1
|
Han T, Sun Z, Zhang H, Zhao Y, Jiao A, Gao Q. Ursolic acid alleviates meiotic abnormalities induced by 3-nitropropionic acid in mouse oocytes. Toxicol Appl Pharmacol 2024; 485:116910. [PMID: 38521372 DOI: 10.1016/j.taap.2024.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.
Collapse
Affiliation(s)
- Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China
| | - Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China
| | - Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China; Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Salubrinal attenuates nitric oxide mediated PERK:IRE1α: ATF-6 signaling and DNA damage in neuronal cells. Neurochem Int 2019; 131:104581. [DOI: 10.1016/j.neuint.2019.104581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/14/2023]
|
3
|
Dey A, Xiong X, Crim A, Dwivedi SKD, Mustafi SB, Mukherjee P, Cao L, Sydorenko N, Baiazitov R, Moon YC, Dumble M, Davis T, Bhattacharya R. Evaluating the Mechanism and Therapeutic Potential of PTC-028, a Novel Inhibitor of BMI-1 Function in Ovarian Cancer. Mol Cancer Ther 2018; 17:39-49. [PMID: 29158468 PMCID: PMC5752598 DOI: 10.1158/1535-7163.mct-17-0574] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 11/01/2017] [Indexed: 01/09/2023]
Abstract
BMI-1, also known as a stem cell factor, is frequently upregulated in several malignancies. Elevated expression of BMI-1 correlates with poor prognosis and is therefore considered a viable therapeutic target in a number of malignancies including ovarian cancer. Realizing the immense pathologic significance of BMI-1, small-molecule inhibitors against BMI-1 are recently being developed. In this study, we functionally characterize PTC-028, an orally bioavailable compound that decreases BMI-1 levels by posttranslational modification. We report that PTC-028 treatment selectively inhibits cancer cells in clonal growth and viability assays, whereas normal cells remain unaffected. Mechanistically, hyperphosphorylation-mediated depletion of cellular BMI-1 by PTC-028 coupled with a concurrent temporal decrease in ATP and a compromised mitochondrial redox balance potentiates caspase-dependent apoptosis. In vivo, orally administered PTC-028, as a single agent, exhibits significant antitumor activity comparable with the standard cisplatin/paclitaxel therapy in an orthotopic mouse model of ovarian cancer. Thus, PTC-028 has the potential to be used as an effective therapeutic agent in patients with epithelial ovarian cancer, where treatment options are limited. Mol Cancer Ther; 17(1); 39-49. ©2017 AACR.
Collapse
Affiliation(s)
- Anindya Dey
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xunhao Xiong
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Aleia Crim
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Soumyajit Banerjee Mustafi
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Priyabrata Mukherjee
- Department of Pathology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| |
Collapse
|
4
|
Baek MW, Cho HS, Kim SH, Kim WJ, Jung JY. Ascorbic Acid Induces Necrosis in Human Laryngeal Squamous Cell Carcinoma via ROS, PKC, and Calcium Signaling. J Cell Physiol 2016; 232:417-425. [DOI: 10.1002/jcp.25438] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Min-Woo Baek
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Heui-Seung Cho
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Sun-Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Won-Jae Kim
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| | - Ji-Yeon Jung
- Department of Oral Physiology, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders; Chonnam National University School of Dentistry; Gwangju Republic of Korea
| |
Collapse
|
5
|
Pereira P, Puga S, Cardoso V, Pinto-Ribeiro F, Raimundo J, Barata M, Pousão-Ferreira P, Pacheco M, Almeida A. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:400-412. [PMID: 26688460 DOI: 10.1016/j.aquatox.2015.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard.
Collapse
Affiliation(s)
- Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vera Cardoso
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Raimundo
- IPMA-Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal
| | - Marisa Barata
- IPMA-Aquaculture Research Station, 8700-005 Olhão, Portugal
| | | | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences (ECS), Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Zhang JQ, Shen M, Zhu CC, Yu FX, Liu ZQ, Ally N, Sun SC, Li K, Liu HL. 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse. PLoS One 2014; 9:e86589. [PMID: 24505260 PMCID: PMC3914797 DOI: 10.1371/journal.pone.0086589] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/12/2013] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes--total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT)--in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GP X) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants.
Collapse
Affiliation(s)
- Jia-Qing Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Cheng-Cheng Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xiang Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ze-Qun Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Nazim Ally
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-Lin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Marimuthu P, Kaur K, Kandalam U, Jasani V, Bukhari N, Nguyen M, Abdul A, Pervez FF, Rathinavelu A. Treatment of ovarian cancer cells with nutlin-3 and resveratrol combination leads to apoptosis via caspase activation. J Med Food 2010; 14:46-52. [PMID: 21186985 DOI: 10.1089/jmf.2009.0270] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The current study was focused on the induction of apoptotic effects of resveratrol along with the combination treatments of nutlin-3 and transforming growth factor-β (TGF-β) against the human ovarian cancer cell line A2780/CP70. To determine the extent of apoptosis following the above-mentioned treatments, we assessed the execution of apoptotic events that proceed via caspase activation and cytochrome c release. We estimated the caspase-3 and -9 activities using a direct enzymatic assay that measures the cleavage of synthetic peptide substrate (N-acetyl-Asp-Glu-Val-Asp-p-nitroanilide). Our experiments showed an increase in caspase-3 and -9 activities in the cells that were treated with the combination of resveratrol (5 μM) with nutlin-3 (5 μM) or TGF-β (1 μg/mL). Since activation of procaspase-3 by caspase-9 requires the release of cytochrome c into the cytoplasm, we measured the levels of cytochrome c in the cytoplasm by western blot experiments. The data indicated a considerable increase in caspase-3 and cytochrome c levels when cells were treated with drugs for 24 hours. Experiments with 4,6'-diamino-2-phenylindole dihydrochloride (DAPI) staining also confirmed the induction of apoptosis in all the above-mentioned treatments done at 24 and 48 hours. These results support our hypothesis that resveratrol combination can induce programmed cell death at doses that are less than half of what is typically needed for nutlin-3 and TGF-β to induce apoptosis.
Collapse
Affiliation(s)
- Palanisamy Marimuthu
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, Florida 33326, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Androgens can protect neurones from injury, although androgen neuroprotection is not well characterised in terms of either specificity or mechanism. In the present study, we compared the ability of androgens to protect neurones against a panel of insults, empirically determined to induce cell death by apoptotic or non-apoptotic mechanisms. Three criteria defining but not inclusive of apoptosis are: protection by caspase inhibition, protection by protein synthesis inhibition and the presence of pyknotic nuclei. According to these criteria, beta-amyloid, staurosporine, and Apoptosis Activator II induced cell death involving apoptosis, whereas hydrogen peroxide (H(2)O(2)), iron, calcium ionophore and 3-nitropropionic acid induced cell death featuring non-apoptotic characteristics. Pretreatment of hippocampal neurones with testosterone or dihydrotestosterone attenuated cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but none of the other insults. The anti-oxidant Trolox did not reduce cell death induced by beta-amyloid, staurosporine and Apoptosis Activator II, but did protect against H(2)O(2) and iron. Similarly, a supra-physiological concentration of oestrogen reduced cell death induced by H(2)O(2) and iron, an effect not observed with androgens. We also show that activation of oestrogen pathways was not necessary for androgen neuroprotection. These data suggest that androgens directly activate a neuroprotective mechanism specific to inhibition of cell death involving apoptosis. Determining the specificity of androgen neuroprotection may enable the development of androgen compounds for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- T V Nguyen
- Neuroscience Graduate Programme and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | | | |
Collapse
|
9
|
Túnez I, Tasset I, Pérez-De La Cruz V, Santamaría A. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future. Molecules 2010; 15:878-916. [PMID: 20335954 PMCID: PMC6263191 DOI: 10.3390/molecules15020878] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/12/2010] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inheritable autosomal-dominant disorder whose causal mechanisms remain unknown. Experimental models have begun to uncover these pathways, thus helping to understand the mechanisms implicated and allowing for the characterization of potential targets for new therapeutic strategies. 3-Nitropropionic acid is known to produce in animals behavioural, biochemical and morphologic changes similar to those occurring in HD. For this reason, this phenotypic model is gaining attention as a valuable tool to mimick this disorder and further developing new therapies. In this review, we will focus on the past and present research of this molecule, to finally bring a perspective on what will be next in this promising field of study.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigaciones Biomédicas de Córdoba, Universidad de Córdoba, Av. Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | |
Collapse
|
10
|
Tikhomirov АA, Andrievsky GV, Nedzvetsky VS. Disorders in the Cytoskeleton of Astroglia and Neurons in the Rat Brain Induced by Long-Lasting Exposure to Ethanol and Correction of These Shifts by Hydrated Fullerene С60. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9044-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Jordan PM, Cain LD, Wu P. Astrocytes enhance long-term survival of cholinergic neurons differentiated from human fetal neural stem cells. J Neurosci Res 2008; 86:35-47. [PMID: 17729316 DOI: 10.1002/jnr.21460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Establishment of an in vitro model of human cholinergic neurons would be highly desirable for understanding and developing treatment for Alzheimer's and motoneuron diseases. Previously we reported that the combination of basic fibroblast growth factor (bFGF), heparin, and laminin directs human fetal neural stem cells to form cholinergic neurons. One problem, however, is that long-term in vitro survival of these cells is low. Our goal for this study was to determine whether astrocytes or their secreted factors enhance differentiation and survival of cholinergic neurons under long-term differentiation conditions. We demonstrate here that astrocytes or astrocyte conditioned media did not enhance cholinergic differentiation but did increase the long-term survival of differentiated human neural stem cells, particularly cholinergic neurons. We further show that astrocytes protected long-term-differentiated cells from apoptotic cell death, which is at least partially mediated by astrocyte-secreted bFGF. Our findings indicate that long-term survival of human stem cell-derived cholinergic neurons requires trophic factors from nonneuronal cells. This data may provide insights into the development of an in vitro model of long-term cultured human cholinergic neurons useful for understanding of the mechanisms of cholinergic differentiation and developing treatments for neurological diseases.
Collapse
Affiliation(s)
- Paivi M Jordan
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-0620, USA
| | | | | |
Collapse
|
12
|
Zhao Y, Shen J, Su H, Li B, Xing D, Du L. Chronic corticosterone injections induce a decrease of ATP levels and sustained activation of AMP-activated protein kinase in hippocampal tissues of male mice. Brain Res 2007; 1191:148-56. [PMID: 18164281 DOI: 10.1016/j.brainres.2007.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 02/01/2023]
Abstract
Chronic corticosterone injections induce hippocampus tissue damage and depression-like behavior in rodent animals, the cause of which is not known. Nevertheless, increasing evidence shows that adenylate kinase (AK) and AMP-activated protein kinase (AMPK) play a very important role in intracellular energy metabolism and are especially critical for neurons which are known to have very small energy reserves and narrow margin of safety between the energy that can be generated and the energy required for maximum activity. Abnormalities of AK or AMPK system have detrimental effects on neurons or brain function especially at times of increased activity. In this study, we investigated the effects of chronic corticosterone exposure on energy metabolism, as well as AK and AMPK in hippocampal tissues in male C57BL/6N mice. Our results show that chronic corticosterone injection induced depression-like behavior in male mice, significantly decreased the energy levels and caused a sustained increase of AMP:ATP ratio in hippocampal tissues. Interestingly, chronic corticosterone injections did not produce obvious effects on AK1 protein and mRNA levels, but caused a sustained activation of AMPK. The results indicate that sustained AMPK activation might be a mechanism by which chronic corticosterone treatment causes depression-like behavior in male mice.
Collapse
Affiliation(s)
- Yunan Zhao
- Laboratory of Pharmaceutical Sciences, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
13
|
Nguyen SM, Lieven CJ, Levin LA. Simultaneous labeling of projecting neurons and apoptotic state. J Neurosci Methods 2007; 161:281-4. [PMID: 17184842 PMCID: PMC1894951 DOI: 10.1016/j.jneumeth.2006.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 10/18/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022]
Abstract
We describe a straightforward method that accomplishes both the labeling of projecting neurons and the identification of apoptosis in those neurons. A single dye, 4',6-diamidino-2-phenylindole (DAPI), is both retrogradely transported and binds DNA. When delivered to the sites of neuronal projections, DAPI travels via retrograde transport from neuronal projections to the soma and stain nuclei with little or no cytoplasmic labeling. The staining of the nuclei allows for visualization of their morphological characteristics; DAPI-stained living cells appear markedly different from DAPI-stained apoptotic cells, due to the nuclear changes that apoptotic cells undergo. This technique has been successfully employed with retinal ganglion cells in the retinocollicular pathway. The use of a single dye not only eliminates the need for secondary staining for apoptosis, but also allows for the use of a wider variety of non-overlapping fluorescent dyes for other studies.
Collapse
Affiliation(s)
- Steve M Nguyen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
14
|
Abstract
Organismal homeostasis depends on an intricate balance between cell death and renewal. Early pathologists recognized that this balance could be disrupted by the extensive damage observed in internal organs during the course of certain diseases. This form of tissue damage was termed "necrosis", derived from the Greek "nekros" for corpse. As it became clear that the essential building block of tissue was the cell, necrosis came to be used to describe pathologic cell death. Until recently, necrotic cell death was believed to result from injuries that caused an irreversible bioenergetic compromise. The cell dying by necrosis has been viewed as a victim of extrinsic events beyond its control. However, recent evidence suggests that a cell can initiate its own demise by necrosis in a manner that initiates both inflammatory and/or reparative responses in the host. By initiating these adaptive responses, programmed cell necrosis may serve to maintain tissue and organismal integrity.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, New York 11794, USA
| | | |
Collapse
|
15
|
Brouillet E, Jacquard C, Bizat N, Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J Neurochem 2005; 95:1521-40. [PMID: 16300642 DOI: 10.1111/j.1471-4159.2005.03515.x] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the gene encoding Huntingtin. The mechanisms underlying the preferential degeneration of the striatum, the most striking neuropathological change in HD, are unknown. Of those probably involved, mitochondrial defects might play an important role. The behavioural and anatomical similarities found between HD and models using the mitochondrial toxin 3-nitropropionic acid (3NP) in rats and primates support this hypothesis. Here, we discuss the recently identified mechanisms of 3NP-induced striatal degeneration. Two types of important factor have been identified. The first are the 'executioner' components that have direct roles in cell death, such as c-Jun N-terminal kinase and Ca2+-activated protease calpains. The second are 'environmental' factors, such as glutamate, dopamine and adenosine, which modulate the striatal degeneration induced by 3NP. Interestingly, these recent studies support the hypothesis that 3NP and mutated Huntingtin have certain mechanisms of toxicity in common, suggesting that the use of 3NP might give new insights into the pathogenesis of HD. Research on 3NP provides additional proof that the neurochemical environment of a given neurone can determine its preferential vulnerability in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuel Brouillet
- Centre Nationale de la Recherche Scientifique 2210, Service Hospitalier Frédéric Joliot, Départment de Recherches Médicales, Direction des Sciences du Vivant, CEA, Orsay France.
| | | | | | | |
Collapse
|
16
|
Vis JC, de Boer-Van Huizen RT, Verbeek MM, de Waal RMW, ten Donkelaar HJ, Kremer B. Creatine protects against 3-nitropropionic acid-induced cell death in murine corticostriatal slice cultures. Brain Res 2005; 1024:16-24. [PMID: 15451363 DOI: 10.1016/j.brainres.2004.06.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 11/22/2022]
Abstract
In murine corticostriatal slice cultures, we studied the protective effects of the bioenergetic compound creatine on neuronal cell death induced by the mitochondrial toxin 3-nitropropionic acid (3-NP). 3-NP caused a dose-dependent neuronal degeneration accompanied by an increased lactate dehydrogenase (LDH) activity in the cell culture medium. An increased ratio of lactate to pyruvate concentration in the medium suggested that metabolic activity shifted to anaerobic energy metabolism. These effects were predominantly observed in the 24-h recovery period after 3-NP exposure. Creatine protected against 3-NP neurotoxicity: LDH activity was reduced and aerobic respiration of pyruvate was stimulated, which resulted in lower lactate levels and less cell death. In both striatum and cortex, apoptosis in 3-NP-exposed slices was demonstrated by increased activation of the pro-apoptotic protein caspase-3 and by numerous cells exhibiting DNA fragmentation detected by the terminal transferase-mediated biotinylated-UTP nick end-labeling (TUNEL) technique. Creatine administration to the 3-NP-exposed corticostriatal slices resulted in a reduced number of TUNEL-positive cells in the recovery period. However, in the striatum, an unexpected increase of both TUNEL-positive cells and caspase-3-immunostained cells was observed in the exposure phase in the presence of creatine. In the recovery phase, caspase-3-immunostaining decreased to basal levels in both striatum and cortex. These findings suggest that 3-NP-induced neuronal degeneration in corticostriatal slices results from apoptosis that in the cortex can be prevented by creatine, while in the more vulnerable striatal cells it may lead to an accelerated and increased execution of apoptotic cell death, preventing further necrosis-related damage in this region.
Collapse
Affiliation(s)
- José C Vis
- Department of Neurology, University Medical Centre Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004; 18:1272-82. [PMID: 15145826 PMCID: PMC420353 DOI: 10.1101/gad.1199904] [Citation(s) in RCA: 470] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 04/09/2004] [Indexed: 11/24/2022]
Abstract
Necrosis has been considered a passive form of cell death in which the cell dies as a result of a bioenergetic catastrophe imposed by external conditions. However, in response to alkylating DNA damage, cells undergo necrosis as a self-determined cell fate. This form of death does not require the central apoptotic mediators p53, Bax/Bak, or caspases and actively induces an inflammatory response. Necrosis in response to DNA damage requires activation of the DNA repair protein poly(ADP-ribose) polymerase (PARP), but PARP activation is not sufficient to determine cell fate. Cell death is determined by the effect of PARP-mediated beta-nicotinamide adenine dinucleotide (NAD) consumption on cellular metabolism. Cells using aerobic glycolysis to support their bioenergetics undergo rapid ATP depletion and death in response to PARP activation. In contrast, cells catabolizing nonglucose substrates to maintain oxidative phosphorylation are resistant to ATP depletion and death in response to PARP activation. Because most cancer cells maintain their ATP production through aerobic glycolysis, these data may explain the molecular basis by which DNA-damaging agents can selectively induce tumor cell death independent of p53 or Bcl-2 family proteins.
Collapse
Affiliation(s)
- Wei-Xing Zong
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
18
|
Toimela T, Tähti H. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin. Arch Toxicol 2004; 78:565-74. [PMID: 15150681 DOI: 10.1007/s00204-004-0575-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/04/2004] [Indexed: 11/27/2022]
Abstract
Mercury and aluminum are considered to be neurotoxic metals, and they are often connected with the onset of neurodegenerative diseases. In this study, mercuric mercury, methylmercury and aluminum were studied in three different cell lines of neural origin. To evaluate the effects, mitochondrial cytotoxicity and apoptosis induced by the metals were measured after various incubation times. SH-SY5Y neuroblastoma, U 373MG glioblastoma, and RPE D407 retinal pigment epithelial cells were subcultured to appropriate cell culture plates and 0.01-1,000 microM concentrations of methylmercury, mercuric and aluminum chloride were added into the growth medium. In the assay measuring the mitochondrial dehydrogenase activity, WST-1, the cultures were exposed for 15 min, 24 or 48 h before measurement. Cells were allowed to recover from the exposure in part of the study. Apoptosis induced by the metals was measured after 6-, 24- and 48-h exposure times with the determination of activated caspase 3 enzyme. Mitochondrial assays showed a clear dose-response and exposure time-response to the metals. The most toxic was methylmercury (EC50 ~0.8 microM, 48 h), and the most sensitive cell line was the neuroblastoma cell line SH-SY5Y. Furthermore, there was marked mitochondrial activation, especially in connection with aluminum and methylmercury at low concentrations. This activation may be important during the initiation of cellular processes. All the metals tested induced apoptosis, but with a different time-course and cell-line specificity. In microscopic photographs, glioblastoma cells formed fibrillary tangles, and neuroblastoma cells settled along the fibrilles in cocultures of glial and neuronal cell lines during aluminum exposure. The study emphasized the toxicity of methylmercury to neural cells and showed that aluminum alters various cellular activities.
Collapse
Affiliation(s)
- Tarja Toimela
- Medical School, Cell Research Center, University of Tampere, 33014 University of Tampere, Finland.
| | | |
Collapse
|
19
|
Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington's disease. J Neurosci 2003. [PMID: 12832525 DOI: 10.1523/jneurosci.23-12-05020.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Striatal cell death in Huntington's Disease (HD) may involve mitochondrial defects, NMDA-mediated excitotoxicity, and activation of death effector proteases such as caspases and calpain. However, the precise contribution of mitochondrial defects in the activation of these proteases in HD is unknown. Here, we addressed this question by studying the mechanism of striatal cell death in rat models of HD using the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP). The neurotoxin was either given by intraperitoneal injections (acute model) or over 5 d by constant systemic infusion using osmotic pumps (chronic model) to produce either transient or sustained mitochondrial deficits. Caspase-9 activation preceded neurodegeneration in both cases. However, caspase-8 and caspase-3 were activated in the acute model, but not in the chronic model, showing that 3-NP does not require activation of these caspases to produce striatal degeneration. In contrast, activation of calpain was specifically detected in the striatum in both models and this was associated with a calpain-dependent cleavage of huntingtin. Finally, in the chronic model, which mimics a steady blockade of complex II activity reminiscent of HD, selective calpain inhibition prevented the abnormal calpain-dependent processing of huntingtin, reduced the size of the striatal lesions, and almost completely abolished the 3-NP-induced DNA fragmentation in striatal cells. The present results demonstrate that calpain is a predominant effector of striatal cell death associated with mitochondrial defects in vivo. This suggests that calpain may play an important role in HD pathogenesis and could be a potential therapeutic target to slow disease progression.
Collapse
|
20
|
Shimizu H, Ohgoh M, Momose Y, Nishizawa Y, Ogura H. Massive cell death of cerebellar granule neurons accompanied with caspase-3-like protease activation and subsequent motor discoordination after intracerebroventricular injection of vincristine in mice. Neuroscience 2003; 115:55-65. [PMID: 12401321 DOI: 10.1016/s0306-4522(02)00403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vincristine, a microtubule-depolymerizing agent, is known to induce neuronal cell damage. Biochemical, histological and behavioral alterations were investigated after intracerebroventricular injection of vincristine in mice. Intracerebroventricular injection of vincristine caused caspase-3-like protease activation followed by nucleosomal release in the cerebellum. Histological examinations showed that vincristine-induced damage was relatively specific to granule cells in the cerebellum, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling-positive cells were observed among these cells. Chromatin condensation, one of the criteria for apoptosis, was seen on electron microscopy. Behavioral changes, namely head movements, pivoting and backward walking, were observed in parallel with the increase of caspase-3-like protease activity and nucleosomal release. Furthermore, motor function tests (bulb balance test and rotating rod test) showed deficits of motor coordination ability. These observations suggest that intracerebroventricular vincristine causes massive apoptosis of cerebellar granule cells accompanied with caspase-3-like protease activation, leading to motor dysfunction, in this model. These vincristine-treated mice should be a useful in vivo model for examination of neuronal apoptosis, which might be involved in a variety of neurodegenerative diseases.
Collapse
Affiliation(s)
- H Shimizu
- Eisai Tsukuba Research Laboratories, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | |
Collapse
|
21
|
Abstract
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.
Collapse
|
22
|
Noer H, Kristensen BW, Noraberg J, Zimmer J, Gramsbergen JB. 3-Nitropropionic acid neurotoxicity in hippocampal slice cultures: developmental and regional vulnerability and dependency on glucose. Exp Neurol 2002; 176:237-46. [PMID: 12093101 DOI: 10.1006/exnr.2002.7934] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether neurotoxic effects of the mitochondrial toxin 3-nitropropionic acid (3-NP) in hippocampal slice cultures are dependent on glucose levels in the culture medium and whether such effects occur via apoptosis or necrosis. In addition, 3-NP toxicity was investigated at two developmental stages of the cultures, prepared from rat brain at postnatal day 5-7 and grown in Neurobasal medium for 1 or 3 weeks. Cultures were exposed to 3-NP in the presence of high (25 mM), normal (5 mM), or low (3 mM) glucose for 48 h, followed by 48 h incubation in medium without 3-NP. Cellular propidium iodide (PI) uptake and lactate dehydrogenase (LDH) efflux into the medium revealed time- and dose-dependent cell death by 3-NP, with EC(50) values of about 60 microM in high or normal glucose. Regional vulnerability, as assessed by PI uptake and MAP2 immunostaining, in 3-week-old cultures was as follows: CA1 > CA3 > fascia dentata. In low glucose much lower concentrations of 3-NP (25 microM) triggered neurotoxicity. One-week-old cultures were less susceptible to 3-NP toxicity than 3-week-old cultures, but the dentate granule cells were relatively more affected in the immature cultures. We found no evidence for apoptotic cell death by 3-NP in 3-week-old cultures, but in 1-week-old cultures the putative apoptotic marker c-JUN/AP1 and nuclear fragmentation (Hoechst) were significantly increased in the dentate granule cells.
Collapse
Affiliation(s)
- Helle Noer
- Anatomy and Neurobiology, SDU-Odense University, Denmark
| | | | | | | | | |
Collapse
|
23
|
Michea L, Combs C, Andrews P, Dmitrieva N, Burg MB. Mitochondrial dysfunction is an early event in high-NaCl-induced apoptosis of mIMCD3 cells. Am J Physiol Renal Physiol 2002; 282:F981-90. [PMID: 11997314 DOI: 10.1152/ajprenal.00301.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Raising osmolality to 700 mosmol/kgH(2)O by the addition of NaCl rapidly kills most murine inner renal medullary collecting duct cells (mIMCD3), but they survive at 500 mosmol/kgH(2)O. At 300 and 500 mosmol/kgH(2)O, NADH autofluorescence is present in a mitochondria-associated, punctate perinuclear pattern. Within 45 s to 30 min at 700 mosmol/kgH(2)O, the autofluorescence spreads diffusely throughout the cell. This correlates with mitochondrial membrane depolarization, measured as decreased tetramethylrhodamine methyl ester perchlorate (TMRM) fluorescence. Mitochondrial dysfunction should increase the cellular ADP/ATP ratio. In agreement, this ratio increases within 1-6 h. Mitochondrial morphology (transmission electron microscopy) is unaffected, but nuclear hypercondensation becomes evident. Progressive apoptosis occurs beginning 1 h after osmolality is raised to 700, but not to 500, mosmol/kgH(2)O. General caspase activity and caspase-9 activity increase only after 6 h at 700 mosmol/kgH(2)O. The mitochondrial Bcl-2/Bax ratio decreases within 1-3 h, but no cytochrome c release is evident. The mitochondria contain little p53 at any osmolality. Adding urea to 700 mosmol/kgH(2)O does not change NADH or TMRM fluorescence. We conclude that extreme acute hypertonicity causes a mitochondrial dysfunction involved in the initiation of apoptosis.
Collapse
Affiliation(s)
- Luis Michea
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603,USA
| | | | | | | | | |
Collapse
|
24
|
Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 2001. [PMID: 11438586 DOI: 10.1523/jneurosci.21-14-05110.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormal involuntary movements and cognitive impairment represent the classical clinical symptoms of Huntington's disease (HD). This genetic disorder involves degeneration of striatal spiny neurons, but not striatal large cholinergic interneurons, and corresponds to a marked decrease in the activity of mitochondrial complex II [succinate dehydrogenase (SD)] in the brains of HD patients. Here we have examined the possibility that SD inhibitors exert their toxic action by increasing glutamatergic transmission. We report that SD inhibitors such as 3-nitroproprionic acid (3-NP), but not an inhibitor of mitochondrial complex I, produce a long-term potentiation of the NMDA-mediated synaptic excitation (3-NP-LTP) in striatal spiny neurons. In contrast, these inhibitors had no effect on excitatory synaptic transmission in striatal cholinergic interneurons and pyramidal cortical neurons. 3-NP-LTP involves increased intracellular calcium and activation of the mitogen-activated protein kinase extracellular signal-regulated kinase and is critically dependent on endogenous dopamine acting via D2 receptors, whereas it is negatively regulated by D1 receptors. Thus 3-NP-LTP might play a key role in the regional and cell type-specific neuronal death observed in HD.
Collapse
|
25
|
|