providing higher throughput and overcoming potential brain exposure limitations in animal studies. This study explored effects of 26 positive and 14 negative reference pharmacological agents acting through different mechanisms, including 18 reference agents acting on glutamate signaling pathways, in a brain slice assay (BSA) of adult rat to define the assay's sensitivity, specificity, and limitations. Evoked population spikes (PS) were recorded from CA1 pyramidal neurons of hippocampus (HPC) in the BSA. Endpoints for analysis were PS area and PS number. Most positive references (24/26) elicited a concentration-dependent increase in PS area and/or PS number. The negative references (14/14) had little effect on the PS. Moreover, we studied the effects of 15 reference agents testing positive in the BSA on spontaneous activity in E18 rat HPC neurons monitored with microelectrode arrays (MEA), and compared these effects to the BSA results. From these in vitro studies we conclude that the BSA provides 93% sensitivity and 100% specificity in prediction of drug-induced seizure liability, including detecting seizurogenicity by 3 groups of metabotropic glutamate receptor (mGluR) ligands. The MEA results seemed more variable, both quantitatively and directionally, particularly for endpoints capturing synchronized electrical activity. We discuss these results from the two models, comparing each with published results, and provide potential explanations for differences and future directions.
Collapse
Affiliation(s)
- Jin Zhai
- Department of Genetic Toxicology and In Vitro Cellular Toxicity, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA.
| | - Ying-Ying Zhou
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| | - Armando Lagrutta
- Program Discovery and Development, Safety Assessment & Laboratory Animal Resources (SALAR), Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
7
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
8
|
Doughty PT, Hossain I, Gong C, Ponder KA, Pati S, Arumugam PU, Murray TA. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo. Sci Rep 2020; 10:12777. [PMID: 32728074 PMCID: PMC7392771 DOI: 10.1038/s41598-020-69636-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme-based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a significant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
Collapse
Affiliation(s)
- P Timothy Doughty
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Chenggong Gong
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Kayla A Ponder
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Sandipan Pati
- UAB Epilepsy Center/Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Prabhu U Arumugam
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA. .,Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA.
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
9
|
Sudden Intrabulbar Amyloid Increase Simultaneously Disrupts Olfactory Bulb Oscillations and Odor Detection. Neural Plast 2019; 2019:3424906. [PMID: 31531013 PMCID: PMC6721117 DOI: 10.1155/2019/3424906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
There seems to be a correlation between soluble amyloid beta protein (Aβ) accumulation in the main olfactory bulb (OB) and smell deterioration in both Alzheimer's disease (AD) patients and animal models. Moreover, this loss of smell appears to be related to alterations in neural network activity in several olfactory-related circuits, including the OB, as has been observed in anesthetized animals and brain slices. It is possible that there is a correlation between these two pathological phenomena, but a direct and simultaneous evaluation of the acute and direct effect of Aβ on OB activity while animals are actually smelling has not been performed. Thus, here, we tested the effects of acute intrabulbar injection of Aβ at a low dose (200 pmol) on the OB local field potential before and during the presence of a hidden piece of smelly food. Our results show that Aβ decreases the power of OB network activity while impairing the animal's ability to reach the hidden food. We found a strong relationship between the power of the OB oscillations and the correlation between OBs and the olfactory detection test scores. These findings provide a direct link between Aβ-induced OB network dysfunction and smell loss in rodents, which could be extrapolated to AD patients.
Collapse
|
10
|
Alcantara-Gonzalez D, Villasana-Salazar B, Peña-Ortega F. Single amyloid-beta injection exacerbates 4-aminopyridine-induced seizures and changes synaptic coupling in the hippocampus. Hippocampus 2019; 29:1150-1164. [PMID: 31381216 DOI: 10.1002/hipo.23129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Accumulation of amyloid-beta (Aβ) in temporal lobe structures, including the hippocampus, is related to a variety of Alzheimer's disease symptoms and seems to be involved in the induction of neural network hyperexcitability and even seizures. Still, a direct evaluation of the pro-epileptogenic effects of Aβ in vivo, and of the underlying mechanisms, is missing. Thus, we tested whether the intracisternal injection of Aβ modulates 4-aminopyridine (4AP)-induced epileptiform activity, hippocampal network function, and its synaptic coupling. When tested 3 weeks after its administration, Aβ (but not its vehicle) reduces the latency for 4AP-induced seizures, increases the number of generalized seizures, exacerbates the time to fully recover from seizures, and favors seizure-induced death. These pro-epileptogenic effects of Aβ correlate with a reduction in the power of the spontaneous hippocampal network activity, involving all frequency bands in vivo and only the theta band (4-10 Hz) in vitro. The pro-epileptogenic effects of Aβ also correlate with a reduction of the Schaffer-collateral CA1 synaptic coupling in vitro, which is exacerbated by the sequential bath application of 4-AP and Aβ. In summary, Aβ produces long-lasting pro-epileptic effects that can be due to alterations in the hippocampal circuit, impacting its coordinated network activity and its synaptic efficiency. It is likely that normalizing synaptic coupling and/or coordinated neural network activity (i.e., theta activity) may contribute not only to improve cognitive function in Alzheimer's disease but also to avoid hyperexcitation in conditions of amyloidosis.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| |
Collapse
|
11
|
Pardo-Peña K, Lorea-Hernández JJ, Camacho-Hernández NP, Ordaz B, Villasana-Salazar B, Morales-Villagrán A, Peña-Ortega F. Hydrogen peroxide extracellular concentration in the ventrolateral medulla and its increase in response to hypoxia in vitro: Possible role of microglia. Brain Res 2018; 1692:87-99. [DOI: 10.1016/j.brainres.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/31/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
12
|
Ramírez-Jarquín UN, Tapia R. Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. ACS Chem Neurosci 2018; 9:211-216. [PMID: 29350907 DOI: 10.1021/acschemneuro.7b00503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complex neuronal networks of the spinal cord coordinate a wide variety of motor functions, including walking, running, and voluntary and involuntary movements. This is accomplished by different groups of neurons, called center pattern generators, which control left-right alternation and flexor-extensor patterns. These spinal circuits, located in the ventral horns, are formed by several neuronal types, and the specific function of most of them has been identified by means of studies in vivo and in the isolated spinal cord of mice harboring genetically induced ablation of specific neuronal populations. These studies have shown that the coordinated activity of several interneuron types, mainly GABAergic and glycinergic inhibitory neurons, have a crucial role in the modulation of motor neurons activity that finally excites the corresponding muscles. A pharmacological experimental approach by administering in the spinal cord agonists and antagonists of glutamate, GABA, glycine, and acetylcholine receptors to alter their synaptic action has also produced important results, linking the deficits in the synaptic function with the resulting motor alterations. These results have also increased the knowledge of the mechanisms of motor neuron degeneration, which is characteristic of diseases such as amyotrophic lateral sclerosis, and therefore open the possibility of designing new strategies for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510-Ciudad de México, México
| |
Collapse
|
13
|
García-García L, Fernández de la Rosa R, Delgado M, Silván Á, Bascuñana P, Bankstahl JP, Gomez F, Pozo MA. Metyrapone prevents acute glucose hypermetabolism and short-term brain damage induced by intrahippocampal administration of 4-aminopyridine in rats. Neurochem Int 2017; 113:92-106. [PMID: 29203398 DOI: 10.1016/j.neuint.2017.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
Intracerebral administration of the potassium channel blocker 4-aminopyridine (4-AP) triggers neuronal depolarization and intense acute seizure activity followed by neuronal damage. We have recently shown that, in the lithium-pilocarpine rat model of status epilepticus (SE), a single administration of metyrapone, an inhibitor of the 11β-hydroxylase enzyme, had protective properties of preventive nature against signs of brain damage and neuroinflammation. Herein, our aim was to investigate to which extent, pretreatment with metyrapone (150 mg/kg, i.p.) was also able to prevent eventual changes in the acute brain metabolism and short-term neuronal damage induced by intrahippocampal injection of 4-AP (7 μg/5 μl). To this end, regional brain metabolism was assessed by 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) positron emission tomography (PET) during the ictal period. Three days later, markers of neuronal death and hippocampal integrity and apoptosis (Nissl staining, NeuN and active caspase-3 immunohistochemistry), neurodegeneration (Fluoro-Jade C labeling), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and microglia-mediated neuroinflammation (in vitro [18F]GE180 autoradiography) were evaluated. 4-AP administration acutely triggered marked brain hypermetabolism within and around the site of injection as well as short-term signs of brain damage and inflammation. Most important, metyrapone pretreatment was able to reduce ictal hypermetabolism as well as all the markers of brain damage except microglia-mediated neuroinflammation. Overall, our study corroborates the neuroprotective effects of metyrapone against multiple signs of brain damage caused by seizures triggered by 4-AP. Ultimately, our data add up to the consistent protective effect of metyrapone pretreatment reported in other models of neurological disorders of different etiology.
Collapse
Affiliation(s)
- Luis García-García
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain; Departamento de Farmacología, Farmacognosia y Biología Vegetal, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Rubén Fernández de la Rosa
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain
| | - Mercedes Delgado
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain
| | - Ágata Silván
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany
| | - Francisca Gomez
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain; Departamento de Farmacología, Farmacognosia y Biología Vegetal, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Miguel A Pozo
- Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII n° 1, 28040 Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Tecnológico PET, C/ Manuel Bartolomé Cossío n° 10, 28040 Madrid, Spain
| |
Collapse
|
14
|
Hernandez-Ojeda M, Ureña-Guerrero ME, Gutierrez-Barajas PE, Cardenas-Castillo JA, Camins A, Beas-Zarate C. KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment. J Biomed Sci 2017; 24:27. [PMID: 28486943 PMCID: PMC5423021 DOI: 10.1186/s12929-017-0335-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Na+/Ca2+ exchangers (NCX1-3) are implicated in Ca2+ brain homeostasis; normally, they extrude Ca2+ to control cell inflammation, but after damage and in epilepsy, they introduce Ca2+ by acting in the reverse mode, amplifying the damage. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode. METHODS Neonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate the expression level of NCX1-3 proteins in relative way to the expression of β-actin, as constitutive protein. Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of 4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60. Behavioural alterations were also recorder. RESULTS Neonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions, and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way in MSG-treated rats than in controls. CONCLUSIONS The long-term effects of neonatal MSG treatment include increases on functional expression of NCXs (mainly of NCX3) in the EC and Hp, which seems to contribute to improve the control that KB-R7943 exerted on the seizures induced by 4-AP in adulthood. The results obtained here suggest that the blockade of NCXs could improve seizure control after an excitotoxic process; however, this must be better studied.
Collapse
Affiliation(s)
- Mariana Hernandez-Ojeda
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Monica E. Ureña-Guerrero
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Paola E. Gutierrez-Barajas
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Jazmin A. Cardenas-Castillo
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carlos Beas-Zarate
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| |
Collapse
|
15
|
Kadowaki A, Sada N, Juge N, Wakasa A, Moriyama Y, Inoue T. Neuronal inhibition and seizure suppression by acetoacetate and its analog, 2-phenylbutyrate. Epilepsia 2017; 58:845-857. [PMID: 28294308 DOI: 10.1111/epi.13718] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The ketogenic diet is clinically used to treat drug-resistant epilepsy. The diet treatment markedly increases ketone bodies (acetoacetate and β-hydroxybutyrate), which work as energy metabolites in the brain. Here, we investigated effects of acetoacetate on voltage-dependent Ca2+ channels (VDCCs) in pyramidal cells of the hippocampus. We further explored an acetoacetate analog that inhibited VDCCs in pyramidal cells, reduced excitatory postsynaptic currents (EPSCs), and suppressed seizures in vivo. METHODS The effects of acetoacetate and its analogs on VDCCs and EPSCs were evaluated using patch-clamp recordings from CA1 pyramidal cells of mouse hippocampal slices. The in vivo effects of these reagents were also evaluated using a chronic seizure model induced by intrahippocampal injection of kainate. RESULTS Acetoacetate inhibited VDCCs in pyramidal cells of hippocampal slices, and reduced EPSCs in slices exhibiting epileptiform activity. More potent EPSC inhibitors were then explored by modifying the chemical structure of acetoacetate, and 2-phenylbutyrate was identified as an acetoacetate analog that inhibited VDCCs and EPSCs more potently. Although acetoacetate is known to inhibit vesicular glutamate transporters (VGLUTs), 2-phenylbutyrate did not inhibit VGLUTs, showing that 2-phenylbutyrate is an acetoacetate analog that preferably inhibits VDCCs. In addition, 2-phenylbutyrate markedly reduced EPSCs in slices exhibiting epileptiform activity, and suppressed hippocampal seizures in vivo in a mouse model of epilepsy. The in vivo antiseizure effects of 2-phenylbutyrate were more potent than those of acetoacetate. Finally, intraperitoneal 2-phenylbutyrate was delivered to the brain, and its brain concentration reached the level enough to reduce EPSCs. SIGNIFICANCE These results demonstrate that 2-phenylbutyrate is an acetoacetate analog that inhibits VDCCs and EPSCs in pyramidal cells, suppresses hippocampal seizures in vivo, and has brain penetration ability. Thus 2-phenylbutyrate provides a useful chemical structure as a lead compound to develop new antiseizure drugs originating from ketone bodies.
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nagisa Sada
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Narinobu Juge
- Advanced Science Research Center, Okayama University, Okayama, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Ayaka Wakasa
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshinori Moriyama
- Advanced Science Research Center, Okayama University, Okayama, Japan.,Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsuyoshi Inoue
- Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
16
|
Lazo-Gómez R, Tapia R. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors. Front Neurosci 2016; 10:200. [PMID: 27242406 PMCID: PMC4860413 DOI: 10.3389/fnins.2016.00200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord.
Collapse
Affiliation(s)
- Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México, México
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México México, México
| |
Collapse
|
17
|
Jefferys J, Steinhäuser C, Bedner P. Chemically-induced TLE models: Topical application. J Neurosci Methods 2016; 260:53-61. [DOI: 10.1016/j.jneumeth.2015.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
|
18
|
Kay HY, Greene DL, Kang S, Kosenko A, Hoshi N. M-current preservation contributes to anticonvulsant effects of valproic acid. J Clin Invest 2015; 125:3904-14. [PMID: 26348896 DOI: 10.1172/jci79727] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/30/2015] [Indexed: 01/04/2023] Open
Abstract
Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy.
Collapse
|
19
|
Laura MC, Xóchitl FP, Anne S, Alberto MV. Analysis of connexin expression during seizures induced by 4-aminopyridine in the rat hippocampus. J Biomed Sci 2015; 22:69. [PMID: 26268619 PMCID: PMC4535691 DOI: 10.1186/s12929-015-0176-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
Background In epilepsy, seizures are generated by abnormal synchronous activity in neurons. In the rat hippocampus (HIP), epileptiform activity has been found to be associated with gap junctions (GJs). GJs are formed by the combination of two hemichannels, each composed of six connexins. At low doses, the convulsive drug 4-aminopyridine (4-AP) produces epileptiform activity without affecting glutamate levels; therefore, GJs could participate in its effect. Based on this argument, in this study, the expression of Cx 32, Cx 36 and Cx 43 protein and mRNA in the HIP of rats treated with 4-AP was evaluated. The evaluation of connexins was carried out by chemifluorescent immunoassay, semiquantitative RT-PCR and immunofluorescence to detect the amount and distribution of connexins and of cellular markers in the HIP and dentate gyrus (DG) of animals treated with NaCl and 4-AP in the right entorhinal cortex. In these animals, convulsive behavior and EEG signals were analyzed. Results The animals treated with 4-AP showed convulsive behavior and epileptiform activity 60 min after the administration. A significant increase in the protein expression of Cx 32, Cx 36 and Cx 43 was found in the HIP contralateral and ipsilateral to the site of 4-AP administration. A trend toward an increase in the mRNA of Cx 32 and Cx 43 was also found. An increase in the cellular density of Cx 32 and Cx 43 was found in the right HIP and DG, and an increase in the cellular density of oligodendrocytes in the DG and a decrease in the number of cells marked with NeuN were observed in the left HIP. Conclusions Cx 32 and Cx 43 associated with oligodendrocytes and astrocytes had an important role in the first stages of seizures induced by 4-AP, whereas Cx36 localized to neurons could be associated with later stages. Additionally, these results contribute to our understanding of the role of connexins in acute seizures and allow us to direct our efforts to other new anticonvulsant strategies for seizure treatment.
Collapse
Affiliation(s)
- Medina-Ceja Laura
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| | - Flores-Ponce Xóchitl
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| | - Santerre Anne
- Laboratory of Molecular Biomarkers and Molecular Genetic, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Jalisco, Mexico.
| | - Morales-Villagrán Alberto
- Laboratory of Neurophysiology and Neurochemistry, Department of Cellular and Molecular Biology, CUCBA,University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, Jalisco, Mexico.
| |
Collapse
|
20
|
Salgado-Puga K, Prado-Alcalá RA, Peña-Ortega F. Amyloid β Enhances Typical Rodent Behavior While It Impairs Contextual Memory Consolidation. Behav Neurol 2015; 2015:526912. [PMID: 26229236 PMCID: PMC4502279 DOI: 10.1155/2015/526912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an early hippocampal dysfunction, which is likely induced by an increase in soluble amyloid beta peptide (Aβ). This hippocampal failure contributes to the initial memory deficits observed both in patients and in AD animal models and possibly to the deterioration in activities of daily living (ADL). One typical rodent behavior that has been proposed as a hippocampus-dependent assessment model of ADL in mice and rats is burrowing. Despite the fact that AD transgenic mice show some evidence of reduced burrowing, it has not been yet determined whether or not Aβ can affect this typical rodent behavior and whether this alteration correlates with the well-known Aβ-induced memory impairment. Thus, the purpose of this study was to test whether or not Aβ affects burrowing while inducing hippocampus-dependent memory impairment. Surprisingly, our results show that intrahippocampal application of Aβ increases burrowing while inducing memory impairment. We consider that this Aβ-induced increase in burrowing might be associated with a mild anxiety state, which was revealed by increased freezing behavior in the open field, and conclude that Aβ-induced hippocampal dysfunction is reflected in the impairment of ADL and memory, through mechanisms yet to be determined.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, 76230 Juriquilla, Querétaro, QRO, Mexico
| |
Collapse
|
21
|
Chemical stimulation or glutamate injections in the nucleus of solitary tract enhance conditioned taste aversion. Behav Brain Res 2015; 278:202-9. [PMID: 25251840 DOI: 10.1016/j.bbr.2014.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/02/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
Abstract
Taste memory depends on motivational and post-ingestional consequences after a single taste-illness pairing. During conditioned taste aversion (CTA), the taste and visceral pathways reach the nucleus of the solitary tract (NTS), which is the first relay in the CNS and has a vital function in receiving vagal chemical stimuli and humoral signals from the area postrema that receives peripheral inputs also via vagal afferent fibers. The specific aim of the present set of experiments was to determine if the NTS is involved in the noradrenergic and glutamatergic activation of the basolateral amygdala (BLA) during CTA. Using in vivo microdialysis, we examined whether chemical NTS stimulation induces norepinephrine (NE) and/or glutamate changes in the BLA during visceral stimulation with intraperitoneal (i.p.) injections of low (0.08 M) and high (0.3 M) concentrations of lithium chloride (LiCl) during CTA training. The results showed that strength of CTA can be elicited by chemical NTS stimulation (Ringer's high potassium solution; 110 mM KCl) and by intra-NTS microinjections of glutamate, immediately after, but not before, low LiCl i.p. injections that only induce a week aversive memory. However visceral stimulation (with low or high i.p. LiCl) did not induce significantly more NE release in the amygdala compared with the NE increment induced by NTS potassium depolarization. In contrast, high i.p. concentrations of LiCl and chemical NTS stimulation induced a modest glutamate sustained release, that it is not observed with low LiCl i.p. injections. These results indicate that the NTS mainly mediates the visceral stimulus processing by sustained releasing glutamate in the BLA, but not by directly modulating NE release in the BLA during CTA acquisition, providing new evidence that the NTS has an important function in the transmission of signals from the periphery to brain systems that process aversive memory formation.
Collapse
|
22
|
Stephens ML, Williamson A, Deel ME, Bensalem-Owen M, Davis VA, Slevin J, Pomerleau F, Huettl P, Gerhardt GA. Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 2014; 55:1817-25. [PMID: 25266171 DOI: 10.1111/epi.12797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Characterize glutamate neurotransmission in the hippocampus of awake-behaving rodents during focal seizures in a model of aging. METHODS We used enzyme-based ceramic microelectrode array technology to measure in vivo extracellular tonic glutamate levels and real-time phasic glutamate release and clearance events in the hippocampus of awake Fischer 344 rats. Local application of 4-aminopyridine (4-AP) into the CA1 region was used to induce focal motor seizures in different animal age groups representing young, late-middle aged and elderly humans. RESULTS Rats with the highest preseizure tonic glutamate levels (all in late-middle aged or elderly groups) experienced the most persistent 4-AP-induced focal seizure motor activity (wet dog shakes) and greatest degree of acute seizure-associated disruption of glutamate neurotransmission measured as rapid transient changes in extracellular glutamate levels. SIGNIFICANCE Increased seizure susceptibility was demonstrated in the rats with the highest baseline hippocampal extracellular glutamate levels, all of which were late-middle aged or aged animals. The manifestation of seizures behaviorally was associated with dynamic changes in glutamate neurotransmission. To our knowledge, this is the first report of a relationship between seizure susceptibility and alterations in both baseline tonic and phasic glutamate neurotransmission.
Collapse
Affiliation(s)
- Michelle L Stephens
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, U.S.A
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Netzahualcoyotzi C, Tapia R. Energy substrates protect hippocampus against endogenous glutamate-mediated neurodegeneration in awake rats. Neurochem Res 2014; 39:1346-54. [PMID: 24789366 DOI: 10.1007/s11064-014-1318-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/24/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Excitotoxicity due to excessive glutamatergic neurotransmission is a well-studied phenomenon that has been related to the mechanisms of neuronal death occurring in some disorders of the CNS. We have previously shown that the intrahippocampal perfusion by microdialysis of 4-aminopyridine (4-AP) in rats stimulates endogenous glutamate release from nerve endings and this results in excitotoxic effects such as immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors. To study whether mitochondrial energy dysfunction and oxidative stress could be involved in this 4-AP-induced excitotoxicity, we evaluated in awake rats the protective effect of several energy substrates and antioxidant compounds, using microdialysis, electroencephalographic (EEG) recording and histological analysis. The 4-AP-induced behavioral and EEG seizures, which progressed to status epilepticus in about 30 min, were prevented by the NMDA receptor antagonist MK-801, whereas acetoacetate, DL- and L-β-hydroxybutyrate did not protect against seizures but increased the latency to the onset of status epilepticus; pyruvate, α-ketoglutarate and glutathione ethyl ester did not show any protective effect. 4-AP also produced nearly complete loss of pyramidal neurons in CA1 and CA3 regions of the ipsilateral hippocampus 24 h after the experiment. MK-801 totally prevented this neuronal death and the energy substrates tested protected by about 50%, whereas the antioxidants showed only a weak protection. We conclude that ketone bodies possess weak anticonvulsant effects and that energy metabolism impairment plays a more important role than oxidative stress in the delayed hippocampal neurodegeneration resulting from the excitotoxic action of 4-AP mediated by endogenous glutamate.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, Mexico, DF, Mexico
| | | |
Collapse
|
24
|
Ingram J, Zhang C, Cressman JR, Hazra A, Wei Y, Koo YE, Žiburkus J, Kopelman R, Xu J, Schiff SJ. Oxygen and seizure dynamics: I. Experiments. J Neurophysiol 2014; 112:205-12. [PMID: 24598521 DOI: 10.1152/jn.00540.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized a novel ratiometric nanoquantum dot fluorescence resonance energy transfer (NQD-FRET) optical sensor to quantitatively measure oxygen dynamics from single cell microdomains during hypoxic episodes as well as during 4-aminopyridine (4-AP)-induced spontaneous seizure-like events in rat hippocampal slices. Coupling oxygen sensing with electrical recordings, we found the greatest reduction in the O2 concentration ([O2]) in the densely packed cell body stratum (st.) pyramidale layer of the CA1 and differential layer-specific O2 dynamics between the st. pyramidale and st. oriens layers. These hypoxic decrements occurred up to several seconds before seizure onset could be electrically measured extracellularly. Without 4-AP, we quantified a narrow range of [O2], similar to the endogenous hypoxia found before epileptiform activity, which permits a quiescent network to enter into a seizure-like state. We demonstrated layer-specific patterns of O2 utilization accompanying layer-specific neuronal interplay in seizure. None of the oxygen overshoot artifacts seen with polarographic measurement techniques were observed. We therefore conclude that endogenously generated hypoxia may be more than just a consequence of increased cellular excitability but an influential and critical factor for orchestrating network dynamics associated with epileptiform activity.
Collapse
Affiliation(s)
- Justin Ingram
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Chunfeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, China
| | - John R Cressman
- Department of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, Virginia
| | - Anupam Hazra
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Yina Wei
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Yong-Eun Koo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jokūbas Žiburkus
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan; and
| | - Jian Xu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania
| | - Steven J Schiff
- Center for Neural Engineering, The Pennsylvania State University, University Park, Pennsylvania; Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania; Departments of Neurosurgery and Physics, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
25
|
Harris S, Bruyns-Haylett M, Kennerley A, Boorman L, Overton PG, Ma H, Zhao M, Schwartz TH, Berwick J. The effects of focal epileptic activity on regional sensory-evoked neurovascular coupling and postictal modulation of bilateral sensory processing. J Cereb Blood Flow Metab 2013; 33:1595-604. [PMID: 23860375 PMCID: PMC3790930 DOI: 10.1038/jcbfm.2013.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
Abstract
While it is known that cortical sensory dysfunction may occur in focal neocortical epilepsy, it is unknown whether sensory-evoked neurovascular coupling is also disrupted during epileptiform activity. Addressing this open question may help to elucidate both the effects of focal neocortical epilepsy on sensory responses and the neurovascular characteristics of epileptogenic regions in sensory cortex. We therefore examined bilateral sensory-evoked neurovascular responses before, during, and after 4-aminopyridine (4-AP, 15 mmol/L, 1 μL) induced focal neocortical seizures in right vibrissal cortex of the rat. Stimulation consisted of electrical pulse trains (16 seconds, 5 Hz, 1.2 mA) presented to the mystacial pad. Consequent current-source density neural responses and epileptic activity in both cortices and across laminae were recorded via two 16-channel microelectrodes bilaterally implanted in vibrissal cortices. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of total, oxy-, and deoxy-hemoglobin concentration. Compared with control, sensory-evoked neurovascular coupling was altered during ictal activity, but conserved postictally in both ipsilateral and contralateral vibrissal cortices, despite neurovascular responses being significantly reduced in the former, and enhanced in the latter. Our results provide insights into sensory-evoked neurovascular dynamics and coupling in epilepsy, and may have implications for the localization of epileptogenic foci and neighboring eloquent cortex.
Collapse
Affiliation(s)
- Sam Harris
- 1] Department of Psychology, University of Sheffield, Sheffield, UK [2] Department of Neurological Surgery, Brain and Spine Center, Brain and Mind Research Institute, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
27
|
Amyloid Beta-Protein and Neural Network Dysfunction. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:657470. [PMID: 26316994 PMCID: PMC4437331 DOI: 10.1155/2013/657470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ) represents one of the major challenges for Alzheimer's disease (AD) research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG) activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.
Collapse
|
28
|
Medina-Ceja L, Sandoval-García F, Morales-Villagrán A, López-Pérez SJ. Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus. J Biomed Sci 2012; 19:78. [PMID: 22931236 PMCID: PMC3438021 DOI: 10.1186/1423-0127-19-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder produced by an imbalance between excitatory and inhibitory neurotransmission, in which transporters of both glutamate and GABA have been implicated. Hence, at different times after local administration of the convulsive drug 4-aminopyridine (4-AP) we analyzed the expression of EAAT-3 and GAT-1 transporter proteins in cells of the CA1 and dentate gyrus. METHODS Dual immunofluorescence was used to detect the co-localization of transporters and a neuronal marker. In parallel, EEG recordings were performed and convulsive behavior was rated using a modified Racine Scale. RESULTS By 60 min after 4-AP injection, EAAT-3/NeuN co-labelling had increased in dentate granule cells and decreased in CA1 pyramidal cells. In the latter, this decrease persisted for up to 180 min after 4-AP administration. In both the DG and CA1, the number of GAT-1 labeled cells increased 60 min after 4-AP administration, although by 180 min GAT-1 labeled cells decreased in the DG alone. The increase in EAAT-3/NeuN colabelling in DG was correlated with maximum epileptiform activity and convulsive behavior. CONCLUSIONS These findings suggest that a compensatory mechanism exists to protect against acute seizures induced by 4-AP, whereby EAAT-3/NeuN cells is rapidly up regulated in order to enhance the removal of glutamate from the extrasynaptic space, and attenuating seizure activity.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratorio de Neurofisiología y Neuroquímica, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km, 15,5 Carretera Guadalajara-Nogales Predio "Las Agujas", Nextipac, Zapopan, Jalisco CP 45110, Mexico.
| | | | | | | |
Collapse
|
29
|
Peña-Ortega F. Tonic neuromodulation of the inspiratory rhythm generator. Front Physiol 2012; 3:253. [PMID: 22934010 PMCID: PMC3429030 DOI: 10.3389/fphys.2012.00253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/19/2012] [Indexed: 12/15/2022] Open
Abstract
The generation of neural network dynamics relies on the interactions between the intrinsic and synaptic properties of their neural components. Moreover, neuromodulators allow networks to change these properties and adjust their activity to specific challenges. Endogenous continuous (“tonic”) neuromodulation can regulate and sometimes be indispensible for networks to produce basal activity. This seems to be the case for the inspiratory rhythm generator located in the pre-Bötzinger complex (preBötC). This neural network is necessary and sufficient for generating inspiratory rhythms. The preBötC produces normal respiratory activity (eupnea) as well as sighs under normoxic conditions, and it generates gasping under hypoxic conditions after a reconfiguration process. The reconfiguration leading to gasping generation involves changes of synaptic and intrinsic properties that can be mediated by several neuromodulators. Over the past years, it has been shown that endogenous continuous neuromodulation of the preBötC may involve the continuous action of amines and peptides on extrasynaptic receptors. I will summarize the findings supporting the role of endogenous continuous neuromodulation in the generation and regulation of different inspiratory rhythms, exploring the possibility that these neuromodulatory actions involve extrasynaptic receptors along with evidence of glial modulation of preBötC activity.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla Querétaro, Mexico
| |
Collapse
|
30
|
Peña-Ortega F, Bernal-Pedraza R. Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:236289. [PMID: 22611415 PMCID: PMC3350957 DOI: 10.1155/2012/236289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25-35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1-42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
| | - Ramón Bernal-Pedraza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
- Departamento de Farmacobiología, Cinvestav-IPN, Mexico City, DF, Mexico
| |
Collapse
|
31
|
Vera G, Tapia R. Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamate-mediated excitotoxicity in the hippocampus in vivo. J Neurosci Res 2012; 90:1055-66. [PMID: 22252898 DOI: 10.1002/jnr.23006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/21/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
Perfusion of 4-aminopyridine (4-AP) by microdialysis in the hippocampus produces intense epileptiform behavioral and electrical activity and neurodegeneration, resulting from a stimulated release of glutamate from nerve endings. In contrast, accumulation of extracellular glutamate by blockade of its transport in vivo in anesthetized rats is innocuous, and studies in vitro in brain slices suggest that under these conditions glutamate may activate presynaptic group III metabotropic glutamate receptors (mGluRs) and inhibit its own release. Therefore, using microdialysis, EEG recording, and histological evaluation, we studied the effect of increased endogenous extracellular glutamate by blockade of its transport with pyrrolidine dicarboxylic acid (PDC) on the excitotoxic action of 4-AP in the hippocampus of awake rats. We found that up to a 20-fold increase in extracellular glutamate during >90 min with PDC does not induce any sign of excitotoxicity. On the contrary, this glutamate increase notably protected against the 4-AP-induced seizures and neurodegeneration, and, remarkably, this protection was dependent on the time of perfusion with PDC and thus on the duration of extracellular glutamate accumulation. To test whether this protective action was mediated by the activation of group III mGluRs, we used specific antagonists of these receptors and found that they clearly prevented the protective effect of PDC, without affecting the accumulation of extracellular glutamate. We conclude that the spillover of the excess extracellular glutamate activates presynaptic group III mGluRs and inhibits the stimulatory effect of 4-AP on its release, thus preventing the activation of postsynaptic N-methyl-D-aspartate receptors and its deleterious consequences.
Collapse
Affiliation(s)
- Gabriela Vera
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | |
Collapse
|
32
|
Salazar P, Tapia R. Allopregnanolone potentiates the glutamate-mediated seizures induced by 4-aminopyridine in rat hippocampus in vivo. Neurochem Res 2011; 37:596-603. [PMID: 22081320 DOI: 10.1007/s11064-011-0649-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/26/2011] [Accepted: 11/02/2011] [Indexed: 11/26/2022]
Abstract
Excitatory and inhibitory neurotransmission in the central nervous system can be modulated by neurosteroids. We previously found that in rat hippocampal slices allopregnanolone (3α-hydroxy-5α-pregnan-20-one), a positive GABA(A) receptor modulator, suppresses the epileptic discharges induced by 4-aminopyridine (4-AP), a convulsant K(+) channel blocker that stimulates glutamate release. Here, we tested the action of allopregnanolone on the epileptogenic and excitotoxic effects of the intrahippocampal administration of 4-AP in vivo. Drugs were perfused by a microdialysis cannula-electrode in the dorsal hippocampus and the EEG was recorded. Extracellular levels of aspartate, glutamate and GABA were analyzed by HPLC in the microdialysis fractions, and 24 h after the experiment the hippocampus was studied histologically. 4-AP induced intense epileptic discharges, increased the extracellular levels of aspartate, glutamate, and GABA by 383, 420, and 245%, respectively, and produced a notable neurodegeneration in CA1 and CA3 areas. Allopregnanolone administration alone did not affect the electrical activity, amino acids levels or cellular morphology, but when co-infused with 4-AP incremented 55-77% the duration of the epileptic discharges, and potentiated 32-49% the release of glutamate in comparison with 4-AP alone. The 4-AP-induced neurodegeneration was not modified by allopregnanolone. The NMDA receptor antagonist MK-801 protected against the epilepsy and neurodegeneration produced by 4-AP, and allopregnanolone did not affect this protection. We conclude that, differently from the observations in vitro, allopregnanolone potentiated the stimulatory effect of 4-AP on glutamate release and that this may explain the potentiation of the epileptogenic effect of 4-AP in vivo.
Collapse
Affiliation(s)
- Patricia Salazar
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510 México, DF, México
| | | |
Collapse
|
33
|
Kibler AB, Durand DM. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro. Epilepsia 2011; 52:1590-600. [PMID: 21668440 DOI: 10.1111/j.1528-1167.2011.03125.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. METHODS This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. KEY FINDINGS In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. SIGNIFICANCE These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Andrew B Kibler
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
34
|
Sahraian MA, Maghzi AH, Etemadifar M, Minagar A. Dalfampridine: review of its efficacy in improving gait in patients with multiple sclerosis. J Cent Nerv Syst Dis 2011; 3:87-93. [PMID: 23861641 PMCID: PMC3663610 DOI: 10.4137/jcnsd.s4868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive immune-mediated neurodegenerative disease of human central nervous system (CNS), which causes irreversible disability in young adults. The cause and cure for MS remain unknown. Pathophysiology of MS includes two arms: inflammatory demyelination and neurodegeneration. The inflammatory demyelination of MS which is mainly promoted by a massive activation of the immune system against putative CNS antigen(s) leads to loss of oligodendrocyte/myelin complex which slows down or halts impulse conduction in denuded axons. Practically, loss of myelin significantly reduces signal conduction along the demyelinated axons through alterations in the distribution of axonal ion channels. Dalfampridine (4-aminopyridine or 4-AP) is an oral potassium channel blocker, which was recently approved by FDA for symptomatic treatment of MS. Dalfampridine, which acts at the central and peripheral nervous systems, enhances conduction in demyelinated axons and improves walking ability of MS patients. A number of clinical trials have evaluated the safety and efficacy of fampridine in MS patients with the degree of gait improvement as the main outcome. The objective of this manuscript is to provide an overview of the pharmacology, pharmacokinetics, clinical trials, side effects and interactions of dalfampridine used in treatment of MS patients.
Collapse
Affiliation(s)
- M A Sahraian
- Sina MS Research Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
35
|
Shi R, Sun W. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons. Neurosci Bull 2011; 27:36-44. [PMID: 21270902 DOI: 10.1007/s12264-011-1048-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.
Collapse
Affiliation(s)
- Riyi Shi
- Department of Basic Medical Sciences, School of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
36
|
Leung G, Sun W, Brookes S, Smith D, Shi R. Potassium channel blocker, 4-aminopyridine-3-methanol, restores axonal conduction in spinal cord of an animal model of multiple sclerosis. Exp Neurol 2010; 227:232-5. [PMID: 21093437 DOI: 10.1016/j.expneurol.2010.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a severely debilitating neurodegenerative diseases marked by progressive demyelination and axonal degeneration in the CNS. Although inflammation is the major pathology of MS, the mechanism by which it occurs is not completely clear. The primary symptoms of MS are movement difficulties caused by conduction block resulting from the demyelination of axons. The possible mechanism of functional loss is believed to be the exposure of potassium channels and increase of outward current leading to conduction failure. 4-Aminopyridine (4-AP), a well-known potassium channel blocker, has been shown to enhance conduction in injured and demyelinated axons. However, 4-AP has a narrow therapeutic range in clinical application. Recently, we developed a new fast potassium channel blocker, 4-aminopyridine-3-methanol (4-AP-3-MeOH). This novel 4-AP derivative is capable of restoring impulse conduction in ex vivo injured spinal cord without compromising the ability of axons to follow multiple stimuli. In the current study, we investigated whether 4-AP-3-MeOH can enhance impulse conduction in an animal model of MS. Our results showed that 4-AP-3-MeOH can significantly increase axonal conduction in ex vivo experimental autoimmune encephalomyelitis mouse spinal cord.
Collapse
Affiliation(s)
- Gary Leung
- Department of Basic Medical Sciences, Center for Paralysis Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
37
|
Mejía-Toiber J, Márquez-Ramos JA, Díaz-Muñoz M, Peña F, Aguilar MB, Giordano M. Glutamatergic Excitation and GABA Release from a Transplantable Cell Line. Cell Transplant 2010; 19:1307-23. [DOI: 10.3727/096368910x509059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell line M213-2O CL-4 was derived from cell line M213-2O and further modified to express human glutamate decarboxylase (hGAD-67), the enzyme that synthesizes GABA. Brain transplants of this cell line in animal models of epilepsy have been shown to modulate seizures. However, the mechanisms that underlie such actions are unknown. The purpose of the present study was to characterize this cell line and its responsiveness to several depolarizing conditions, in order to better understand how these cells exert their effects. Intracellular GABA levels were 34-fold higher and GAD activity was 16-fold higher in clone M213-2O CL-4 than in M213-2O. Both cell lines could take up [3H]GABA in vitro, and this uptake was prevented by nipecotic acid. By combining GABA release measurements and calcium imaging in vitro, we found that high extracellular K+, zero Mg2+, or glutamate activated M213-2O CL-4 cells and resulted in GABA release. The response to glutamate appeared to be mediated by AMPA/NMDA-like receptors. High KCl-induced GABA release was prevented when a Ca2+-free Krebs solution was used, suggesting an exocytotic-like mechanism. These results indicate that the cell line M213-2O CL-4 synthesizes, releases, and takes up GABA in vitro, and can be activated by depolarizing stimuli.
Collapse
Affiliation(s)
- Jana Mejía-Toiber
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Fernando Peña
- Departamento de Farmacobiología, CINVESTAV-Sur. Calzada de los Tenorios 235, Delegación Tlalpan, México
| | - Manuel B. Aguilar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Quéretaro, México
| | - Magda Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
38
|
Medina-Ceja L, Ventura-Mejía C. Differential effects of trimethylamine and quinine on seizures induced by 4-aminopyridine administration in the entorhinal cortex of vigilant rats. Seizure 2010; 19:507-13. [PMID: 20685138 DOI: 10.1016/j.seizure.2010.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/30/2010] [Accepted: 07/09/2010] [Indexed: 11/25/2022] Open
Abstract
In vivo and in vitro evidence from animals suggesting that gap junctions (GJs) play a role in the spreading of epileptiform activity. We have examined the influence of the gap junction opener trimethylamine (TMA) and the connexin 36 (Cx36) gap junctional blocker, quinine, on epileptiform activity induced by 4-aminopyridine (4-AP) in the rat entorhinal cortex (EC) and the CA1 hippocampal region. A cannula and surface electrodes were implanted into the brain to administer drugs and to monitor electrical activity. Injection of 4-AP (10 nmol) produced epileptiform discharge trains of high amplitude and frequency associated with seizure behavior rated between 0 and 3 in the Racine scale. In the presence of TMA (500 nmol), 4-AP produced distinct epileptiform patterns with continuous, long epileptiform discharges of high amplitude and frequency associated with seizure behavior of 0, 1, 3 and 5 during the first 30 min post-drug administration that diminished after 90 min. Quinine injection (35 pmol) into the EC of seizing animals decreased the amplitude and frequency of the discharge trains in the EC and CA1 regions, which were completely blocked after 34 min. Indeed, the seizure behavior of the animals was completely blocked in five of the six rats 53.2s after quinine administration. We suggest that the intensity of the proepileptic effect of TMA on epileptiform activity depends on the time and route of drug administration, and that neural Cx36-dependent GJs are important structures in the generation of epileptiform activity, as well as in the seizure behavior induced by 4-AP.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Department of Cellular and Molecular Biology, University of Guadalajara, 45110 Guadalajara, Jalisco, Mexico.
| | | |
Collapse
|
39
|
Takács E, Nyilas R, Szepesi Z, Baracskay P, Karlsen B, Røsvold T, Bjørkum AA, Czurkó A, Kovács Z, Kékesi AK, Juhász G. Matrix metalloproteinase-9 activity increased by two different types of epileptic seizures that do not induce neuronal death: a possible role in homeostatic synaptic plasticity. Neurochem Int 2010; 56:799-809. [PMID: 20303372 DOI: 10.1016/j.neuint.2010.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 01/26/2023]
Abstract
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in synaptic efficacy during learning paradigms. They are also activated during epileptic seizures, and MMP-9 has been associated with the establishment of aberrant synaptic connections after neuronal death induced by kainate treatment. It remains unclear whether MMPs are activated by epileptic activities that do not induce cell death. Here we examine this point in two animal models of epilepsy that do not involve extensive cell damage. We detected an elevation of MMP-9 enzymatic activity in cortical regions of secondary generalization after focal seizures induced by 4-aminopyridine (4-AP) application in rats. Pro-MMP-9 levels were also higher in Wistar Glaxo Rijswijk (WAG/Rij) rats, a genetic model of generalized absence epilepsy, than they were in Sprague-Dawley rats, and this elevation was correlated with diurnally occurring spike-wave-discharges in WAG/Rij rats. The increased enzymatic activity of MMP-9 in these two different epilepsy models is associated with synchronized neuronal activity that does not induce widespread cell death. In these epilepsy models MMP-9 induction may therefore be associated with functions such as homeostatic synaptic plasticity rather than neuronal death.
Collapse
Affiliation(s)
- Eszter Takács
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peña F, Ordaz B, Balleza-Tapia H, Bernal-Pedraza R, Márquez-Ramos A, Carmona-Aparicio L, Giordano M. Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 2010; 20:78-96. [PMID: 19294646 DOI: 10.1002/hipo.20592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early cognitive deficit characteristic of early Alzheimer's disease seems to be produced by the soluble forms of beta-amyloid protein. Such cognitive deficit correlates with neuronal network dysfunction that is reflected as alterations in the electroencephalogram of both Alzheimer patients and transgenic murine models of such disease. Correspondingly, recent studies have demonstrated that chronic exposure to betaAP affects hippocampal oscillatory properties. However, it is still unclear if such neuronal network dysfunction results from a direct action of betaAP on the hippocampal circuit or it is secondary to the chronic presence of the protein in the brain. Therefore, we aimed to explore the effect of acute exposure to betaAP(25-35) on hippocampal network activity both in vitro and in vivo, as well as on intrinsic and synaptic properties of hippocampal neurons. We found that betaAP(25-35), reversibly, affects spontaneous hippocampal population activity in vitro. Such effect is not produced by the inverse sequence betaAP(35-25) and is reproduced by the full-length peptide betaAP(1-42). Correspondingly betaAP(25-35), but not the inverse sequence betaAP(35-25), reduces theta-like activity recorded from the hippocampus in vivo. The betaAP(25-35)-induced disruption in hippocampal network activity correlates with a reduction in spontaneous neuronal activity and synaptic transmission, as well as with an inhibition in the subthreshold oscillations produced by pyramidal neurons in vitro. Finally, we studied the involvement of Fyn-kinase on the betaAP(25-35)-induced disruption in hippocampal network activity in vitro. Interestingly, we found that such phenomenon is not observed in slices obtained from Fyn-knockout mice. In conclusion, our data suggest that betaAP acutely affects proper hippocampal function through a Fyn-dependent mechanism. We propose that such alteration might be related to the cognitive impairment observed, at least, during the early phases of Alzheimer's disease.
Collapse
Affiliation(s)
- Fernando Peña
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados Sede Sur, México, D.F., México.
| | | | | | | | | | | | | |
Collapse
|
41
|
Sun W, Smith D, Fu Y, Cheng JX, Bryn S, Borgens R, Shi R. Novel Potassium Channel Blocker, 4-AP-3-MeOH, Inhibits Fast Potassium Channels and Restores Axonal Conduction in Injured Guinea Pig Spinal Cord White Matter. J Neurophysiol 2010; 103:469-78. [DOI: 10.1152/jn.00154.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have demonstrated that 4-aminopyridine-3-methanol (4-AP-3-MeOH), a 4-aminopyridine derivative, significantly restores axonal conduction in stretched spinal cord white-matter strips and shows no preference in restoring large and small axons. This compound is 10 times more potent when compared with 4-AP and other derivatives in restoring axonal conduction. Unlike 4-AP, 4-AP-3-MeOH can restore axonal conduction without changing axonal electrophysiological properties. In addition, we also have confirmed that 4-AP-3-MeOH is indeed an effective blocker of IA based on patch-clamp studies using guinea pig dorsal root ganglia cells. Furthermore, we have also provided the critical evidence to confirm the unmasking of potassium channels following mechanical injury. Taken together, our data further supports and implicates the role of potassium channels in conduction loss and its therapeutic value as an effective target for intervention to restore function in spinal cord trauma. Furthermore, due to its high potency and possible low side effect of impacting electrophysiological properties, 4-AP-3-MeOH is perhaps the optimal choice in reversing conduction block in spinal cord injury compared with other derivatives previously reported from this group.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Basic Medical Sciences, Center for Paralysis Research
| | - Daniel Smith
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana
| | - Yan Fu
- Weldon School of Biomedical Engineering; and
| | | | - Steven Bryn
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana
| | - Richard Borgens
- Department of Basic Medical Sciences, Center for Paralysis Research
- Weldon School of Biomedical Engineering; and
| | - Riyi Shi
- Department of Basic Medical Sciences, Center for Paralysis Research
- Weldon School of Biomedical Engineering; and
| |
Collapse
|
42
|
Ayala GX, Tapia R. HSP70 expression protects against hippocampal neurodegeneration induced by endogenous glutamate in vivo. Neuropharmacology 2008; 55:1383-90. [DOI: 10.1016/j.neuropharm.2008.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022]
|
43
|
Aroniadou-Anderjaska V, Fritsch B, Qashu F, Braga MFM. Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Res 2008; 78:102-16. [PMID: 18226499 PMCID: PMC2272535 DOI: 10.1016/j.eplepsyres.2007.11.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/20/2007] [Accepted: 11/30/2007] [Indexed: 11/20/2022]
Abstract
Acute brain insults, such as traumatic brain injury, status epilepticus, or stroke are common etiologies for the development of epilepsy, including temporal lobe epilepsy (TLE), which is often refractory to drug therapy. The mechanisms by which a brain injury can lead to epilepsy are poorly understood. It is well recognized that excessive glutamatergic activity plays a major role in the initial pathological and pathophysiological damage. This initial damage is followed by a latent period, during which there is no seizure activity, yet a number of pathophysiological and structural alterations are taking place in key brain regions, that culminate in the expression of epilepsy. The process by which affected/injured neurons that have survived the acute insult, along with well-preserved neurons are progressively forming hyperexcitable, epileptic neuronal networks has been termed epileptogenesis. Understanding the mechanisms of epileptogenesis is crucial for the development of therapeutic interventions that will prevent the manifestation of epilepsy after a brain injury, or reduce its severity. The amygdala, a temporal lobe structure that is most well known for its central role in emotional behavior, also plays a key role in epileptogenesis and epilepsy. In this article, we review the current knowledge on the pathology of the amygdala associated with epileptogenesis and/or epilepsy in TLE patients, and in animal models of TLE. In addition, because a derangement in the balance between glutamatergic and GABAergic synaptic transmission is a salient feature of hyperexcitable, epileptic neuronal circuits, we also review the information available on the role of the glutamatergic and GABAergic systems in epileptogenesis and epilepsy in the amygdala.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
44
|
Walker MC, Semyanov A. Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 2008; 44:29-48. [PMID: 17671772 DOI: 10.1007/400_2007_030] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Not only are GABA(A) receptors activated transiently by GABA released at synapses, but high affinity, extrasynaptic GABA(A) receptors are also activated by ambient, extracellular GABA as a more persistent form of signalling (often termed tonic inhibition). Over the last decade tonic GABA(A) receptor-mediated inhibition and the properties of GABA(A) receptors mediating this signalling have received increasing attention. Tonic inhibition is present throughout the central nervous system, but is expressed in a cell-type specific manner (e.g. in interneurons more so than in pyramidal cells in the hippocampus, and in thalamocortical neurons more so than in reticular thalamic neurons in the thalamus). As a consequence, tonic inhibition can have a complex effect on network activity. Tonic inhibition is not fixed but can be modulated by endogenous and exogenous modulators, such as neurosteroids, and by developmental, physiological and pathological regulation of GABA uptake and GABA(A) receptor expression. There is also growing evidence that tonic currents play an important role in epilepsy, sleep (also actions of anaesthetics and sedatives), memory and cognition. Therefore, drugs specifically aimed at targeting the extrasynaptic receptors involved in tonic inhibition could be a novel approach to regulating both physiological and pathological processes.
Collapse
Affiliation(s)
- Matthew C Walker
- Institute of Neurology, University College London, Queen Square, London, UK.
| | | |
Collapse
|
45
|
Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol 2008; 209:145-54. [DOI: 10.1016/j.expneurol.2007.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
|
46
|
Antiepileptic effect of carbenoxolone on seizures induced by 4-aminopyridine: A study in the rat hippocampus and entorhinal cortex. Brain Res 2008; 1187:74-81. [DOI: 10.1016/j.brainres.2007.10.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/22/2022]
|
47
|
Blockade of AMPA-receptors attenuates 4-aminopyridine seizures, decreases the activation of inhibitory neurons but is ineffective against seizure-related astrocytic swelling. Epilepsy Res 2007; 78:22-32. [PMID: 18036781 DOI: 10.1016/j.eplepsyres.2007.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/10/2007] [Accepted: 10/14/2007] [Indexed: 10/22/2022]
Abstract
The neurotransmitter glutamate plays a pivotal role in the development of the neuropathological sequelae following acute seizures. Our previous data proved the efficacy of the NMDA-receptor antagonists on the symptoms, survival and neuronal activation in the 4-aminopyridine- (4-AP) induced seizures. In this study, we examined the effects of two different doses of a non-competitive, selective, allosteric AMPA-receptor antagonist, GYKI 52466. GYKI 52466 was effective in prolonging the latency to generalised seizures and reduction of seizure mortality. However, the effects on neuronal c-fos expression and astrocyte swelling were complex. The 25mg/kg dose of GYKI 52466 was effective in reducing the c-fos immunoreactivity (IR) in the hippocampus only. In the neocortex the overall c-fos-IR cell counts were increased significantly. Investigation of the neocortical parvalbumin-containing interneuron population proved that GYKI 52466 decreased c-fos expression. The 50mg/kg dose of GYKI 52466 significantly reduced the c-fos-IR in the neo- and allocortex, not only in principal neurons, but also in the parvalbumin-positive interneurons. The GYKI 52466-pretreatment did not prevent the astrocyte swelling in the investigated cortical areas; thus we conclude that the AMPA-receptors have little if any involvement in the in the mediation of neuropathological alterations in acute convulsions.
Collapse
|
48
|
McBride JM, Smith DT, Byrn SR, Borgens RB, Shi R. 4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury. Neuroscience 2007; 148:44-52. [PMID: 17629412 DOI: 10.1016/j.neuroscience.2007.05.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/24/2007] [Accepted: 05/30/2007] [Indexed: 11/22/2022]
Abstract
4-Aminopyridine (4-AP), a potassium channel blocker, is capable of restoring conduction in the injured spinal cord. However, the maximal tolerated level of 4-AP in humans is 100 times lower than the optimal dose in in vitro animal studies due to its substantially negative side effects. As an initial step toward the goal of identifying alternative potassium channel blockers with a similar ability of enhancing conduction and with fewer side effects, we have synthesized structurally distinct pyridine-based blockers. Using isolated guinea-pig spinal cord white matter and a double sucrose gap recording device, we have found three pyridine derivatives, N-(4-pyridyl)-methyl carbamate (100 microM), N-(4-pyridyl)-ethyl carbamate (100 microM), and N-(4-pyridyl)-tertbutyl (10 microM) can significantly enhance conduction in spinal cord white matter following stretch. Similar to 4-AP, the derivatives did not preferentially enhance conduction based on axonal caliber. Unlike 4-AP, the derivatives did not change the overall electrical responsiveness of axons to multiple stimuli, indicating the axons recruited by the derivatives conducted in a manner similar to healthy axons. These results demonstrate the ability of novel constructs to serve as an alternative to 4-AP for the purpose of reversing conduction deficits.
Collapse
Affiliation(s)
- J M McBride
- Department of Basic Medical Sciences, Center for Paralysis Research, Purdue University, 408 South University Street, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
49
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
50
|
Tovar-y-Romo LB, Tapia R. Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Exp Neurol 2006; 199:281-90. [PMID: 16364298 DOI: 10.1016/j.expneurol.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/21/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
Mechanisms of motor neuron loss in amyotrophic lateral sclerosis (ALS) are unknown, but it has been postulated that excitotoxicity due to excessive glutamatergic neurotransmission by decreased efficiency of glutamate transport may be involved in both familial (FALS) and sporadic ALS. Using microdialysis in vivo, we tested the effects of the glutamate transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and of 4-aminopyridine (4-AP), which stimulates glutamate release from nerve endings, in the hippocampus and motor cortex of wild type (WT) and transgenic SOD1/G93A mice, an established model of FALS. Perfusion of 4-AP induced convulsions, expression of the inducible stress-marker heat-shock protein 70 (HSP70) and hippocampal neuronal loss. These effects were similar in both WT and G93A mice, and, in both groups, they were prevented by the previous systemic administration of the NMDA receptor antagonist MK-801. In contrast, perfusion of PDC resulted in a large and long-lasting (2 h) increase of extracellular glutamate, but no convulsions, neuronal damage or HSP70 expression were observed in either the WT or the G93A mice. Our results demonstrate that SOD1 G93A mutation does not enhance the vulnerability to endogenous glutamate-mediated excitotoxicity in brain, neither by blocking glutamate transport nor by stimulating its release. Therefore, these data do not support the possibility that glutamate transport deficiency may be an important factor of brain neuronal degeneration in familial ALS.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D. F., México
| | | |
Collapse
|