1
|
Li R, Li HL, Cui HY, Huang YC, Hu Y. Identification of injury type using somatosensory and motor evoked potentials in a rat spinal cord injury model. Neural Regen Res 2023; 18:422-427. [PMID: 35900440 PMCID: PMC9396501 DOI: 10.4103/1673-5374.346458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022] Open
Abstract
The spinal cord is at risk of injury during spinal surgery. If intraoperative spinal cord injury is identified early, irreversible impairment or loss of neurological function can be prevented. Different types of spinal cord injury result in damage to different spinal cord regions, which may cause different somatosensory and motor evoked potential signal responses. In this study, we examined electrophysiological and histopathological changes between contusion, distraction, and dislocation spinal cord injuries in a rat model. We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials. Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis. The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion. After distraction injury, extracellular spaces were slightly but not significantly enlarged; somatosensory evoked potential responses slightly decreased and motor evoked potential responses were lost. Correlation analysis showed that histological and electrophysiological findings were significantly correlated and related to injury type. Intraoperative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.
Collapse
Affiliation(s)
- Rong Li
- Department of Orthopedics and Traumatology, The University of Hong Kong -Shenzhen Hospital, Shenzhen, Guangdong Provinve, China
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Provinve, China
| | - Han-Lei Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hong-Yan Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Provinve, China
| | - Yong Hu
- Department of Orthopedics and Traumatology, The University of Hong Kong -Shenzhen Hospital, Shenzhen, Guangdong Provinve, China
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Tellios V, Maksoud MJE, Xiang YY, Lu WY. Nitric Oxide Critically Regulates Purkinje Neuron Dendritic Development Through a Metabotropic Glutamate Receptor Type 1-Mediated Mechanism. THE CEREBELLUM 2021; 19:510-526. [PMID: 32270464 DOI: 10.1007/s12311-020-01125-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nitric oxide (NO), specifically derived from neuronal nitric oxide synthase (nNOS), is a well-established regulator of synaptic transmission in Purkinje neurons (PNs), governing fundamental processes such as motor learning and coordination. Previous phenotypic analyses showed similar cerebellar structures between neuronal nitric oxide null (nNOS-/-) and wild-type (WT) adult male mice, despite prominent ataxic behavior within nNOS-/- mice. However, a study has yet to characterize PN molecular structure and their excitatory inputs during development in nNOS-/- mice. This study is the first to explore morphological abnormalities within the cerebellum of nNOS-/- mice, using immunohistochemistry and immunoblotting. This study sought to examine PN dendritic morphology and the expression of metabotropic glutamate receptor type 1 (mGluR1), vesicular glutamate transporter type 1 and 2 (vGluT1 and vGluT2), stromal interaction molecule 1 (STIM1), and calpain-1 within PNs of WT and nNOS-/- mice at postnatal day 7 (PD7), 2 weeks (2W), and 7 weeks (7W) of age. Results showed a decrease in PN dendritic branching at PD7 in nNOS-/- cerebella, while aberrant dendritic spine formation was noted in adult ages. Total protein expression of mGluR1 was decreased in nNOS-/- cerebella across development, while vGluT2, STIM1, and calpain-1 were significantly increased. Ex vivo treatment of WT slices with NOS inhibitor L-NAME increased calpain-1 expression, whereas treating nNOS-/- cerebellar slices with NO donor NOC-18 decreased calpain-1. Moreover, mGluR1 agonist DHPG increased calpain-1 in WT, but not in nNOS-/- slices. Together, these results indicate a novel role for nNOS/NO signaling in PN development, particularly by regulating an mGluR1-initiated calcium signaling mechanism.
Collapse
Affiliation(s)
- Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | - Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada.,Robarts Research Institute, London, N6A 5B7, Canada
| | | | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, London, N6A 5B7, Canada. .,Robarts Research Institute, London, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, The University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
3
|
Yu CG, Bondada V, Joshi A, Reneer DV, Telling GC, Saatman KE, Geddes JW. Calpastatin Overexpression Protects against Excitotoxic Hippocampal Injury and Traumatic Spinal Cord Injury. J Neurotrauma 2020; 37:2268-2276. [PMID: 32718209 DOI: 10.1089/neu.2020.7122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small molecule inhibitors of calcium-dependent proteases, calpains (CAPNs), protect against neurodegeneration induced by a variety of insults including excitotoxicity and spinal cord injury (SCI). Many of these compounds, however, also inhibit other proteases, which has made it difficult to evaluate the contribution of calpains to neurodegeneration. Calpastatin is a highly specific endogenous inhibitor of classical calpains, including CAPN1 and CAPN2. In the present study, we utilized transgenic mice that overexpress human calpastatin under the prion promoter (PrP-hCAST) to evaluate the hypothesis that calpastatin overexpression protects against excitotoxic hippocampal injury and contusive SCI. The PrP-hCAST organotypic hippocampal slice cultures showed reduced neuronal death and reduced calpain-dependent proteolysis (α-spectrin breakdown production, 145 kDa) at 24 h after N-methyl-D-aspartate (NMDA) injury compared with the wild-type (WT) cultures (n = 5, p < 0.05). The PrP-hCAST mice (n = 13) displayed a significant improvement in locomotor function at one and three weeks after contusive SCI compared with the WT controls (n = 9, p < 0.05). Histological assessment of lesion volume and tissue sparing, performed on the same animals used for behavioral analysis, revealed that calpastatin overexpression resulted in a 30% decrease in lesion volume (p < 0.05) and significant increases in tissue sparing, white matter sparing, and gray matter sparing at four weeks post-injury compared with WT animals. Calpastatin overexpression reduced α-spectrin breakdown by 51% at 24 h post-injury, compared with WT controls (p < 0.05, n = 3/group). These results provide support for the hypothesis that sustained calpain-dependent proteolysis contributes to pathological deficits after excitotoxic injury and traumatic SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Vimala Bondada
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aashish Joshi
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dexter V Reneer
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Glenn C Telling
- Department of Microbiology, Immunology & Pathology, Colorado State University College of Veterinary Medicine and Biomedical Science, Fort Collins, Colorado, USA
| | - Kathryn E Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - James W Geddes
- Department of Neuroscience and Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD. Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Front Neurol 2020; 11:249. [PMID: 32322237 PMCID: PMC7156622 DOI: 10.3389/fneur.2020.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/13/2020] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (mTBI) causes persisting post-concussion syndrome for many patients without abnormalities on conventional neuroimaging. Currently, there is no method for identifying at-risk cases at an early stage for directing concussion management and treatment. SNTF is a calpain-derived N-terminal proteolytic fragment of spectrin (αII-spectrin1-1176) generated in damaged axons following mTBI. Preliminary human studies suggest that elevated blood SNTF on the day of mTBI correlates with white matter disruption and lasting brain dysfunction. Here, we further evaluated serum SNTF as a prognostic marker for persistent brain dysfunction in uncomplicated mTBI patients treated in a Level I trauma center emergency department. Compared with healthy controls (n = 40), serum SNTF increased by 92% within 24 h of mTBI (n = 95; p < 0.0001), and as a diagnostic marker exhibited 100% specificity and 37% sensitivity (AUC = 0.87). To determine whether the subset of mTBI cases positive for SNTF preferentially developed lasting brain dysfunction, serum levels on the day of mTBI were compared with multiple measures of brain performance at 90 days post-injury. Elevated serum SNTF correlated significantly with persistent impairments in cognition and sensory-motor integration, and predicted worse performance in each test on a case by case basis (AUC = 0.68 and 0.76, respectively). SNTF also predicted poorer recovery of cognitive stress function from 30 to 90 days (AUC = 0.79–0.90). These results suggest that serum SNTF, a surrogate marker for axonal injury after mTBI, may have potential for the rapid prognosis of lasting post-concussion syndrome and impaired functional recovery following CT-negative mTBI. They provide further evidence linking axonal injury to persisting brain dysfunction after uncomplicated mTBI. A SNTF blood test, either alone or combined with other markers of axonal injury, may have important utilities for research, prognosis, management and treatment of concussion.
Collapse
Affiliation(s)
- Robert Siman
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongmei Cui
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sandi S Wewerka
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| | - Lydia Hamel
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| | - Douglas H Smith
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D Zwank
- Department of Emergency Medicine, Regions Hospital, St. Paul, MN, United States
| |
Collapse
|
5
|
Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 2019; 88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Collapse
|
6
|
Zavodska M, Galik J, Marsala M, Papcunova S, Pavel J, Racekova E, Martoncikova M, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Reichel P, Trbolova A, Capik I, Bimbova K, Bacova M, Stropkovska A, Kisucka A, Miklisova D, Lukacova N. Hypothermic treatment after computer-controlled compression in minipig: A preliminary report on the effect of epidural vs. direct spinal cord cooling. Exp Ther Med 2018; 16:4927-4942. [PMID: 30542449 PMCID: PMC6257352 DOI: 10.3892/etm.2018.6831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/29/2018] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic efficacy of local hypothermia (beginning 30 min post-injury persisting for 5 h) on tissue preservation along the rostro-caudal axis of the spinal cord (3 cm cranially and caudally from the lesion site), and the prevention of injury-induced functional loss in a newly developed computer-controlled compression model in minipig (force of impact 18N at L3 level), which mimics severe spinal cord injury (SCI). Minipigs underwent SCI with two post-injury modifications (durotomy vs. intact dura mater) followed by hypothermia through a perfusion chamber with cold (epidural t≈15°C) saline, DMEM/F12 or enriched DMEM/F12 (SCI/durotomy group) and with room temperature (t≈24°C) saline (SCI-only group). Minipigs treated with post-SCI durotomy demonstrated slower development of spontaneous neurological improvement at the early postinjury time points, although the outcome at 9 weeks of survival did not differ significantly between the two SCI groups. Hypothermia with saline (t≈15°C) applied after SCI-durotomy improved white matter integrity in the dorsal and lateral columns in almost all rostro-caudal segments, whereas treatment with medium/enriched medium affected white matter integrity only in the rostral segments. Furthermore, regeneration of neurofilaments in the spinal cord after SCI-durotomy and hypothermic treatments indicated an important role of local saline hypothermia in the functional outcome. Although saline hypothermia (24°C) in the SCI-only group exhibited a profound histological outcome (regarding the gray and white matter integrity and the number of motoneurons) and neurofilament protection in general, none of the tested treatments resulted in significant improvement of neurological status. The findings suggest that clinically-proven medical treatments for SCI combined with early 5 h-long saline hypothermia treatment without opening the dural sac could be more beneficial for tissue preservation and neurological outcome compared with hypothermia applied after durotomy.
Collapse
Affiliation(s)
- Monika Zavodska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jan Galik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Martin Marsala
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Department of Anesthesiology, Neuroregeneration Laboratory, University of California-San Diego, San Diego, CA 92093, USA
| | - Stefania Papcunova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Jaroslav Pavel
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Eniko Racekova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Marcela Martoncikova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Igor Sulla
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia.,Hospital of Slovak Railways, 040 01 Košice, Slovakia
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 66 Košice, Slovakia
| | - Valent Ledecky
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Sulla
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Peter Reichel
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alexandra Trbolova
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Igor Capik
- Department of Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Katarina Bimbova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Maria Bacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Andrea Stropkovska
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Dana Miklisova
- Department of Vector-borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, 040 01 Košice, Slovakia
| |
Collapse
|
7
|
Giakoumettis D, Pourzitaki C, Vavilis T, Tsingotjidou A, Kyriakoudi A, Tsimidou M, Boziki M, Sioga A, Foroglou N, Kritis A. Crocus sativus L. Causes a Non Apoptotic Calpain Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide. Nutr Cancer 2018; 71:491-507. [PMID: 30273051 DOI: 10.1080/01635581.2018.1506493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dimitrios Giakoumettis
- Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Chryssa Pourzitaki
- Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Theofanis Vavilis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Histology and Anatomy, Faculty of Health Science, Veterinary school Aristotle university of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle university of Thessaloniki, Thessaloniki, Greece
| | - Maria Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle university of Thessaloniki, Thessaloniki, Greece
| | - Marina Boziki
- 2nd Neurological Clinic, University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology and Embryology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Nikolaos Foroglou
- Clinic of Neurosurgery, ΑHΕPΑ University Hospital, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| | - Aristeidis Kritis
- Laboratory of Physiology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece, Thessaloniki, Greece
| |
Collapse
|
8
|
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2017; 9:1125-1137. [PMID: 27736748 PMCID: PMC5087825 DOI: 10.1242/dmm.025833] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. Summary: In this Review, we discuss the advantages and disadvantages of the rat for studies of experimental spinal cord injury and summarize the knowledge gained from such studies.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
9
|
Gedrova S, Galik J, Marsala M, Zavodska M, Pavel J, Sulla I, Gajdos M, Lukac I, Kafka J, Ledecky V, Sulla I, Karasova M, Reichel P, Trbolova A, Capik I, Lukacova V, Bimbova K, Bacova M, Stropkovska A, Lukacova N. Neuroprotective effect of local hypothermia in a computer-controlled compression model in minipig: Correlation of tissue sparing along the rostro-caudal axis with neurological outcome. Exp Ther Med 2017; 15:254-270. [PMID: 29399061 PMCID: PMC5769223 DOI: 10.3892/etm.2017.5432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 11/05/2022] Open
Abstract
This study investigated the neuroprotective efficacy of local hypothermia in a minipig model of spinal cord injury (SCI) induced by a computer-controlled impactor device. The tissue integrity observed at the injury epicenter, and up to 3 cm cranially and caudally from the lesion site correlated with motor function. A computer-controlled device produced contusion lesions at L3 level with two different degrees of tissue sparing, depending upon pre-set impact parameters (8N- and 15N-force impact). Hypothermia with cold (4°C) saline or Dulbecco's modified Eagle's medium (DMEM)/F12 culture medium was applied 30 min after SCI (for 5 h) via a perfusion chamber (flow 2 ml/min). After saline hypothermia, the 8N-SCI group achieved faster recovery of hind limb function and the ability to walk from one to three steps at nine weeks in comparison with non-treated animals. Such improvements were not observed in saline-treated animals subjected to more severe 15N-SCI or in the group treated with DMEM/F12 medium. It was demonstrated that the tissue preservation in the cranial and caudal segments immediately adjacent to the lesion, and neurofilament protection in the lateral columns may be essential for modulation of the key spinal microcircuits leading to a functional outcome. Tissue sparing observed only in the caudal sections, even though significant, was not sufficient for functional improvement in the 15N-SCI model.
Collapse
Affiliation(s)
- Stefania Gedrova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jan Galik
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Martin Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Neuroregeneration Laboratory, Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92037, USA
| | - Monika Zavodska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Jaroslav Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Igor Sulla
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.,Hospital of Slovak Railways, 040 01 Kosice, Slovak Republic
| | - Miroslav Gajdos
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Imrich Lukac
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Jozef Kafka
- Department of Neurosurgery, Faculty of Medicine, University of Pavol Jozef Safarik, 040 01 Kosice, Slovak Republic
| | - Valent Ledecky
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Sulla
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Martina Karasova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Peter Reichel
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Alexandra Trbolova
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Igor Capik
- University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Viktoria Lukacova
- Faculty of Economics, Technical University of Kosice, 040 01 Kosice, Slovak Republic
| | - Katarina Bimbova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Maria Bacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Andrea Stropkovska
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| | - Nadezda Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic
| |
Collapse
|
10
|
Yaghoobi K. Neural regeneration after spinal cord injury treatment by lavandula angustifolia and human umbilical mesanchymal stem cell transplantation. Neural Regen Res 2017; 12:68-69. [PMID: 28250747 PMCID: PMC5319241 DOI: 10.4103/1673-5374.198984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Kayvan Yaghoobi
- Neuroscience Research Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ono Y, Saido TC, Sorimachi H. Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 2016; 15:854-876. [PMID: 27833121 DOI: 10.1038/nrd.2016.212] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science (IGAKUKEN), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
12
|
Kaka G, Yaghoobi K, Davoodi S, Hosseini SR, Sadraie SH, Mansouri K. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats. Front Neurosci 2016; 10:25. [PMID: 26903793 PMCID: PMC4744928 DOI: 10.3389/fnins.2016.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats.
Collapse
Affiliation(s)
- Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Kayvan Yaghoobi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Shaghayegh Davoodi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed R Hosseini
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Seyed H Sadraie
- Department of Anatomy, School of Medicine, Baqiyatallah University of Medical Sciences Tehran, Iran
| | - Korosh Mansouri
- Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences Tehran, Iran
| |
Collapse
|
13
|
Khan M, Dhammu TS, Matsuda F, Annamalai B, Dhindsa TS, Singh I, Singh AK. Targeting the nNOS/peroxynitrite/calpain system to confer neuroprotection and aid functional recovery in a mouse model of TBI. Brain Res 2015; 1630:159-70. [PMID: 26596859 DOI: 10.1016/j.brainres.2015.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) derails nitric oxide (NO)-based anti-inflammatory and anti-excitotoxicity mechanisms. NO is consumed by superoxide to form peroxynitrite, leading to decreased NO bioavailability for S-nitrosoglutathione (GSNO) synthesis and regulation of neuroprotective pathways. Neuronal peroxynitrite is implicated in neuronal loss and functional deficits following TBI. Using a contusion mouse model of TBI, we investigated mechanisms for the opposed roles of GSNO versus peroxynitrite for neuroprotection and functional recovery. TBI was induced by controlled cortical impact (CCI) in adult male mice. GSNO treatment at 2h after CCI decreased the expression levels of phospho neuronal nitric oxide synthase (pnNOS), alpha II spectrin degraded products, and 3-NT, while also decreasing the activities of nNOS and calpains. Treatment of TBI with FeTPPS, a peroxynitrite scavenger, had effects similar to GSNO treatment. GSNO treatment of TBI also reduced neuronal degeneration and improved neurobehavioral function in a two-week TBI study. In a cell free system, SIN-1 (a peroxynitrite donor and 3-nitrotyrosinating agent) increased whereas GSNO (an S-nitrosylating agent) decreased calpain activity, and these activities were reversed by, respectively, FeTPPS and mercuric chloride, a cysteine-NO bond cleaving agent. These data indicate that peroxynitrite-mediated activation and GSNO-mediated inhibition of the deleterious nNOS/calpain system play critical roles in the pathobiology of neuronal protection and functional recovery in TBI disease. Given GSNO׳s safety record in other diseases, its neuroprotective efficacy and promotion of functional recovery in this TBI study make low-dose GSNO a potential candidate for preclinical evaluation.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States.; School of Health Science, Kagoshima University, Kagoshima, Japan.
| | | | - Tejbir Singh Dhindsa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States..
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
14
|
Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Xu X, Li N, Zhu L, Zhou Y, Cheng H. Beneficial effects of local profound hypothermia and the possible mechanism after experimental spinal cord injury in rats. J Spinal Cord Med 2015; 39:220-8. [PMID: 26322652 PMCID: PMC5072505 DOI: 10.1179/2045772315y.0000000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The primary focus of this study was to investigate the effects of local profound hypothermia and to explore the possible mechanism in adult rats with spinal cord injury. STUDY DESIGN AND METHODS Spinal cord injury models were established by placing aneurysm clips on T10. An epidural perfusion device was applied to maintain a steady temperature (18 °C) for 120 min with gradual rewarming to 37 °C Total hypothermic duration lasted up to about 170 min. The expression of axon regeneration inhibitors was tested by Western blot and real-time PCR. Luxol Fast Blue (LFB) stain and Bielschowsky silver stain were used to observe spinal cord morphology. Motor function of the hind limbs (BBB score) was monitored for 21 days. RESULTS The expressions of RhoA, ROCK-II, NG2, Neurocan, Brevican, and Nogo-A were downregulated by regional hypothermia (RH) after spinal cord injury. Subsequent observation showed that rats that had received RH had an alleviated demyelinating condition and a greater number of nerve fibers. Furthermore, the RH group achieved higher BBB scores than the spinal cord injury (SCI) group. CONCLUSIONS Recovery of hind limb function in rats can be promoted by local profound hypothermia; this may be caused by the suppression of axon regeneration inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Huilin Cheng
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
16
|
Therapeutic Efficacy of E-64-d, a Selective Calpain Inhibitor, in Experimental Acute Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134242. [PMID: 26240815 PMCID: PMC4512559 DOI: 10.1155/2015/134242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/30/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
This study aims to investigate the therapeutic effect of calpain inhibitor E-64-d on SCI and to find a new approach to treat SCI. When an SCI rat model was established, it was immediately administered with E-64-d. RT-PCR and Western blotting were used to determine the protein and mRNA levels of calpain 1 and 68-kD NFP. TUNEL staining and NeuN labeling were performed to analyze neuronal apoptosis in the lesion. Immunohistochemistry assay was carried out to observe the expressions of calpain 1 and GFAP. Cyclooxygenase-2 activity was measured to show the immune response status. Locomotor function was evaluated by inclined plane test and Basso, Beattie, and Bresnahan locomotor rating scale. The results showed that calpain 1 was activated after SCI occurred. Treatment with E-64-d decreased expressions of calpain 1 and GFAP, alleviated neuronal apoptosis, inhibited cyclooxygenase-2 activity, and resulted in the promoted locomotor function. Furthermore, combination of E-64-d and MP had better efficacy than did E-64-d or MP alone. E-64-d is expected to be applied to treat SCI, and its alliance with MP may provide a valid strategy for SCI therapy.
Collapse
|
17
|
Kumar P, Choonara YE, Pillay V. In silico affinity profiling of neuroactive polyphenols for post-traumatic calpain inactivation: a molecular docking and atomistic simulation sensitivity analysis. Molecules 2014; 20:135-68. [PMID: 25546626 PMCID: PMC6272800 DOI: 10.3390/molecules20010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022] Open
Abstract
Calcium-activated nonlysosomal neutral proteases, calpains, are believed to be early mediators of neuronal damage associated with neuron death and axonal degeneration after traumatic neural injuries. In this study, a library of biologically active small molecular weight calpain inhibitors was used for model validation and inhibition site recognition. Subsequently, two natural neuroactive polyphenols, curcumin and quercetin, were tested for their sensitivity and activity towards calpain's proteolytic sequence and compared with the known calpain inhibitors via detailed molecular mechanics (MM), molecular dynamics (MD), and docking simulations. The MM and MD energy profiles (SJA6017 < AK275 < AK295 < PD151746 < quercetin < leupeptin < PD150606 < curcumin < ALLN < ALLM < MDL-28170 < calpeptin) and the docking analysis (AK275 < AK295 < PD151746 < ALLN < PD150606 < curcumin < leupeptin < quercetin < calpeptin < SJA6017 < MDL-28170 < ALLM) demonstrated that polyphenols conferred comparable calpain inhibition profiling. The modeling paradigm used in this study provides the first detailed account of corroboration of enzyme inhibition efficacy of calpain inhibitors and the respective calpain-calpain inhibitor molecular complexes' energetic landscape and in addition stimulates the polyphenol bioactive paradigm for post-SCI intervention with implications reaching to experimental in vitro, in cyto, and in vivo studies.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
18
|
Figley SA, Liu Y, Karadimas SK, Satkunendrarajah K, Fettes P, Spratt SK, Lee G, Ando D, Surosky R, Giedlin M, Fehlings MG. Delayed administration of a bio-engineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates allodynia following traumatic spinal cord injury. PLoS One 2014; 9:e96137. [PMID: 24846143 PMCID: PMC4028194 DOI: 10.1371/journal.pone.0096137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/03/2014] [Indexed: 02/01/2023] Open
Abstract
Following spinal cord injury (SCI) there are drastic changes that occur in the spinal microvasculature, including ischemia, hemorrhage, endothelial cell death and blood-spinal cord barrier disruption. Vascular endothelial growth factor-A (VEGF-A) is a pleiotropic factor recognized for its pro-angiogenic properties; however, VEGF has recently been shown to provide neuroprotection. We hypothesized that delivery of AdV-ZFP-VEGF--an adenovirally delivered bio-engineered zinc-finger transcription factor that promotes endogenous VEGF-A expression--would result in angiogenesis, neuroprotection and functional recovery following SCI. This novel VEGF gene therapy induces the endogenous production of multiple VEGF-A isoforms; a critical factor for proper vascular development and repair. Briefly, female Wistar rats--under cyclosporin immunosuppression--received a 35 g clip-compression injury and were administered AdV-ZFP-VEGF or AdV-eGFP at 24 hours post-SCI. qRT-PCR and Western Blot analysis of VEGF-A mRNA and protein, showed significant increases in VEGF-A expression in AdV-ZFP-VEGF treated animals (p<0.001 and p<0.05, respectively). Analysis of NF200, TUNEL, and RECA-1 indicated that AdV-ZFP-VEGF increased axonal preservation (p<0.05), reduced cell death (p<0.01), and increased blood vessels (p<0.01), respectively. Moreover, AdV-ZFP-VEGF resulted in a 10% increase in blood vessel proliferation (p<0.001). Catwalk™ analysis showed AdV-ZFP-VEGF treatment dramatically improves hindlimb weight support (p<0.05) and increases hindlimb swing speed (p<0.02) when compared to control animals. Finally, AdV-ZFP-VEGF administration provided a significant reduction in allodynia (p<0.01). Overall, the results of this study indicate that AdV-ZFP-VEGF administration can be delivered in a clinically relevant time-window following SCI (24 hours) and provide significant molecular and functional benefits.
Collapse
Affiliation(s)
- Sarah A Figley
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yang Liu
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Spyridon K Karadimas
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kajana Satkunendrarajah
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Peter Fettes
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - S Kaye Spratt
- Department of Therapeutic Development, Sangamo BioSciences, Pt. Richmond, California, United States of America
| | - Gary Lee
- Department of Therapeutic Development, Sangamo BioSciences, Pt. Richmond, California, United States of America
| | - Dale Ando
- Department of Therapeutic Development, Sangamo BioSciences, Pt. Richmond, California, United States of America
| | - Richard Surosky
- Department of Therapeutic Development, Sangamo BioSciences, Pt. Richmond, California, United States of America
| | - Martin Giedlin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, and Spinal Program, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
McCreedy DA, Wilems TS, Xu H, Butts JC, Brown CR, Smith AW, Sakiyama-Elbert SE. Survival, Differentiation, and Migration of High-Purity Mouse Embryonic Stem Cell-derived Progenitor Motor Neurons in Fibrin Scaffolds after Sub-Acute Spinal Cord Injury. Biomater Sci 2014; 2:1672-1682. [PMID: 25346848 DOI: 10.1039/c4bm00106k] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Embryonic stem (ES) cells can be differentiated into many neural cell types that hold great potential as cell replacement therapies following spinal cord injury (SCI). Coupling stem cell transplantation with biomaterial scaffolds can produce a unified combination therapy with several potential advantages including enhanced cell survival, greater transplant retention, reduced scarring, and improved integration at the transplant/host interface. Undesired cell types, however, are commonly present in ES-cell derived cultures due to the limited efficiency of most ES cell induction protocols. Heterogeneous cell populations can confound the interaction between the biomaterial and specific neural populations leading to undesired outcomes. In particular, biomaterials scaffolds may enhance tumor formation by promoting survival and proliferation of undifferentiated ES cells that can persist after induction. Methods for purification of specific ES cell-derived neural populations are necessary to recognize the full potential of combination therapies involving biomaterials and ES cell-derived neural populations. We previously developed a method for enriching ES cell-derived progenitor motor neurons (pMNs) induced from mouse ES cells via antibiotic selection and showed that the enriched cell populations are depleted of pluripotent stem cells. In this study, we demonstrate the survival and differentiation of enriched pMNs within three dimensional (3D) fibrin scaffolds in vitro and when transplanted into a sub-acute dorsal hemisection model of SCI into neurons, oligodendrocytes and astrocytes.
Collapse
Affiliation(s)
- D A McCreedy
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - T S Wilems
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - H Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - J C Butts
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - C R Brown
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - A W Smith
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| | - S E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63112, USA
| |
Collapse
|
20
|
Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley JV. A characterization of white matter pathology following spinal cord compression injury in the rat. Neuroscience 2013; 260:227-39. [PMID: 24361176 DOI: 10.1016/j.neuroscience.2013.12.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/25/2022]
Abstract
Our laboratory has previously described the characteristics of neuronal injury in a rat compression model of spinal cord injury (SCI), focussing on the impact of this injury on the gray matter. However, white matter damage is known to play a critical role in functional outcome following injury. Therefore, in the present study, we used immunohistochemistry and electron microscopy to examine the alterations to the white matter that are initiated by compression SCI applied at T12 vertebral level. A significant loss of axonal and dendritic cytoskeletal proteins was observed at the injury epicenter within 1day of injury. This was accompanied by axonal dysfunction, as demonstrated by the accumulation of β-amyloid precursor protein (β-APP), with a peak at 3days post-SCI. A similar, acute loss of cytoskeletal proteins was observed up to 5mm away from the injury epicenter and was particularly evident rostral to the lesion site, whereas β-APP accumulation was prominent in tracts proximal to the injury. Early myelin loss was confirmed by myelin basic protein (MBP) immunostaining and by electron microscopy, which also highlighted the infiltration of inflammatory and red blood cells. However, 6weeks after injury, areas of new Schwann cell and oligodendrocyte myelination were observed. This study demonstrates that substantial white matter damage occurs following compression SCI in the rat. Moreover, the loss of cytoskeletal proteins and accumulation of β-APP up to 5mm away from the lesion site within 1day of injury indicates the rapid manner in which the axonal damage extends in the rostro-caudal axis. This is likely due to both Wallerian degeneration and spread of secondary cell death, with the latter affecting axons both proximal and distal to the injury.
Collapse
Affiliation(s)
- R E Ward
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - W Huang
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; The Institute of Medical Sciences, School of Medical Science, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - M Kostusiak
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - P N Pallier
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - A T Michael-Titus
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - J V Priestley
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
21
|
Tsutsui S, Stys PK. Metabolic injury to axons and myelin. Exp Neurol 2013; 246:26-34. [DOI: 10.1016/j.expneurol.2012.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/20/2012] [Accepted: 04/23/2012] [Indexed: 12/31/2022]
|
22
|
Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 2013; 126:59-74. [PMID: 23595276 DOI: 10.1007/s00401-013-1119-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 10/27/2022]
Abstract
Traumatic axonal injury (TAI) is a consistent component of traumatic brain injury (TBI), and is associated with much of its morbidity. Increasingly, it has also been recognized as a major pathology of mild TBI (mTBI). In terms of its pathogenesis, numerous studies have investigated the susceptibility of the nodes of Ranvier, the paranode and internodal regions to TAI. The nodes of Ranvier, with their unique composition and concentration of ion channels, have been suggested as the primary site of injury, initiating a cascade of abnormalities in the related paranodal and internodal domains that lead to local axonal swellings and detachment. No investigation, however, has determined the effect of TAI upon the axon initial segment (AIS), a segment critical to regulating polarity and excitability. The current study sought to identify the susceptibility of these different axon domains to TAI within the neocortex, where each axonal domain could be simultaneously assessed. Utilizing a mouse model of mTBI, a temporal and spatial heterogeneity of axonal injury was found within the neocortical gray matter. Although axonal swellings were found in all domains along myelinated neocortical axons, the majority of TAI occurred within the AIS, which progressed without overt structural disruption of the AIS itself. The finding of primary AIS involvement has important implications regarding neuronal polarity and the fate of axotomized processes, while also raising therapeutic implications, as the mechanisms underlying such axonal injury in the AIS may be distinct from those described for nodal/paranodal injury.
Collapse
|
23
|
Abstract
Low-frequency depression (LFD) of transmitter release occurs at phasic synapses with stimulation at 0.2 Hz in both isolated crayfish (Procambarus clarkii) neuromuscular junction (NMJ) preparations and in intact animals. LFD is regulated by presynaptic activity of the Ca(2+)-dependent phosphatase calcineurin (Silverman-Gavrila and Charlton, 2009). Since the fast Ca(2+) chelator BAPTA-AM inhibits LFD but the slow chelator EGTA-AM does not, the Ca(2+) sensor for LFD may be close to a Ca(2+) source at active zones. Calcineurin can be activated by the Ca(2+)-activated protease calpain, and immunostaining showed that both proteins are present at nerve terminals. Three calpain inhibitors, calpain inhibitor I, MDL-28170, and PD150606, but not the control compound PD145305, inhibit LFD both in the intact animal as shown by electromyograms and by intracellular recordings at neuromuscular junctions. Analysis of mini-EPSPs indicated that these inhibitors had minimal postsynaptic effects. Proteolytic activity in CNS extract, detected by a fluorescent calpain substrate, was modulated by Ca(2+) and calpain inhibitors. Western blot analysis of CNS extract showed that proteolysis of calcineurin to a fragment consistent with the constitutively active form required Ca(2+) and was blocked by calpain inhibitors. Inhibition of LFD by calpain inhibition blocks the reduction in phosphoactin and the depolymerization of tubulin that normally occurs in LFD, probably by blocking the dephosphorylation of cytoskeletal proteins by calcineurin. In contrast, high-frequency depression does not involve protein phosphorylation- or calpain-dependent mechanisms. LFD may involve a specific pathway in which local Ca(2+) signaling activates presynaptic calpain and calcineurin at active zones and causes changes of tubulin cytoskeleton.
Collapse
|
24
|
Yu CG, Li Y, Raza K, Yu XX, Ghoshal S, Geddes JW. Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma 2013; 30:427-33. [PMID: 23102374 PMCID: PMC4169127 DOI: 10.1089/neu.2012.2561] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To evaluate the hypothesis that calpain 1 knockdown would reduce pathological damage and functional deficits after spinal cord injury (SCI), we developed lentiviral vectors encoding calpain 1 shRNA and eGFP as a reporter (LV-CAPN1 shRNA). The ability of LV-CAPN1 shRNA to knockdown calpain 1 was confirmed in rat NRK cells using Northern and Western blot analysis. To investigate the effects on spinal cord injury, LV-CAPN1shRNA or LV-mismatch control shRNA (LV-control shRNA) were administered by convection enhanced diffusion at spinal cord level T10 in Long-Evans female rats (200-250 g) 1 week before contusion SCI, 180 kdyn force, or sham surgery at the same thoracic level. Intraspinal administration of the lentiviral particles resulted in transgene expression, visualized by eGFP, in spinal tissue at 2 weeks after infection. Calpain 1 protein levels were reduced by 54% at T10 2 weeks after shRNA-mediated knockdown (p<0.05, compared with the LV-control group, n=3 per group) while calpain 2 levels were unchanged. Intraspinal administration of LV-CAPN1shRNA 1 week before contusion SCI resulted in a significant improvement in locomotor function over 6 weeks postinjury, compared with LV-control administration (p<0.05, n=10 per group). Histological analysis of spinal cord sections indicated that pre-injury intraspinal administration of LV-CAPN1shRNA significantly reduced spinal lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing (p<0.05, n=10 per group). Together, results support the hypothesis that calpain 1 activation contributes to the tissue damage and impaired locomotor function after SCI, and that calpain1 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Ye Z, Wang Y, Quan X, Li J, Hu X, Huang J, Luo Z. Effects of mechanical force on cytoskeleton structure and calpain-induced apoptosis in rat dorsal root ganglion neurons in vitro. PLoS One 2012; 7:e52183. [PMID: 23284927 PMCID: PMC3527405 DOI: 10.1371/journal.pone.0052183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/09/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown. METHODS Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury. RESULTS The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury. CONCLUSION Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.
Collapse
Affiliation(s)
- Zhengxu Ye
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuqing Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xin Quan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Li
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinghui Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhuojing Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
Veeravalli KK, Dasari VR, Rao JS. Regulation of proteases after spinal cord injury. J Neurotrauma 2012; 29:2251-62. [PMID: 22709139 DOI: 10.1089/neu.2012.2460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury is a major medical problem worldwide. Unfortunately, we still do not have suitable therapeutic agents for the treatment of spinal cord injury and prevention of its devastating consequences. Scientists and physicians are baffled by the challenges of controlling progressive neurodegeneration in spinal cord injury, which has not been healed with any currently-available treatments. Although extensive work has been carried out to better understand the pathophysiology of spinal cord injury, our current understanding of the repair mechanisms of secondary injury processes is still meager. Several investigators reported the crucial role played by various proteases after spinal cord injury. Understanding the beneficial and harmful roles these proteases play after spinal cord injury will allow scientists to plan and design appropriate treatment strategies to improve functional recovery after spinal cord injury. This review will focus on various proteases such as matrix metalloproteinases, cysteine proteases, and serine proteases and their inhibitors in the context of spinal cord injury.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | |
Collapse
|
27
|
Priestley JV, Michael-Titus AT, Tetzlaff W. Limiting spinal cord injury by pharmacological intervention. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:463-484. [PMID: 23098731 DOI: 10.1016/b978-0-444-52137-8.00029-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The direct primary mechanical trauma to neurons, glia and blood vessels that occurs with spinal cord injury (SCI) is followed by a complex cascade of biochemical and cellular changes which serve to increase the size of the injury site and the extent of cellular and axonal loss. The aim of neuroprotective strategies in SCI is to limit the extent of this secondary cell loss by inhibiting key components of the evolving injury cascade. In this review we will briefly outline the pathophysiological events that occur in SCI, and then review the wide range of neuroprotective agents that have been evaluated in preclinical SCI models. Agents will be considered under the following categories: antioxidants, erythropoietin and derivatives, lipids, riluzole, opioid antagonists, hormones, anti-inflammatory agents, statins, calpain inhibitors, hypothermia, and emerging strategies. Several clinical trials of neuroprotective agents have already taken place and have generally had disappointing results. In attempting to identify promising new treatments, we will therefore highlight agents with (1) low known risks or established clinical use, (2) behavioral data gained in clinically relevant animal models, (3) efficacy when administered after the injury, and (4) robust effects seen in more than one laboratory and/or more than one model of SCI.
Collapse
|
28
|
Figueroa JD, Cordero K, Baldeosingh K, Torrado AI, Walker RL, Miranda JD, Leon MD. Docosahexaenoic acid pretreatment confers protection and functional improvements after acute spinal cord injury in adult rats. J Neurotrauma 2011; 29:551-66. [PMID: 21970623 DOI: 10.1089/neu.2011.2141] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Currently, few interventions have been shown to successfully limit the progression of secondary damage events associated with the acute phase of spinal cord injury (SCI). Docosahexaenoic acid (DHA, C22:6 n-3) is neuroprotective when administered following SCI, but its potential as a pretreatment modality has not been addressed. This study used a novel DHA pretreatment experimental paradigm that targets acute cellular and molecular events during the first week after SCI in rats. We found that DHA pretreatment reduced functional deficits during the acute phase of injury, as shown by significant improvements in Basso-Beattie-Bresnahan (BBB) locomotor scores, and the detection of transcranial magnetic motor evoked potentials (tcMMEPs) compared to vehicle-pretreated animals. We demonstrated that, at 7 days post-injury, DHA pretreatment significantly increased the percentage of white matter sparing, and resulted in axonal preservation, compared to the vehicle injections. We found a significant increase in the survival of NG2+, APC+, and NeuN+ cells in the ventrolateral funiculus (VLF), dorsal corticospinal tract (dCST), and ventral horns, respectively. Interestingly, these DHA protective effects were observed despite the lack of inhibition of inflammatory markers for monocytes/macrophages and astrocytes, ED1/OX42 and GFAP, respectively. DHA pretreatment induced levels of Akt and cyclic AMP responsive element binding protein (CREB) mRNA and protein. This study shows for the first time that DHA pretreatment ameliorates functional deficits, and increases tissue sparing and precursor cell survival. Further, our data suggest that DHA-mediated activation of pro-survival/anti-apoptotic pathways may be independent of its anti-inflammatory effects.
Collapse
Affiliation(s)
- Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University, Loma Linda, California, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ray SK, Samantaray S, Smith JA, Matzelle DD, Das A, Banik NL. Inhibition of cysteine proteases in acute and chronic spinal cord injury. Neurotherapeutics 2011; 8:180-6. [PMID: 21373949 PMCID: PMC3101838 DOI: 10.1007/s13311-011-0037-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) is a serious neurological disorder that debilitates mostly young people. Unfortunately, we still do not have suitable therapeutic agents for treatment of SCI and prevention of its devastating consequences. However, we have gained a good understanding of pathological mechanisms that cause neurodegeneration leading to paralysis or even death following SCI. Primary injury to the spinal cord initiates the secondary injury process that includes various deleterious factors for ultimate activation of different cysteine proteases for degradation of cellular key cytoskeleton and other crucial proteins for delayed death of neurons and glial cells at the site of SCI and its penumbra in different animal models. An important aspect of SCI is the increase in intracellular free Ca(2+) concentration within a short time of primary injury. Various studies in different laboratories demonstrate that the most important cysteine protease for neurodegeneration in SCI is calpain, which absolutely requires intracellular free Ca(2+) for its activation. Furthermore, other cysteine proteases, such as caspases and cathepsin B also make a contribution to neurodegeneration in SCI. Therefore, inhibition of cysteine proteases is an important goal in prevention of neurodegeneration in SCI. Studies showed that individual inhibitors of cysteine proteases provided significant neuroprotection in animal models of SCI. Recent studies suggest that physiological hormones, such as estrogen and melatonin, can be successfully used for prevention of neurodegeneration and preservation of motor function in acute SCI as well as in chronic SCI in rats.
Collapse
Affiliation(s)
- Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina 29209 USA
| | - Supriti Samantaray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, Charleston, South Carolina 29425 USA
| | - Joshua A. Smith
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, Charleston, South Carolina 29425 USA
| | - Denise D. Matzelle
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, Charleston, South Carolina 29425 USA
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, Charleston, South Carolina 29425 USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, Charleston, South Carolina 29425 USA
| |
Collapse
|
30
|
Ward RE, Huang W, Curran OE, Priestley JV, Michael-Titus AT. Docosahexaenoic acid prevents white matter damage after spinal cord injury. J Neurotrauma 2010; 27:1769-80. [PMID: 20698757 DOI: 10.1089/neu.2010.1348] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) significantly improves several histological and behavioral measures after spinal cord injury (SCI). White matter damage plays a key role in neurological outcome following SCI. Therefore, we examined the effects of the acute intravenous (IV) administration of DHA (250 nmol/kg) 30 min after thoracic compression SCI in rats, alone or in combination with a DHA-enriched diet (400 mg/kg/d, administered for 6 weeks post-injury), on white matter pathology. By 1 week post-injury, the acute IV DHA injection led to significantly reduced axonal dysfunction, as indicated by accumulation of β-amyloid precursor protein (-55% compared to vehicle-injected controls) in the dorsal columns. The loss of cytoskeletal proteins following SCI was also significantly reduced. There were 43% and 73% more axons immunoreactive for non-phosphorylated 200-kD neurofilament in the ventral white matter and ventrolateral white matter, respectively, in animals receiving DHA injections than vehicle-injected rats. The acute DHA treatment also led to a significant improvement in microtubule-associated protein-2 immunoreactivity. By 6 weeks, damage to myelin and serotonergic fibers was also reduced. For some of the parameters measured, the combination of DHA injection and DHA-enriched diet led to greater neuroprotection than DHA injection alone. These findings demonstrate the therapeutic potential of DHA in SCI, and clearly indicate that this fatty acid confers significant protection to the white matter.
Collapse
Affiliation(s)
- Rachael E Ward
- Centre for Neuroscience and Trauma, The Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 2010; 88:1738-50. [PMID: 20091771 PMCID: PMC3127445 DOI: 10.1002/jnr.22337] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g . cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-kappaB translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Eric A. Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Supriti Samantaray
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua Smith
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - D. Denise Matzelle
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
32
|
Liu Y, Figley S, Spratt SK, Lee G, Ando D, Surosky R, Fehlings MG. An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis 2010; 37:384-93. [DOI: 10.1016/j.nbd.2009.10.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 10/09/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022] Open
|
33
|
Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury. J Neuropathol Exp Neurol 2009; 68:661-76. [PMID: 19458542 DOI: 10.1097/nen.0b013e3181a72605] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Polyethylene glycol (PEG) has been reported to possess fusogenic properties that may confer neuroprotection after spinal cord injury (SCI), but there is uncertainty regarding the mechanisms of PEG in vivo and the robustness of its protective effects. We hypothesized that PEG promotes preservation of cytoskeletal proteins associated with white matter protection and neurobehavioral recovery after SCI. In proof-of-principle experiments using a pin-drop organotypic culture model of SCI, PEG attenuated neural cell death. Adult rats underwent 35-g clip compression SCI at C8 and were randomized postinjury to receive intravenous 30% PEG or sterile Ringer's lactate solution. Confocal microscopy and high-performance liquid chromatography of fluorescein-conjugated PEG permitted in vivo quantification of PEG concentrations in the injured and uninjured spinal cord. Western blot, immunohistochemistry, and terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining demonstrated that PEG reduced 200-kd neurofilament degradation and apoptotic cell death. Polyethylene glycol also promoted spinal cord tissue sparing based on retrograde axonal Fluoro-Gold tracing and morphometric histological assessment. Polyethylene glycol also promoted significant, although modest, neurobehavioral recovery after SCI. Collectively, these results indicate that PEG protects key axonal cytoskeletal proteins after SCI, and that the protection is associated with axonal preservation. The modest extent of locomotor recovery after treatment with PEG suggests, however, that this compound may notconfer sufficient neuroprotection to be used clinically as a single treatment.
Collapse
|
34
|
Yamada K, Tanaka N, Nakanishi K, Kamei N, Ishikawa M, Mizuno T, Igarashi K, Ochi M. Modulation of the secondary injury process after spinal cord injury in Bach1-deficient mice by heme oxygenase-1. J Neurosurg Spine 2009; 9:611-20. [PMID: 19035757 DOI: 10.3171/spi.2008.10.08488] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Oxidative stress contributes to secondary injury after spinal cord injury (SCI). The expression of heme oxygenase-1 (HO-1), which protects cells from various insults including oxidative stress, is upregulated in injured spinal cords. Mice deficient in Bach1 (Bach1-/-), a transcriptional repressor of the HO-1 and beta-globin genes, express high levels of HO-1 mRNA and protein in various organs. The authors hypothesized that HO-1 modulates the secondary injury process after SCI in Bach1(-/-) mice. METHODS Male C57BL/6 (wild-type) and homozygous Bach1(-/-) C57BL/6 mice were subjected to moderate SCI, and differences in hindlimb motor function, and electrophysiological, molecular biological, and histopathological changes were assessed for 2 weeks. RESULTS Functional recovery was greater, and motor evoked potentials were significantly larger in Bach1(-/-) mice than in wild-type mice throughout the observation period. The expression of HO-1 mRNA in the spinal cord was significantly increased in both mice until 3 days after injury, and it was significantly higher in Bach1(-/-) mice than in wild-type mice at every assessment point. Histological examination using Luxol fast blue staining at 1 day after injury showed that the injured areas were smaller in Bach1(-/-) mice than in wild-type mice. The HO-1 immunoreactivity was not detected in uninjured spinal cord, but 3 days postinjury the number of HO-1-immunoreactive cells was obviously higher in the injured area in both mice, particularly in Bach1(-/-) mice. The HO-1 was primarily induced in microglia/macrophage in both mice. CONCLUSIONS These results suggest that HO-1 modulates the secondary injury process, and high HO-1 expression may preserve spinal cord function in the early stages after SCI in Bach1(-/-) mice. Treatment that induces HO-1 expression at these early stages may preserve the functional outcome after SCI.
Collapse
Affiliation(s)
- Kiyotaka Yamada
- Department of Orthopaedic Surgery, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Çolak A, Karaoğlan A, Kaya M, Sağmanligil A, Akdemir O, Şahan E, Çelik Ö. Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70163-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Effects of calpain inhibition on dopaminergic markers and motor function following intrastriatal 6-hydroxydopamine administration in rats. Neuroscience 2008; 158:558-69. [PMID: 19007862 DOI: 10.1016/j.neuroscience.2008.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 11/21/2022]
Abstract
The neurotoxin 6-hydroxydopamine has been widely used to model aspects of Parkinson's disease in rodents, but the mechanisms underlying toxin-induced dopaminergic degeneration and functional impairment have not been fully elucidated. The main aim of the present study was to assess a possible role for calpains in neurochemical and behavioral deficits following unilateral infusion of intrastriatal 6-hydroxydopamine in adult rats. Toxin administration produced a profound dopaminergic denervation, as indicated by a 90-95% reduction in dopamine transporter radiolabeling measured in the caudate-putamen at 2 weeks post-lesion. Treatment with 6-hydroxydopamine also resulted in calpain activation in both caudate-putamen and substantia nigra, as measured by the appearance of calpain-specific spectrin breakdown products. Calpain activation peaked at 24 h after 6-hydroxydopamine infusion and remained elevated at later time points. In contrast, caspase-3-mediated spectrin cleavage subsided within 48 h in both brain areas. In a subsequent experiment, calpain inhibition was achieved by intrastriatal infusion of an adenovirus expressing the endogenous calpain inhibitor, calpastatin. Calpastatin delivery abolished the lesion-induced calpain-mediated spectrin cleavage and alleviated forelimb asymmetries resulting from unilateral intrastriatal 6-hydroxydopamine. Unexpectedly, dopamine transporter and tyrosine hydroxylase labeling revealed significant neuroprotection, not in the nigrostriatal pathway but rather in the ventral tegmental area. These findings support a role for calpain activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. However, after near-total dopaminergic depletion, the primary benefit of calpain inhibition may not occur within the nigrostriatal dopaminergic pathway itself.
Collapse
|
37
|
Yu CG, Joshi A, Geddes JW. Intraspinal MDL28170 microinjection improves functional and pathological outcome following spinal cord injury. J Neurotrauma 2008; 25:833-40. [PMID: 18627259 DOI: 10.1089/neu.2007.0490] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although calpain (calcium-activated cysteine protease) inhibition represents a rational therapeutic target for spinal cord injury (SCI), few studies have reported improved functional outcomes with post-injury administration of calpain inhibitors. This reflects the weak potency and limited aqueous solubility of current calpain inhibitors. Previously, we demonstrated that intraspinal microinjection of the calpain inhibitor MDL28170 resulted in greater inhibition of calpain activity as compared to systemic administration of the same compound. In the present study, we evaluated the ability of intraspinal MDL28170 microinjection to spare spinal tissue and locomotor dysfunction following SCI. Contusion SCI was produced in female Long-Evans rats using the Infinite Horizon impactor at the 200-kdyn force setting. Open-field locomotion was evaluated until 6 weeks post-injury. Histological assessment of tissue sparing was performed at 6 weeks after SCI. The results demonstrate that MDL28170, administered with a single post-injury intraspinal microinjection (50 nmoles), significantly improves both locomotor function and pathological outcome measures following SCI.
Collapse
Affiliation(s)
- Chen-Guang Yu
- Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
38
|
Akdemir O, Uçankale M, Karaoğlan A, Barut Ş, Sağmanligil A, Bilguvar K, Çirakoğlu B, Şahan E, Çolak A. Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury. J Clin Neurosci 2008; 15:1130-6. [DOI: 10.1016/j.jocn.2007.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 08/22/2007] [Indexed: 11/27/2022]
|
39
|
Seyb KI, Schuman ER, Ni J, Huang MM, Michaelis ML, Glicksman MA. Identification of small molecule inhibitors of beta-amyloid cytotoxicity through a cell-based high-throughput screening platform. ACTA ACUST UNITED AC 2008; 13:870-8. [PMID: 18812568 DOI: 10.1177/1087057108323909] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Calpain activation is hypothesized to be an early occurrence in the sequence of events resulting in neurodegeneration, as well as in the signaling pathways linking extracellular accumulation of beta-amyloid (Abeta) peptides and intracellular formation of neurofibrillary tangles. In an effort to identify small molecules that prevent neurodegeneration in Alzheimer's disease by early intervention in the cell death cascade, a cell-based assay in differentiated Sh-SY5Y cells was developed using calpain activity as a read-out for the early stages of death in cells exposed to extracellular Abeta. This assay was optimized for high-throughput screening, and a library of approximately 120,000 compounds was tested. It was expected that the compounds identified as calpain inhibitors would include those that act directly on the enzyme and those that prevented calpain activation by blocking an upstream step in the pathway. In fact, of the compounds that inhibited calpain activation by Abeta with IC(50) values of <10 microM and showed little or no toxicity at concentrations up to 30 microM, none inhibit the calpain enzyme directly.
Collapse
Affiliation(s)
- K I Seyb
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Secondary pathology following contusion, dislocation, and distraction spinal cord injuries. Exp Neurol 2008; 212:490-506. [DOI: 10.1016/j.expneurol.2008.04.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/24/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022]
|
41
|
Yamaji T, Yamazaki S, Li J, Price RD, Matsuoka N, Mutoh S. FK1706, a novel non-immunosuppressant neurophilin ligand, ameliorates motor dysfunction following spinal cord injury through its neuroregenerative action. Eur J Pharmacol 2008; 591:147-52. [PMID: 18602914 DOI: 10.1016/j.ejphar.2008.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/06/2008] [Accepted: 06/12/2008] [Indexed: 11/18/2022]
Abstract
Injured spinal cord axons fail to regenerate in part due to a lack of trophic support. While various methods for replacing neurotrophins have been pursued, clinical uses of these methods face significant barriers. FK1706, a non-immunosuppressant neurophilin ligand, potentiates nerve growth factor signaling, suggesting therapeutic potential for functional deficits following spinal cord injury. Here, we demonstrate that FK1706 significantly improves behavioral outcomes in animal models of spinal cord hemisection and contusion injuries in rats. Furthermore, we show that FK1706 is effective even if administration is delayed until 1 week after injury, suggesting that FK1706 has a reasonable therapeutic time-window. Morphological analysis of injured axons in the dorsal corticospinal tract showed an increase in the radius and perimeter of stained axons, which were reduced by FK1706 treatment, suggesting that axonal swelling and retraction balls observed in injured spinal cord were improved by the neurotrophic effect of FK1706. Taken together, FK1706 improves both behavioral motor function and the underlying morphological changes, suggesting that FK1706 may have therapeutic potential in meeting the significant unmet needs in spinal cord injury.
Collapse
Affiliation(s)
- Takayuki Yamaji
- Pharmacology Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Calpain Inhibition Protects Spinal Motoneurons from the Excitotoxic Effects of AMPA In vivo. Neurochem Res 2008; 33:1428-34. [DOI: 10.1007/s11064-007-9559-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 12/03/2007] [Indexed: 11/25/2022]
|
43
|
Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH. Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res 2007; 33:134-49. [PMID: 17703359 PMCID: PMC2167626 DOI: 10.1007/s11064-007-9426-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/22/2007] [Indexed: 01/09/2023]
Abstract
Human umbilical cord blood stem cells (hUCB), due to their primitive nature and ability to develop into nonhematopoietic cells of various tissue lineages, represent a potentially useful source for cell-based therapies after spinal cord injury (SCI). To evaluate their therapeutic potential, hUCB were stereotactically transplanted into the injury epicenter, one week after SCI in rats. Our results show the presence of a substantial number of surviving hUCB in the injured spinal cord up to five weeks after transplantation. Three weeks after SCI, apoptotic cells were found especially in the dorsal white matter and gray matter, which are positive for both neuron and oligodendrocyte markers. Expression of Fas on both neurons and oligodendrocytes was efficiently downregulated by hUCB. This ultimately resulted in downregulation of caspase-3 extrinsic pathway proteins involving increased expression of FLIP, XIAP and inhibition of PARP cleavage. In hUCB-treated rats, the PI3K/Akt pathway was also involved in antiapoptotic actions. Further, structural integrity of the cytoskeletal proteins alpha-tubulin, MAP2A&2B and NF-200 has been preserved in hUCB treatments. The behavioral scores of hind limbs of hUCB-treated rats improved significantly than those of the injured group, showing functional recovery. Taken together, our results indicate that hUCB-mediated downregulation of Fas and caspases leads to functional recovery of hind limbs of rats after SCI.
Collapse
Affiliation(s)
- Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
| | - Daniel G. Spomar
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Liang Li
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
- *Corresponding Author: Dzung H. Dinh, M.D., Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA, (309) 655-2642 – phone; (309) 655-7696 - fax; e-mail:
| |
Collapse
|
44
|
Terayama R, Bando Y, Murakami K, Kato K, Kishibe M, Yoshida S. Neuropsin promotes oligodendrocyte death, demyelination and axonal degeneration after spinal cord injury. Neuroscience 2007; 148:175-87. [PMID: 17629414 DOI: 10.1016/j.neuroscience.2007.05.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 04/23/2007] [Accepted: 05/16/2007] [Indexed: 01/08/2023]
Abstract
Previous studies indicated that the expression of neuropsin, a serine protease, is induced in mature oligodendrocytes after injury to the CNS. The pathophysiology of spinal cord injury (SCI) involves primary and secondary mechanisms, the latter contributing further to permanent losses of function. To explore the role of neuropsin after SCI, histochemical and behavioral analyses were performed in wild-type (WT) and neuropsin-deficient (neuropsin(-/-)) mice using a crush injury model, a well-characterized and consistently reproducible model of SCI. In situ hybridization revealed that neuropsin mRNA expression was induced in the spinal cord white matter from WT mice after crush SCI, peaking at day 4. Neuropsin(-/-) mice showed attenuated demyelination, oligodendrocyte death, and axonal damage after SCI. Although axonal degeneration in the corticospinal tract was obvious caudal to the lesion site in both strains of mice after SCI, the number of surviving nerve fibers caudal to the lesion was significantly larger in neuropsin(-/-) mice than WT mice. Behavioral analysis revealed that the recovery at days 10-42 was significantly improved in neuropsin(-/-) mice compared with WT mice in spite of the severe initial hindlimb impairments due to SCI in both strains. These observations suggest that neuropsin is involved in the secondary phase of the pathogenesis of SCI mediated by demyelination, oligodendrocyte death, and axonal degeneration.
Collapse
Affiliation(s)
- R Terayama
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical College, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Yu CG, Geddes JW. Sustained calpain inhibition improves locomotor function and tissue sparing following contusive spinal cord injury. Neurochem Res 2007; 32:2046-53. [PMID: 17476592 DOI: 10.1007/s11064-007-9347-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
Following contusive spinal cord injury (SCI), calpain activity is dramatically increased and remains elevated for days to weeks. Although calpain inhibition has previously been demonstrated to be neuroprotective following spinal cord injury, most studies administered the calpain inhibitor at a single time point. We hypothesized that sustained calpain inhibition would improve functional and pathological outcomes, as compared to the results obtained with a single postinjury administration of the calpain inhibitor. Contusion SCI was produced in female Long-Evans rats using the Infinite Horizon spinal cord injury impactor at the 200 kdyn force setting. Open-field locomotor function was evaluated until 6 weeks postinjury. Histological assessment of lesion volume and tissue sparing was performed at 6 weeks after SCI. Calpain inhibitor MDL28170 administered as a single postinjury i.v. bolus (20 mg/kg) or as a daily i.p. dose (1 mg/kg) improved locomotor function, but did not increase tissue sparing. Combined i.v. and daily i.p. MDL28170 administration resulted in significant improvement in both functional and pathological outcome measures, supporting the calpain theory of SCI proposed by Dr. Banik and colleagues.
Collapse
Affiliation(s)
- Chen-Guang Yu
- Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0509, USA
| | | |
Collapse
|
46
|
Medana IM, Day NP, Hien TT, Mai NTH, Bethell D, Phu NH, Turner GD, Farrar J, White NJ, Esiri MM. Cerebral calpain in fatal falciparum malaria. Neuropathol Appl Neurobiol 2007; 33:179-92. [PMID: 17359359 DOI: 10.1111/j.1365-2990.2006.00777.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disruption of axonal transport may represent a final common pathway leading to neurological dysfunction in cerebral malaria (CM). Calpains are calcium (Ca2+)-activated cysteine proteases which have been implicated in axonal injury in neurological diseases of various aetiologies. In this study we examined the association between mu- and m-calpain, the specific inhibitor calpastatin, and axonal injury in post mortem brain tissue from patients who died from severe malaria. Calpains were associated with axons labelled for the beta-amyloid precursor protein that detects impaired axonal transport. Elevated levels of calpastatin were rarely observed in injured axons. There were increased numbers of neurones with mu-calpain in the nuclear compartment in severe malaria cases compared with non-neurological controls, and increased numbers of glia with nuclear mu-calpain in CM patients compared with non-CM malaria cases and non-neurological controls. There was marked redistribution of calpastatin in the sequestered Plasmodium falciparum-infected erythrocytes. Responses specific to malaria infection were ascertained following analysis of brain samples from fatal cases with acute axonal injury, HIV encephalitis, and progressive multifocal leucoencephalopathy. Our findings implicate a role for calpains in the modulation of disease progression in CM.
Collapse
Affiliation(s)
- I M Medana
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Serbest G, Burkhardt MF, Siman R, Raghupathi R, Saatman KE. Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochem Res 2007; 32:2006-14. [PMID: 17401646 DOI: 10.1007/s11064-007-9318-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
To examine the time course and relative extent of proteolysis of neurofilament and tubulin proteins after traumatic axonal injury (TAI), anesthetized mice were subjected to optic nerve stretch injury. Immunohistochemistry confirmed neurofilament accumulation within axonal swellings at 4, 24, and 72 h postinjury (n = 4 injured and 2 sham per time point). Immunoblotting of optic nerve homogenates (n = 5 injured and 1 sham at 0.5, 4, 24 or 72 h) revealed calpain-mediated spectrin proteolytic fragments after injury. Protein levels for NF68 progressively decreased from 0.5 h to 24 h postinjury, while NF200 and alpha-tubulin levels decreased acutely (0.5-4 h), with a secondary decline at 72 h postinjury. These data demonstrate that diffusely distributed TAI is associated not only with a localized accumulation of neurofilament proteins, but also significant decreases in total cytoskeletal protein levels which may be mediated, in part, by calpains. Protection of the axonal cytoskeleton represents a potential therapeutic target for axonal damage associated with injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Gulyeter Serbest
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
48
|
Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J Neurosurg Spine 2007; 6:255-66. [PMID: 17355025 DOI: 10.3171/spi.2007.6.3.255] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Object
In experimental models of spinal cord injury (SCI) researchers have typically focused on contusion and transection injuries. Clinically, however, other injury mechanisms such as fracture–dislocation and distraction also frequently occur. The objective of the present study was to compare the primary damage in three clinically relevant animal models of SCI.
Methods
Contusion, fracture–dislocation, and flexion–distraction animal models of SCI were developed. To visualize traumatic increases in cellular membrane permeability, fluorescein–dextran was infused into the cerebrospi-nal fluid prior to injury. High-speed injuries (approaching 100 cm/second) were produced in the cervical spine of deeply anesthetized Sprague–Dawley rats (28 SCI and eight sham treated) with a novel multimechanism SCI test system. The animals were killed immediately thereafter so that the authors could characterize the primary injury in the gray and white matter.
Sections stained with H & E showed that contusion and dislocation injuries resulted in similar central damage to the gray matter vasculature whereas no overt hemorrhage was detected following distraction. Contusion resulted in membrane disruption of neuronal somata and axons localized within 1 mm of the lesion epicenter. In contrast, membrane compromise in the dislocation and distraction models was observed to extend rostrally up to 5 mm, particularly in the ventral and lateral white matter tracts.
Conclusions
Given the pivotal nature of hemorrhagic necrosis and plasma membrane compromise in the initiation of downstream SCI pathomechanisms, the aforementioned differences suggest the presence of mechanism-specific injury regions, which may alter future clinical treatment paradigms.
Collapse
Affiliation(s)
- Anthony M Choo
- Division of Orthopaedic Engineering Research, Department of Orthopaedics and Mechanical Engineering, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Karmakar S, Banik NL, Patel SJ, Ray SK. 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 2007; 415:242-7. [PMID: 17335970 PMCID: PMC2533742 DOI: 10.1016/j.neulet.2007.01.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/24/2006] [Accepted: 01/17/2007] [Indexed: 11/16/2022]
Abstract
Glioblastoma is the most common astrocytic brain tumor in humans. Current therapies for this malignancy are mostly ineffective. Photodynamic therapy (PDT), an exciting treatment strategy based on activation of a photosensitizer, has not yet been extensively explored for treating glioblastoma. We used 5-aminolevulinic acid (5-ALA) as a photosensitizer for PDT to induce apoptosis in human malignant glioblastoma U87MG cells and to understand the underlying molecular mechanisms. Trypan blue dye exclusion test showed a decrease in cell viability after exposure to increasing doses of 5-ALA for 4h followed by PDT with a broad spectrum blue light (400-550 nm) at a dose of 18J/cm(2) for 1h and then incubation at 37 degrees C for 4h. Following 0.5 and 1mM 5-ALA-based PDT (5-ALA-PDT), Wright staining and ApopTag assay showed occurrence of apoptosis morphologically and biochemically, respectively. After 5-ALA-PDT, down regulation of nuclear factor kappa B (NFkappaB) and baculovirus inhibitor-of-apoptosis repeat containing-3 (BIRC-3) protein indicated inhibition of survival signals. Besides, 5-ALA-PDT caused increase in Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF). Activation of calpain, caspase-9, and caspase-3 occurred in course of apoptosis. Calpain and caspase-3 activities cleaved alpha-spectrin at specific sites generating 145kD spectrin breakdown product (SBDP) and 120kD SBDP, respectively. The results suggested that 5-ALA-PDT induced apoptosis in U87MG cells by suppression of survival signals and activation of proteolytic pathways. Thus, 5-ALA-PDT can be an effective strategy for inducing apoptosis in glioblastoma.
Collapse
Affiliation(s)
| | | | | | - Swapan K Ray
- *Corresponding author. Tel: +1-843-792-7595; fax: +1-843-792-8626. E-mail: (S. K. Ray)
| |
Collapse
|
50
|
Wu HY, Lynch DR. Calpain and synaptic function. Mol Neurobiol 2007; 33:215-36. [PMID: 16954597 DOI: 10.1385/mn:33:3:215] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/30/1999] [Accepted: 02/20/2006] [Indexed: 01/13/2023]
Abstract
Proteolysis by calpain is a unique posttranslational modification that can change integrity, localization, and activity of endogenous proteins. Two ubiquitous calpains, mu-calpain and m-calpain, are highly expressed in the central nervous system, and calpain substrates such as membrane receptors, postsynaptic density proteins, kinases, and phosphatases are localized to the synaptic compartments of neurons. By selective cleavage of synaptically localized molecules, calpains may play pivotal roles in the regulation of synaptic processes not only in physiological states but also during various pathological conditions. Activation of calpains during sustained synaptic activity is crucial for Ca2+-dependent neuronal functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking, and structural stabilization. Overactivation of calpain following dysregulation of Ca2+ homeostasis can lead to neuronal damage in response to events such as epilepsy, stroke, and brain trauma. Calpain may also provide a neuroprotective effect from axotomy and some forms of glutamate receptor overactivation. This article focuses on recent findings on the role of calpain-mediated proteolytic processes in potentially regulating synaptic substrates in physiological and pathophysiological events in the nervous system.
Collapse
Affiliation(s)
- Hai-Yan Wu
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|