1
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Jeong M, Bojkovic K, Sagi V, Stankovic KM. Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Front Mol Neurosci 2022; 14:757441. [PMID: 35002617 PMCID: PMC8733209 DOI: 10.3389/fnmol.2021.757441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a member of the FGF family which is involved in key biological processes including development, cellular proliferation, wound healing, and angiogenesis. Although the utility of the FGF family as therapeutic agents has attracted attention, and FGF2 has been studied in several clinical contexts, there remains an incomplete understanding of the molecular and clinical function of FGF2 in the auditory system. In this review, we highlight the role of FGF2 in inner ear development and hearing protection and present relevant clinical studies for tympanic membrane (TM) repair. We conclude by discussing the future implications of FGF2 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Katarina Bojkovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
XIA LI, YIN SHANKAI. Local gene transfection in the cochlea (Review). Mol Med Rep 2013; 8:3-10. [DOI: 10.3892/mmr.2013.1496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/13/2012] [Indexed: 11/06/2022] Open
|
4
|
Durán Alonso MB, Feijoo-Redondo A, Conde de Felipe M, Carnicero E, García AS, García-Sancho J, Rivolta MN, Giráldez F, Schimmang T. Generation of inner ear sensory cells from bone marrow-derived human mesenchymal stem cells. Regen Med 2013; 7:769-83. [PMID: 23164078 DOI: 10.2217/rme.12.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Hearing loss is the most common sensory disorder in humans, its main cause being the loss of cochlear hair cells. We studied the potential of human mesenchymal stem cells (hMSCs) to differentiate towards hair cells and auditory neurons. MATERIALS & METHODS hMSCs were first differentiated to neural progenitors and subsequently to hair cell- or auditory neuron-like cells using in vitro culture methods. RESULTS Differentiation of hMSCs to an intermediate neural progenitor stage was critical for obtaining inner ear sensory lineages. hMSCs generated hair cell-like cells only when neural progenitors derived from nonadherent hMSC cultures grown in serum-free medium were exposed to EGF and retinoic acid. Auditory neuron-like cells were obtained when treated with retinoic acid, and in the presence of defined growth factor combinations containing Sonic Hedgehog. CONCLUSION The results show the potential of hMSCs to give rise to inner ear sensory cells.
Collapse
Affiliation(s)
- M Beatriz Durán Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, E-47003, Valladolid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gata3 directly regulates early inner ear expression of Fgf10. Dev Biol 2013; 374:210-22. [DOI: 10.1016/j.ydbio.2012.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
|
6
|
Fantetti KN, Fekete DM. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro. Dev Neurobiol 2012; 72:1213-28. [PMID: 22006861 DOI: 10.1002/dneu.20988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/20/2023]
Abstract
Mechanosensory hair cells of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Members of several morphogen families are expressed within and surrounding the chick inner ear during stages of SAG axon outgrowth and pathfinding. On the basis of their localized expression patterns, we hypothesized that bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), and sonic hedgehog (Shh) may function as guidance cues for growing axons and/or may function as trophic factors once axons have reached their targets. To test this hypothesis, three-dimensional collagen cultures were used to grow Embryonic Day 4 (E4) chick SAG explants for 24 h in the presence of purified proteins or beads soaked in proteins. The density of neurite outgrowth was quantified to determine effects on neurite outgrowth. Explants displayed enhanced neurite outgrowth when cultured in the presence of purified BMP4, BMP7, a low concentration of Shh, FGF8, FGF10, or FGF19. In contrast, SAG neurons appeared unresponsive to FGF2. Collagen gel cultures were labeled with terminal dUTP nick-end labeling and immunostained with anti-phosphohistone H3 to determine effects on neuron survival and proliferation, respectively. Treatments that increased neurite outgrowth also yielded significantly fewer apoptotic cells, with no effect on cell proliferation. When presented as focal sources, BMP4, Shh, and FGFs -8, -10, and -19 promoted asymmetric outgrowth from the ganglion in the direction of the beads. BMP7-soaked beads did not induce this response. These results suggest that a subset of morphogens enhance both survival and axon outgrowth of otic neurons.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
7
|
Cuchet D, Potel C, Thomas J, Epstein AL. HSV-1 amplicon vectors: a promising and versatile tool for gene delivery. Expert Opin Biol Ther 2007; 7:975-95. [PMID: 17665988 DOI: 10.1517/14712598.7.7.975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amplicons are defective and non-integrative vectors derived from herpes simplex virus type 1. They carry no virus genes in the vector genome and are, therefore, not toxic to the infected cells or pathogenic for the transduced organisms, making these vectors safe. In addition, the large transgenic capacity of amplicons, which allow delivery of < or = 150 Kbp of foreign DNA, make these vectors one of the most powerful, interesting and versatile gene delivery platforms. Here, the authors present recent technological developments that have significantly improved and extended the use of amplicons, both in cultured cells and in living organisms. In addition, this review illustrates the many possible applications that are presently being developed with amplicons and discuss the many difficulties still pending to be solved in order to achieve stable and physiologically regulated transgenic expression.
Collapse
|
8
|
Carnicero E, Zelarayan LC, Rüttiger L, Knipper M, Alvarez Y, Alonso MT, Schimmang T. Differential roles of fibroblast growth factor-2 during development and maintenance of auditory sensory epithelia. J Neurosci Res 2004; 77:787-97. [PMID: 15334598 DOI: 10.1002/jnr.20222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor-2 (FGF2) has been postulated to be a key regulator involved in the proliferation, differentiation, and regeneration of sensory hair cells. Here we have addressed the potential functions of FGF2 during the formation and regeneration of the auditory epithelium in chicken and mice. By using viral gene transfer, based on herpes simplex type 1 virus (HSV-1), we show that ectopically applied FGF2 drastically increases the number of cells expressing early hair cell markers during embryonic development in avians. Intriguingly, FGF2 does not stimulate cell division during this process. These data suggest that FGF2 plays a role during differentiation of sensory hair cells in avians. To address the potential functions of FGF2 during murine inner ear development, we analyzed FGF2 mouse mutants. Mice lacking FGF2 showed normal formation of the inner ear, and no abnormalities were observed at the adult stage. Moreover, FGF2 mouse mutants showed similar hearing thresholds compared with those observed in control mice before and after noise damage. Therefore, endogenous FGF2 appears not to be essential for the development or functional maintenance of the auditory organ in mammals. In light of these results, the differential roles of FGF2 in the vertebrate inner ear are discussed with respect to its previously postulated functions.
Collapse
Affiliation(s)
- Estela Carnicero
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
10
|
Vicario I, Schimmang T. Transfer of FGF-2 via HSV-1-based amplicon vectors promotes efficient formation of neurons from embryonic stem cells. J Neurosci Methods 2003; 123:55-60. [PMID: 12581849 DOI: 10.1016/s0165-0270(02)00339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The manipulation of embryonic stem (ES) cells has a great potential to create cell populations useful for tissue replacement and regeneration of organs. The acquirement of specific cell fates and differentiation into specialized cell types may be obtained by the application of specific growth factors. Fibroblast growth factor 2 (FGF-2) has been used for the formation of ES cell-derived CNS stem cells. In order to achieve high efficiency of gene delivery into stem cells, the use of viral vectors is presently without alternative. The aim of this study was to examine, for the first time, the ability of herpes simplex virus type-1 (HSV-1)-based amplicon vectors to mediate gene transfer into mouse ES cells and neural progenitors derived from these cells. Amplicon vectors based on HSV-1 have been shown to be a versatile tool to introduce genes into a variety of cell types and to direct their physiological behavior. Here, we show that ES cells and their derivatives can be efficiently transduced and manipulated via these vectors. Amplicon-mediated transfer of FGF-2 into ES cell-derived CNS progenitors leads to the amplification and subsequent differentiation of these precursors into neurons. Therefore, amplicon vectors may now be used to study the effects of other potential factors influencing the cell fate or differentiation of ES cells and their derivatives.
Collapse
Affiliation(s)
- Ignacio Vicario
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenried 94, D-20251, Hamburg, German
| | | |
Collapse
|