1
|
García-Bermúdez MY, Vohra R, Freude K, van Wijngaarden P, Martin K, Thomsen MS, Aldana BI, Kolko M. Potential Retinal Biomarkers in Alzheimer's Disease. Int J Mol Sci 2023; 24:15834. [PMID: 37958816 PMCID: PMC10649108 DOI: 10.3390/ijms242115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) represents a major diagnostic challenge, as early detection is crucial for effective intervention. This review examines the diagnostic challenges facing current AD evaluations and explores the emerging field of retinal alterations as early indicators. Recognizing the potential of the retina as a noninvasive window to the brain, we emphasize the importance of identifying retinal biomarkers in the early stages of AD. However, the examination of AD is not without its challenges, as the similarities shared with other retinal diseases introduce complexity in the search for AD-specific markers. In this review, we address the relevance of using the retina for the early diagnosis of AD and the complex challenges associated with the search for AD-specific retinal biomarkers. We provide a comprehensive overview of the current landscape and highlight avenues for progress in AD diagnosis by retinal examination.
Collapse
Affiliation(s)
| | - Rupali Vohra
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Kristine Freude
- Group of Stem Cell Models and Embryology, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Keith Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maj Schneider Thomsen
- Neurobiology Research and Drug Delivery, Department of Health, Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
2
|
Paterno G, Torrellas J, Bell BM, Gorion KMM, Quintin SS, Hery GP, Prokop S, Giasson BI. Novel Conformation-Dependent Tau Antibodies Are Modulated by Adjacent Phosphorylation Sites. Int J Mol Sci 2023; 24:13676. [PMID: 37761979 PMCID: PMC10530490 DOI: 10.3390/ijms241813676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Tau proteins within the adult central nervous system (CNS) are found to be abnormally aggregated into heterogeneous filaments in neurodegenerative diseases, termed tauopathies. These tau inclusions are pathological hallmarks of Alzheimer's disease (AD), Pick's disease (PiD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP). The neuropathological hallmarks of these diseases burden several cell types within the CNS, and have also been shown to be abundantly phosphorylated. The mechanism(s) by which tau aggregates in the CNS is not fully known, but it is hypothesized that hyperphosphorylated tau may precede and further promote filament formation, leading to the production of these pathological inclusions. In the studies herein, we generated and thoroughly characterized two novel conformation-dependent tau monoclonal antibodies that bind to residues Pro218-Glu222, but are sensitive to denaturing conditions and highly modulated by adjacent downstream phosphorylation sites. These epitopes are present in the neuropathological hallmarks of several tauopathies, including AD, PiD, CBD, and PSP. These novel antibodies will further enable investigation of tau-dependent pathological inclusion formation and enhance our understanding of the phosphorylation signatures within tauopathies with the possibility of new biomarker developments.
Collapse
Affiliation(s)
- Giavanna Paterno
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Jose Torrellas
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Brach M. Bell
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Kimberly-Marie M. Gorion
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Stephan S. Quintin
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
| | - Gabriela P. Hery
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I. Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.); (J.T.); (B.M.B.); (K.-M.M.G.); (S.S.Q.)
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.P.H.); (S.P.)
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Ratan Y, Rajput A, Maleysm S, Pareek A, Jain V, Pareek A, Kaur R, Singh G. An Insight into Cellular and Molecular Mechanisms Underlying the Pathogenesis of Neurodegeneration in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051398. [PMID: 37239068 DOI: 10.3390/biomedicines11051398] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease's causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. To address the aforementioned challenges, extensive disease modeling is essential to fully comprehend the underlying mechanisms of AD, making it easier to design and develop effective treatment strategies. Emerging evidence over the past few decades supports the critical role of Aβ and tau in AD pathogenesis and the participation of glial cells in different molecular and cellular pathways. This review extensively discusses the current understanding concerning Aβ- and tau-associated molecular mechanisms and glial dysfunction in AD. Moreover, the critical risk factors associated with AD including genetics, aging, environmental variables, lifestyle habits, medical conditions, viral/bacterial infections, and psychiatric factors have been summarized. The present study will entice researchers to more thoroughly comprehend and explore the current status of the molecular mechanism of AD, which may assist in AD drug development in the forthcoming era.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sushmita Maleysm
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Cis-p-tau plays crucial role in lysolecithin-induced demyelination and subsequent axonopathy in mouse optic chiasm. Exp Neurol 2023; 359:114262. [PMID: 36343678 DOI: 10.1016/j.expneurol.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disease that leads to axon degeneration as the major cause of everlasting neurological disability. The cis-phosphorylated tau (cis-p-tau) is an isoform of tau phosphorylated on threonine 231 and causes tau fails to bind micro-tubules and promotes assembly. It gains toxic function and forms tangles in the cell which finally leads to cell death. An antibody raised against cis- p-tau (cis mAb) detects this isoform and induces its clearance. Here, we investigated the formation of cis-p-tau in a lysophosphatidylcholine (LPC)-induced prolonged demyelination model as well as the beneficial effects of its clearance using cis mAb. Cis -p-tau was increased in the lesion site, especially in axons and microglia. Behavioral and functional studies were performed using visual cliff test, visual placing test, and visual evoked potential recording. Cis-p-tau clearance resulted in decreased gliosis, protected myelin and reduced axon degeneration. Analysis of behavioral and electrophysiological data showed that clearance of cis-p-tau by cis mAb treatment improved the visual acuity along with the integrity of the optic pathway. Our results highlight the opportunity of using cis mAb as a new therapy for protecting myelin and axons in patients suffering from MS.
Collapse
|
5
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|
6
|
Odfalk KF, Bieniek KF, Hopp SC. Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022; 216:102306. [PMID: 35714860 PMCID: PMC9378545 DOI: 10.1016/j.pneurobio.2022.102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.
Collapse
Affiliation(s)
- Kristian F Odfalk
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
Song L, Oseid DE, Wells EA, Coaston T, Robinson AS. Heparan Sulfate Proteoglycans (HSPGs) Serve as the Mediator Between Monomeric Tau and Its Subsequent Intracellular ERK1/2 Pathway Activation. J Mol Neurosci 2022; 72:772-791. [PMID: 35040015 PMCID: PMC8763444 DOI: 10.1007/s12031-021-01943-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
The conversion of soluble tau protein to insoluble, hyperphosphorylated neurofibrillary tangles (NFTs) is a major hallmark leading to neuronal death observed in neurodegenerative tauopathies. Unlike NFTs, the involvement of monomeric tau in the progression of tau pathology has been less investigated. Using live-cell confocal microscopy and flow cytometry, we demonstrate that soluble 0N4R monomers were rapidly endocytosed by SH-SY5Y and C6 glioma cells via actin-dependent macropinocytosis. Further, cellular endocytosis of monomeric tau has been demonstrated to be HSPG-dependent, as shown in C6 glial cells with genetic knockouts of xylosyltransferase-1-a key enzyme in HSPG synthesis-with a reduced level of tau uptake. Tau internalization subsequently triggers ERK1/2 activation and therefore, the upregulation of IL-6 and IL-1β. The role of ERK1/2 in regulating the levels of pro-inflammatory gene transcripts was confirmed by inhibiting the MEK-ERK1/2 signaling pathway, which led to the attenuated IL-6 and IL-1β expressions but not that of TNF-α. Moreover, as a key regulator of tau internalization, LRP1 (low-density lipoprotein receptor-related protein 1) levels were downregulated in response to monomeric tau added to C6 cells, while it was upregulated in HSPG-deficient cells, suggesting that the involvement of LRP1 in tau uptake depends on the presence of HSPGs on the cell surface. The subsequent LRP1 knockdown experiment we performed shows that LRP1 deficiency leads to an attenuated propensity for tau uptake and further elevated IL-6 gene expression. Collectively, our data suggest that tau has multiple extracellular binding partners that mediate its internalization through distinct mechanisms. Additionally, this study demonstrates the important role of both HSPGs and LRP1 in regulating cellular immune responses to tau protein monomers, providing a novel target for alleviating the neuroinflammatory environment before the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Daniel E Oseid
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Evan A Wells
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Troy Coaston
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA.
| |
Collapse
|
8
|
Horta-López PH, Mendoza-Franco G, Rodríguez-Cruz F, Torres-Cruz FM, Hernández-Echeagaray E, Jarero-Basulto JJ, Rícny J, Garduño BF, Garcia-Sierra F. Association of α-1-Antichymotrypsin Expression with the Development of Conformational Changes of Tau Protein in Alzheimer's Disease Brain. Neuroscience 2022; 518:83-100. [PMID: 35007692 DOI: 10.1016/j.neuroscience.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease (AD), two mutually exclusive amino-terminal-dependent conformations have been reported to occur during the aggregation of Tau protein into neurofibrillary tangles (NFTs). An early conformation of full-length Tau, involving the bending of the amino terminus over the third repeated domain, is recognized by the Alz-50 antibody, followed by a second conformation recognized by Tau-66 antibody that depends on the folding of the proline-rich region over the third repeated domain in a molecule partially truncated at the amino- and carboxyl-termini. α-1-antichymotrypsin (ACT) is an acute phase serum glycoprotein that accumulates abnormally in the brain of AD patients, and since it is considered to promote the in vitro and in vivo aggregation of amyloid-β, we here seek further evidence that ACT may also contribute to the abnormal aggregation of Tau in AD. By analyzing brain samples from a population of AD cases under immunofluorescence and high-resolution confocal microscopy, we demonstrate here the abundant expression of ACT in hippocampal neurons, visualized as a granular diffuse accumulation, frequently reaching the nuclear compartment. In a significant number of these neurons, intracellular NFTs composed of abnormally phosphorylated and truncated Tau at Asp421 were also observed to coexist in separated regions of the cytoplasm. However, we found strong colocalization between ACT and diffuse aggregates of Tau-66-positive granules, which was not observed with Alz-50 antibody. These results suggest that ACT may play a role during the development of Tau conformational changes facilitating its aggregation during the formation of the neurofibrillary pathology in AD.
Collapse
Affiliation(s)
- Perla H Horta-López
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Graciela Mendoza-Franco
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Fanny Rodríguez-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jose J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Jan Rícny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Benjamín Florán Garduño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
9
|
Discovery of Active Ingredients Targeted TREM2 by SPR Biosensor-UPLC/MS Recognition System, and Investigating the Mechanism of Anti-Neuroinflammatory Activity on the Lignin-Amides from Datura metel Seeds. Molecules 2021; 26:molecules26195946. [PMID: 34641490 PMCID: PMC8512677 DOI: 10.3390/molecules26195946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
As a new target protein for Alzheimer’s disease (AD), the triggering receptor expressed on myeloid Cells 2 (TREM2) was expressed on the surface of microglia, which was shown to regulate neuroinflammation, be associated with a variety of neuropathologic, and regarded as a potential indicator for monitoring AD. In this study, a novel recognition system based on surface plasmon resonance (SPR) for the TREM2 target spot was established coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-MS), in order to screen the active ingredients targeting TREM2 from Datura metel seeds. The results showed that four lignan-amides were discovered as candidate compounds by SPR biosensor-UPLC/MS recognition analysis. According to the guidance of the active ingredients discovered by the system, the lignin-amides from Datura metel seeds (LDS) were preliminarily identified as containing 27 lignan-amides, which were enriched compositions by the HP-20 of Datura metel seeds. Meanwhile, the anti-inflammatory activity of LDS was evaluated in BV2 microglia induced by LPS. Our experimental results demonstrated that LDS could reduce NO release in LPS-treated BV2 microglia cells and significantly reduce the expression of the proteins of inducible Nitric Oxide Synthase (iNOS), cyclooxygenase 2 (COX-2), microtubule-associated protein tau (Tau), and ionized calcium-binding adapter molecule 1 (IBA-1). Accordingly, LDS might increase the expression of TREM2/DNAX-activating protein of 12 kDa (DAP12) and suppress the Toll-like receptor SX4 (TLR4) pathway and Recombinant NLR Family, Pyrin Domain Containing Protein 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1) inflammasome expression by LDS in LPS-induced BV2 microglial cells. Then, the inhibitory release of inflammatory factors Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), and Tumor necrosis factor-alpha (TNFα) inflammatory cytokines were detected to inhibit neuroinflammatory responses. The present results propose that LDS has potential as an anti-neuroinflammatory agent against microglia-mediated neuroinflammatory disorders.
Collapse
|
10
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
11
|
Chung DEC, Roemer S, Petrucelli L, Dickson DW. Cellular and pathological heterogeneity of primary tauopathies. Mol Neurodegener 2021; 16:57. [PMID: 34425874 PMCID: PMC8381569 DOI: 10.1186/s13024-021-00476-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is abnormally aggregated in neuronal and glial cells in a range of neurodegenerative diseases that are collectively referred to as tauopathies. Multiple studies have suggested that pathological tau species may act as a seed that promotes aggregation of endogenous tau in naïve cells and contributes to propagation of tau pathology. While they share pathological tau aggregation as a common feature, tauopathies are distinct from one another with respect to predominant tau isoforms that accumulate and the selective vulnerability of brain regions and cell types that have tau inclusions. For instance, primary tauopathies present with glial tau pathology, while it is mostly neuronal in Alzheimer's disease (AD). Also, morphologies of tau inclusions can greatly vary even within the same cell type, suggesting distinct mechanisms or distinct tau conformers in each tauopathy. Neuropathological heterogeneity across tauopathies challenges our understanding of pathophysiology behind tau seeding and aggregation, as well as our efforts to develop effective therapeutic strategies for AD and other tauopathies. In this review, we describe diverse neuropathological features of tau inclusions in neurodegenerative tauopathies and discuss what has been learned from experimental studies with mouse models, advanced transcriptomics, and cryo-electron microscopy (cryo-EM) on the biology underlying cell type-specific tau pathology.
Collapse
Affiliation(s)
- Dah-eun Chloe Chung
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 77030 Houston, TX USA
| | - Shanu Roemer
- Department of Neuroscience, Mayo Clinic, 32224 Jacksonville, FL USA
| | | | | |
Collapse
|
12
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
13
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 455] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
14
|
Ibarra-Bracamontes VJ, Escobar-Herrera J, Kristofikova Z, Rípova D, Florán-Garduño B, Garcia-Sierra F. Early but not late conformational changes of tau in association with ubiquitination of neurofibrillary pathology in Alzheimer's disease brains. Brain Res 2020; 1744:146953. [PMID: 32526294 DOI: 10.1016/j.brainres.2020.146953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 10/24/2022]
Abstract
In Alzheimer's disease, tau protein undergoes post-translational modifications including hyperphosphorylation and truncation, which promotes two major conformational changes associated with progressive N-terminal folding. Along with the development of the disease, tau ubiquitination was previously shown to emerge in the early and intermediate stages of the disease, which is closely associated with early tau truncation at aspartic acid 421, but not with a subsequently truncated tau molecule at glutamic acid 391. In the same group of cases, using multiple immunolabeling and confocal microscopy, a possible relationship between the ubiquitin-targeting of tau and the progression of conformational changes adopted by the N-terminus of this molecule was further studied. A comparable number of neurofibrillary tangles was found displaying ubiquitin, an early conformation recognized by the Alz-50 antibody, and a phosphorylation. However, a more reduced number of neurofibrillary tangles were immunoreactive to Tau-66 antibody, a late tau conformational change marker. When double-labeling profiles of neurofibrillary tangles were assessed, ubiquitination was clearly demonstrated in tau molecules undergoing early N-terminal folding, but was barely observed in late conformational changes of the N-terminus adopted by tau. The same pattern of colocalization was visualized in neuritic pathology. Overall, these results indicate that a more intact conformation of the N-terminus of tau may facilitate tau ubiquitination, but this modification may not occur in a late truncated and more compressed folding of the N-terminus of the tau molecule.
Collapse
Affiliation(s)
- Vanessa J Ibarra-Bracamontes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jaime Escobar-Herrera
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | - Daniela Rípova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Benjamín Florán-Garduño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
15
|
Verelst J, Geukens N, Eddarkaoui S, Vliegen D, De Smidt E, Rosseels J, Franssens V, Molenberghs S, Francois C, Stoops E, Bjerke M, Engelborghs S, Laghmouchi M, Carmans S, Buée L, Vanmechelen E, Winderickx J, Thomas D. A Novel Tau Antibody Detecting the First Amino-Terminal Insert Reveals Conformational Differences Among Tau Isoforms. Front Mol Biosci 2020; 7:48. [PMID: 32296712 PMCID: PMC7136581 DOI: 10.3389/fmolb.2020.00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/09/2020] [Indexed: 11/30/2022] Open
Abstract
As human Tau undergoes pathologically relevant post-translational modifications when expressed in yeast, the use of humanized yeast models for the generation of novel Tau monoclonal antibodies has previously been proven to be successful. In this study, human Tau2N4R-ΔK280 purified from yeast was used for the immunization of mice and subsequent selection of high affinity Tau-specific monoclonal antibodies. The characterization of four novel antibodies in different Tau model systems yielded a phosphorylation-dependent antibody (15A10), an antibody directed to the first microtubule-binding repeat domain (16B12), a carboxy-terminal antibody (20G10) and an antibody targeting an epitope on the hinge of the first and second amino-terminal insert (18F12). The latter was found to be conformation-dependent, suggesting structural differences between the Tau splicing isoforms and allowing insight in the roles played by the amino-terminal inserts. As this monoclonal antibody also has the capacity to detect tangle-like structures in different transgenic Tau mice and neurofibrillary tangles in brain sections of patients diagnosed with Alzheimer's disease, we also tested the diagnostic potential of 18F12 in a pilot study and found this monoclonal antibody to have the ability to discriminate Alzheimer's disease patients from control individuals based on increased Tau levels in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Joke Verelst
- Functional Biology, KU Leuven, Heverlee, Belgium
| | | | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | | | | | | | | | | - Maria Bjerke
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universtieit Brussel (VUB), Brussels, Belgium
| | | | | | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, UMRS1172, Lille Neuroscience & Cognition, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | | | | | | |
Collapse
|
16
|
Wang S, Cho YK. Yeast surface display of full-length human microtubule-associated protein tau. Biotechnol Prog 2019; 36:e2920. [PMID: 31581367 DOI: 10.1002/btpr.2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
Microtubule-associated protein tau is an intrinsically disordered, highly soluble protein found primarily in neurons. Under normal conditions, tau regulates the stability of axonal microtubules and intracellular vesicle transport. However, in patients of neurodegeneration such as Alzheimer's disease (AD), tau forms neurofibrillary deposits, which correlates well with the disease progression. Identifying molecular signatures in tau, such as posttranslational modification, truncation, and conformational change has great potential to detect earliest signs of neurodegeneration and develop therapeutic strategies. Here, we show that full-length human tau, including the longest isoform found in the adult brain, can be robustly displayed on the surface of yeast Saccharomyces cerevisiae. Yeast-displayed tau binds to anti-tau antibodies that cover epitopes ranging from the N-terminus to the 4R repeat region. Unlike tau expressed in the yeast cytosol, surface-displayed tau was not phosphorylated at sites found in AD patients (probed by antibodies AT8, AT270, AT180, and PHF-1). However, yeast-displayed tau showed clear binding to paired helical filament (PHF) tau conformation-specific antibodies Alz-50, MC-1, and Tau-2. Although the tau possessed a conformation found in PHFs, oligomerization or aggregation into larger filaments was undetected. Taken together, yeast-displayed tau enables robust measurement of protein interactions and is of particular interest for characterizing conformational change.
Collapse
Affiliation(s)
- Shiyao Wang
- Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT
| | - Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT.,Department of Biomedical Engineering, Institute for Systems Genomics, CT Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT
| |
Collapse
|
17
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Perez SE, Miguel JC, He B, Malek-Ahmadi M, Abrahamson EE, Ikonomovic MD, Lott I, Doran E, Alldred MJ, Ginsberg SD, Mufson EJ. Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathol 2019; 137:413-436. [PMID: 30734106 PMCID: PMC6541490 DOI: 10.1007/s00401-019-01965-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
Although, by age 40, individuals with Down syndrome (DS) develop amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aβ plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aβ and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases. Expression profiling of single pS422 labeled FC layer V and VI neurons was also determined using laser capture microdissection and custom-designed microarray analysis. Analysis revealed that cortical and striatal Aβ plaque burdens were similar in DSD + and DSD - cases. In both groups, most FC plaques were neuritic, while striatal plaques were diffuse. By contrast, FC AT8-positive NFTs and neuropil thread densities were significantly greater in DSD + compared to DSD -, while striatal NFT densities were similar between groups. FC pS422-positive and TauC3 NFT densities were significantly greater than Alz50-labeled NFTs in DSD + , but not DSD - cases. Putaminal, but not caudate pS422-positive NFT density, was significantly greater than TauC3-positive NFTs. In the FC, AT8 + pS422 + Alz50, TauC3 + pS422 + Alz50, pS422 + Alz50, and TauC3 + pS422 positive NFTs were more frequent in DSD + compared to DSD- cases. Single gene-array profiling of FC pS422 positive neurons revealed downregulation of 63 of a total of 864 transcripts related to Aβ/tau biology, glutamatergic, cholinergic, and monoaminergic metabolism, intracellular signaling, cell homeostasis, and cell death in DSD + compared DSD - cases. These observations suggest that abnormal tau aggregation plays a critical role in the development of dementia in DS.
Collapse
Affiliation(s)
- Sylvia E Perez
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
- School of Life Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jennifer C Miguel
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | - Bin He
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA
| | | | - Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15213, USA
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ira Lott
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Eric Doran
- Departments of Pediatrics and Neurology, University of California, Irvine, CA, 92697, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
- Departments of Neuroscience and Physiology, The NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10021, USA
| | - Elliott J Mufson
- Department of Neurobiology and Neurology, Barrow Neurological Institute, 350 W. Thomas St, Phoenix, AZ, 85013, USA.
| |
Collapse
|
19
|
Almansoub HA, Tang H, Wu Y, Wang DQ, Mahaman YAR, Wei N, Almansob YAM, He W, Liu D. Tau Abnormalities and the Potential Therapy in Alzheimer’s Disease. J Alzheimers Dis 2019; 67:13-33. [DOI: 10.3233/jad-180868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hasan A.M.M. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Biology, Faculty of Science – Marib, Sana’a University, Marib, Yemen
| | - Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, P.R. China
| | - Yusra A. M. Almansob
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei He
- Department of Orthopedics’, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei, P.R. China
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
20
|
Tiernan CT, Ginsberg SD, He B, Ward SM, Guillozet-Bongaarts AL, Kanaan NM, Mufson EJ, Counts SE. Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiol Dis 2018; 117:125-136. [PMID: 29859871 PMCID: PMC6278831 DOI: 10.1016/j.nbd.2018.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023] Open
Abstract
Cholinergic basal forebrain neurons of the nucleus basalis of Meynert (nbM) regulate attentional and memory function and are exquisitely prone to tau pathology and neurofibrillary tangle (NFT) formation during the progression of Alzheimer's disease (AD). nbM neurons require the neurotrophin nerve growth factor (NGF), its cognate receptor TrkA, and the pan-neurotrophin receptor p75NTR for their maintenance and survival. Additionally, nbM neuronal activity and cholinergic tone are regulated by the expression of nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors as well as receptors modulating glutamatergic and catecholaminergic afferent signaling. To date, the molecular and cellular relationships between the evolution of tau pathology and nbM neuronal survival remain unknown. To address this knowledge gap, we profiled cholinotrophic pathway genes within nbM neurons immunostained for pS422, a pretangle phosphorylation event preceding tau C-terminal truncation at D421, or dual-labeled for pS422 and TauC3, a later stage tau neo-epitope revealed by this same C-terminal truncation event, via single-population custom microarray analysis. nbM neurons were obtained from postmortem tissues from subjects who died with an antemortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), or mild/moderate AD. Quantitative analysis revealed significant downregulation of mRNAs encoding TrkA as well as TrkB, TrkC, and the Trk-mediated downstream pro-survival kinase Akt in pS422+ compared to unlabeled, pS422-negative nbM neurons. In addition, pS422+ neurons displayed a downregulation of transcripts encoding NMDA receptor subunit 2B, metabotropic glutamate receptor 2, D2 dopamine receptor, and β1 adrenoceptor. By contrast, transcripts encoding p75NTR were downregulated in dual-labeled pS422+/TauC3+ neurons. Appearance of the TauC3 epitope was also associated with an upregulation of the α7 nAChR subunit and differential downregulation of the β2 nAChR subunit. Notably, we found that gene expression patterns for each cell phenotype did not differ with clinical diagnosis. However, linear regression revealed that global cognition and Braak stage were predictors of select transcript changes within both unlabeled and pS422+/TauC3- neurons. Taken together, these cell phenotype-specific gene expression profiling data suggest that dysregulation of neurotrophic and neurotransmitter signaling is an early pathogenic mechanism associated with NFT formation in vulnerable nbM neurons and cognitive decline in AD, which may be amenable to therapeutic intervention early in the disease process.
Collapse
Affiliation(s)
- Chelsea T Tiernan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA; Department of Physiology & Neuroscience, NYU Langone School of Medicine, New York, NY, USA; NYU Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah M Ward
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Scott E Counts
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Hospital, Grand Rapids, MI, USA; Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA; Michigan Alzheimer's Disease Core Center, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
|
22
|
Fujii H, Takahashi T, Mukai T, Tanaka S, Hosomi N, Maruyama H, Sakai N, Matsumoto M. Modifications of tau protein after cerebral ischemia and reperfusion in rats are similar to those occurring in Alzheimer's disease - Hyperphosphorylation and cleavage of 4- and 3-repeat tau. J Cereb Blood Flow Metab 2017; 37:2441-2457. [PMID: 27629097 PMCID: PMC5531343 DOI: 10.1177/0271678x16668889] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epidemiological studies have suggested a close relationship between cerebral ischemia and Alzheimer's disease (AD). To clarify the pathological association of tau dynamics in both diseases, we performed comprehensive studies on the posttranslational modification of tau in cerebral ischemia and reperfusion (I/R) in rats. The present study suggests that both 4-repeat and 3-repeat tau isoforms are hyperphosphorylated in cerebral I/R, similar to the case in AD. The generation of a 60-kDa Asp421-truncated tau in cerebral I/R preceded the emergence of a 17-kDa 3-repeat tau fragment and a 25-kDa 4-repeat tau fragment. The regional redistribution of tau from the neuropil to neuronal perikarya in our stroke model is thought to share similarity with that occurring in AD. In addition, immunofluorescence staining revealed the formation of axonal varicosities in cerebral I/R. Altered tau distribution may influence microtubule stability, disturbances in axonal transport, and the resulting formation of axonal varicosities. The staining profiles of granules in the ischemic cortex that were immunopositive for RD3, RD4, and AT8 in neuronal perikarya and that were argyrophilic on Gallyas-Braak staining were similar to those in AD. These findings suggest that transient cerebral ischemia shares a common pathology with AD, in the modification of tau protein.
Collapse
Affiliation(s)
- Hiroki Fujii
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoya Mukai
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,2 Department of Stroke Medicine, Kawasaki Medical School Hospital, Kawasaki, Japan
| | - Shigeru Tanaka
- 3 Department of Molecular and Pharmacological Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohisa Hosomi
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirofumi Maruyama
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Norio Sakai
- 3 Department of Molecular and Pharmacological Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masayasu Matsumoto
- 1 Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
23
|
Leyns CEG, Holtzman DM. Glial contributions to neurodegeneration in tauopathies. Mol Neurodegener 2017; 12:50. [PMID: 28662669 PMCID: PMC5492997 DOI: 10.1186/s13024-017-0192-x] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/20/2017] [Indexed: 01/09/2023] Open
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by aggregation of the tau protein into filamentous inclusions that can be found in neurons and glial cells. Activated microglia, astrocytes and elevated levels of proinflammatory molecules are also pathological hallmarks that are found in brain regions affected by tau pathology. There has been abundant research in recent years to understand the role of gliosis and neuroinflammation in neurodegenerative diseases, particularly in Alzheimer's disease (AD) which is the most common form of dementia. AD is a tauopathy characterized by both extracellular amyloid-β plaques in addition to intracellular neurofibrillary tangles and neuropil threads containing aggregated tau protein. Accumulating evidence suggests that neuroinflammation offers a possible mechanistic link between these pathologies. Additionally, there appears to be a role for neuroinflammation in aggravating tau pathology and neurodegeneration in tauopathies featuring tau deposits as the predominant pathological signature. In this review, we survey the literature regarding inflammatory mechanisms that may impact neurodegeneration in AD and related tauopathies. We consider a physical role for microglia in the spread of tau pathology as well as the non-cell autonomous effects of secreted proinflammatory cytokines, specifically interleukin 1 beta, interleukin 6, tumor necrosis factor alpha and complement proteins. These molecules appear to have direct effects on tau pathophysiology and overall neuronal health. They also indirectly impact neuronal homeostasis by altering glial function. We conclude by proposing a complex role for gliosis and neuroinflammation in accelerating the progression of AD and other tauopathies.
Collapse
Affiliation(s)
- Cheryl E. G. Leyns
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Washington University, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|
24
|
Mammadova N, Ghaisas S, Zenitsky G, Sakaguchi DS, Kanthasamy AG, Greenlee JJ, West Greenlee MH. Lasting Retinal Injury in a Mouse Model of Blast-Induced Trauma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1459-1472. [PMID: 28606756 DOI: 10.1016/j.ajpath.2017.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/02/2017] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury due to blast exposure is currently the most prevalent of war injuries. Although secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure resulting from blast wave pressure has been reported among survivors of explosions, but with limited understanding of the resulting retinal pathologies. Using a compressed air-driven shock tube system, adult male and female C57BL/6 mice were exposed to blast wave pressure of 300 kPa (43.5 psi) per day for 3 successive days, and euthanized 30 days after injury. We assessed retinal tissues using immunofluorescence for glial fibrillary acidic protein, microglia-specific proteins Iba1 and CD68, and phosphorylated tau (AT-270 pThr181 and AT-180 pThr231). Primary blast wave pressure resulted in activation of Müller glia, loss of photoreceptor cells, and an increase in phosphorylated tau in retinal neurons and glia. We found that 300-kPa blasts yielded no detectable cognitive or motor deficits, and no neurochemical or biochemical evidence of injury in the striatum or prefrontal cortex, respectively. These changes were detected 30 days after blast exposure, suggesting the possibility of long-lasting retinal injury and neuronal inflammation after primary blast exposure.
Collapse
Affiliation(s)
- Najiba Mammadova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa; Immunobiology Graduate Program, Iowa State University, Ames, Iowa; Neuroscience Graduate Program, Iowa State University, Ames, Iowa
| | - Shivani Ghaisas
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Gary Zenitsky
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Donald S Sakaguchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa; Neuroscience Graduate Program, Iowa State University, Ames, Iowa
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | - M Heather West Greenlee
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa; Neuroscience Graduate Program, Iowa State University, Ames, Iowa; Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa.
| |
Collapse
|
25
|
Gorantla NV, Shkumatov AV, Chinnathambi S. Conformational Dynamics of Intracellular Tau Protein Revealed by CD and SAXS. Methods Mol Biol 2017; 1523:3-20. [PMID: 27975241 DOI: 10.1007/978-1-4939-6598-4_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A native conformation of a protein is essential for its biological role. In certain conditions, some proteins show non-native conformations, leading to aggregation, which in turn may produce severe pathologies. Such physiological conditions are classified as protein misfolding diseases. Alzheimer's disease (AD) is the most common form of dementia. Extracellular senile plaques formed by Amyloid β and intracellular aggregates formed by microtubule-associated protein Tau (MAPT) are the hallmarks of AD. Physiological role of MAPT is to maintain the integrity and stability of microtubules, however it tends to self-aggregate forming intracellular paired helical filaments (PHFs) during AD. MAPT is also subjected to various post-translational modifications such as phosphorylation, glycosylation, truncation, and acetylation. Being natively unfolded, MAPT is prone to full characterization at atomic level. Small-angle X-ray scattering (SAXS) is often applied in combination with other biophysical methods, like nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, analytical ultracentrifugation (AUC), or dynamic light scattering (DLS) to characterize natively unfolded systems. Here we describe the practical aspects of MAPT characterization by SAXS and CD in detail as well as outline the inferred structural and functional implications.
Collapse
Affiliation(s)
- Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 10025, New Delhi, India
| | | | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India. .,Academy of Scientific and Innovative Research (AcSIR), 10025, New Delhi, India.
| |
Collapse
|
26
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
27
|
Torres-Cruz FM, Rodríguez-Cruz F, Escobar-Herrera J, Barragán-Andrade N, Basurto-Islas G, Ripova D, Ávila J, Garcia-Sierra F. Expression of Tau Produces Aberrant Plasma Membrane Blebbing in Glial Cells Through RhoA-ROCK-Dependent F-Actin Remodeling. J Alzheimers Dis 2016; 52:463-82. [DOI: 10.3233/jad-150396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francisco M. Torres-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fanny Rodríguez-Cruz
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Jaime Escobar-Herrera
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Norma Barragán-Andrade
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | | | - Daniela Ripova
- National Institute of Mental Health, Klecany, Czech Republic
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) Universidad Autónoma de Madrid, Spain
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
28
|
He K, Du X, Sheng W, Zhou X, Wang J, Wang S. Crystal Structure of the Fab Fragment of an Anti-ofloxacin Antibody and Exploration of Its Specific Binding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2627-2634. [PMID: 26963935 DOI: 10.1021/acs.jafc.5b05882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The limited knowledge on the mechanism of interactions between small contaminants and the corresponding antibodies greatly inhibits the development of enzyme-linked immunosorbent assay methods. In this study, the crystal structure of a Fab fragment specific for ofloxacin was obtained. On the basis of the crystal characteristics, the modeling of the interactions between ofloxacin and the Fab revealed that TYR31 and HIS99 of the heavy chain and MET20 and GLN79 of the light chain formed a hydrophobic region and that SER52 and ALA97 of the heavy chain and TYR35 of the light chain formed a salt bridge and two hydrogen bonds for specific binding. The key roles of SER52 and ALA97 were further confirmed by site-directed mutation. A specificity analysis using 14 ofloxacin analogues indicates that the length of the bond formed between the piperazine ring and the antibody plays key roles in specific recognition. This work helps to clarify the mechanisms through which antibodies recognize small molecules and improve immune detection methods.
Collapse
Affiliation(s)
- Kuo He
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
- Hebei North University , Zhangjiakou, Hebei 075000, People's Republic of China
| | - Xinjun Du
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Wei Sheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Xiaonan Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| |
Collapse
|
29
|
Kahlson MA, Colodner KJ. Glial Tau Pathology in Tauopathies: Functional Consequences. J Exp Neurosci 2016; 9:43-50. [PMID: 26884683 PMCID: PMC4750898 DOI: 10.4137/jen.s25515] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Martha A Kahlson
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| | - Kenneth J Colodner
- Department of Neuroscience and Behavior, Mount Holyoke College, South Hadley, MA, USA
| |
Collapse
|
30
|
Mufson EJ, Perez SE, Nadeem M, Mahady L, Kanaan NM, Abrahamson EE, Ikonomovic MD, Crawford F, Alvarez V, Stein T, McKee AC. Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Inj 2016; 30:1399-1413. [PMID: 27834536 PMCID: PMC5348250 DOI: 10.1080/02699052.2016.1219058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. METHOD To characterize NFT pathology, tau-antibodies marking early, intermediate and late stages of NFT development in CBF tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI) were used. RESULTS Analysis revealed that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pre-tangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percentage of pS422/p75NTR, pS422 and TNT1 labelled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. CONCLUSION The development of NFTs within the cholinergic nbM neurons could contribute to an axonal disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Muhammad Nadeem
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Laura Mahady
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Nicholas M. Kanaan
- Dept. Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Eric E. Abrahamson
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | | | - Victor Alvarez
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Thor Stein
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Ann C. McKee
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| |
Collapse
|
31
|
Jadhav S, Cubinkova V, Zimova I, Brezovakova V, Madari A, Cigankova V, Zilka N. Tau-mediated synaptic damage in Alzheimer's disease. Transl Neurosci 2015; 6:214-226. [PMID: 28123806 PMCID: PMC4936631 DOI: 10.1515/tnsci-2015-0023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/04/2015] [Indexed: 12/16/2022] Open
Abstract
Synapses are the principal sites for chemical communication between neurons and are essential for performing the dynamic functions of the brain. In Alzheimer’s disease and related tauopathies, synapses are exposed to disease modified protein tau, which may cause the loss of synaptic contacts that culminate in dementia. In recent decades, structural, transcriptomic and proteomic studies suggest that Alzheimer’s disease represents a synaptic disorder. Tau neurofibrillary pathology and synaptic loss correlate well with cognitive impairment in these disorders. Moreover, regional distribution and the load of neurofibrillary lesions parallel the distribution of the synaptic loss. Several transgenic models of tauopathy expressing various forms of tau protein exhibit structural synaptic deficits. The pathological tau proteins cause the dysregulation of synaptic proteome and lead to the functional abnormalities of synaptic transmission. A large body of evidence suggests that tau protein plays a key role in the synaptic impairment of human tauopathies.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Ivana Zimova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| | - Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic
| | - Aladar Madari
- Small animal clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, Kosice, Slovak Republic
| | - Viera Cigankova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10 Bratislava, Slovak Republic; Axon Neuroscience SE, Grosslingova 45, Bratislava, Slovak Republic
| |
Collapse
|
32
|
Asai H, Ikezu S, Tsunoda S, Medalla M, Luebke J, Haydar T, Wolozin B, Butovsky O, Kügler S, Ikezu T. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015; 18:1584-93. [PMID: 26436904 DOI: 10.1038/nn.4132] [Citation(s) in RCA: 1099] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Accumulation of pathological tau protein is a major hallmark of Alzheimer's disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus-based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target.
Collapse
Affiliation(s)
- Hirohide Asai
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Satoshi Tsunoda
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tarik Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Oleg Butovsky
- Department of Neurology, Center of Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sebastian Kügler
- Center of Nanoscale Microscopy and Physiology of the Brain at Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Wang L, Jiang Q, Chu J, Lin L, Li XG, Chai GS, Wang Q, Wang JZ, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One 2013; 8:e76057. [PMID: 24146816 PMCID: PMC3795725 DOI: 10.1371/journal.pone.0076057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qian Jiang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| | - Qing Tian
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| |
Collapse
|
34
|
Caspase-mediated truncation of tau potentiates aggregation. Int J Alzheimers Dis 2012; 2012:731063. [PMID: 22988541 PMCID: PMC3440879 DOI: 10.1155/2012/731063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Caspase-mediated truncation of tau is associated with aggregation. We examined the impact of manipulation of caspase activity on intracellular aggregation of a mutant form of tau (3PO) that forms spontaneous aggregates. Treatment with the caspase inhibitor Z-VAD-fmk reduced both N and C-terminal tau truncation but did not significantly reduce aggregation. Treatment with staurosporine, which activated caspases, increased C-terminal but not N-terminal truncation and enhanced aggregation. These findings suggest that caspase activation is one potential route, rather than an obligatory initiation step, in aggregation, and that N- and C-terminal truncation contribute differentially to aggregation.
Collapse
|
35
|
Jeganathan S, Chinnathambi S, Mandelkow EM, Mandelkow E. Conformations of microtubule-associated protein Tau mapped by fluorescence resonance energy transfer. Methods Mol Biol 2012; 849:85-99. [PMID: 22528085 DOI: 10.1007/978-1-61779-551-0_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The microtubule-associated protein Tau plays a physiological role of stabilizing neuronal microtubules by binding to their lateral surface. Tau belongs to the category of natively unfolded protein as it shows typical features of random coil, as analyzed by various biophysical techniques. In cells, it is subjected to several posttranslational modifications (e.g., phosphorylation, cleavage, ubiquitination, and glycosylation). In neurodegenerative diseases, Tau forms insoluble aggregates called paired helical filaments (PHFs). We have applied fluorescence resonance energy transfer (FRET) to examine the conformations of soluble Tau. We created a series of Tau mutants, each carrying one tryptophan and one cysteine (labeled by IEADANS). This made it possible to measure the distance between these FRET pairs placed in different domains of Tau. This approach enables one to analyze the global folding of soluble Tau and its alteration upon phosphorylation and denaturation.
Collapse
|
36
|
Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012:731526. [PMID: 22690349 PMCID: PMC3368361 DOI: 10.1155/2012/731526] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. In connection with the global trend of prolonging human life and the increasing number of elderly in the population, the AD becomes one of the most serious health and socioeconomic problems of the present. Tau protein promotes assembly and stabilizes microtubules, which contributes to the proper function of neuron. Alterations in the amount or the structure of tau protein can affect its role as a stabilizer of microtubules as well as some of the processes in which it is implicated. The molecular mechanisms governing tau aggregation are mainly represented by several posttranslational modifications that alter its structure and conformational state. Hence, abnormal phosphorylation and truncation of tau protein have gained attention as key mechanisms that become tau protein in a pathological entity. Evidences about the clinicopathological significance of phosphorylated and truncated tau have been documented during the progression of AD as well as their capacity to exert cytotoxicity when expressed in cell and animal models. This paper describes the normal structure and function of tau protein and its major alterations during its pathological aggregation in AD.
Collapse
|
37
|
Youmans KL, Tai LM, Kanekiyo T, Stine WB, Michon SC, Nwabuisi-Heath E, Manelli AM, Fu Y, Riordan S, Eimer WA, Binder L, Bu G, Yu C, Hartley DM, LaDu MJ. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol Neurodegener 2012; 7:8. [PMID: 22423893 PMCID: PMC3355009 DOI: 10.1186/1750-1326-7-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/16/2012] [Indexed: 02/07/2023] Open
Abstract
Background The form(s) of amyloid-β peptide (Aβ) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aβ accumulation is an issue of considerable controversy; even the existence of Aβ deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aβ. To further address this issue, an anti-Aβ antibody was developed (MOAB-2) that specifically detects Aβ, but not APP. This antibody allows for the further evaluation of the early accumulation of intraneuronal Aβ in transgenic mice with increased levels of human Aβ in 5xFAD and 3xTg mice. Results MOAB-2 (mouse IgG2b) is a pan-specific, high-titer antibody to Aβ residues 1-4 as demonstrated by biochemical and immunohistochemical analyses (IHC), particularly compared to 6E10 (a commonly used commercial antibody to Aβ residues 3-8). MOAB-2 did not detect APP or APP-CTFs in cell culture media/lysates (HEK-APPSwe or HEK-APPSwe/BACE1) or in brain homogenates from transgenic mice expressing 5 familial AD (FAD) mutation (5xFAD mice). Using IHC on 5xFAD brain tissue, MOAB-2 immunoreactivity co-localized with C-terminal antibodies specific for Aβ40 and Aβ42. MOAB-2 did not co-localize with either N- or C-terminal antibodies to APP. In addition, no MOAB-2-immunreactivity was observed in the brains of 5xFAD/BACE-/- mice, although significant amounts of APP were detected by N- and C-terminal antibodies to APP, as well as by 6E10. In both 5xFAD and 3xTg mouse brain tissue, MOAB-2 co-localized with cathepsin-D, a marker for acidic organelles, further evidence for intraneuronal Aβ, distinct from Aβ associated with the cell membrane. MOAB-2 demonstrated strong intraneuronal and extra-cellular immunoreactivity in 5xFAD and 3xTg mouse brain tissues. Conclusions Both intraneuronal Aβ accumulation and extracellular Aβ deposition was demonstrated in 5xFAD mice and 3xTg mice with MOAB-2, an antibody that will help differentiate intracellular Aβ from APP. However, further investigation is required to determine whether a molecular mechanism links the presence of intraneuronal Aβ with neurotoxicity. As well, understanding the relevance of these observations to human AD patients is critical.
Collapse
Affiliation(s)
- Katherine L Youmans
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cooperative folding of tau peptide by coordination of group IIB metal cations during heparin-induced aggregation. Biometals 2011; 25:361-72. [DOI: 10.1007/s10534-011-9505-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022]
|
39
|
García-Sierra F, Jarero-Basulto JJ, Kristofikova Z, Majer E, Binder LI, Ripova D. Ubiquitin is associated with early truncation of tau protein at aspartic acid(421) during the maturation of neurofibrillary tangles in Alzheimer's disease. Brain Pathol 2011; 22:240-50. [PMID: 21919991 DOI: 10.1111/j.1750-3639.2011.00525.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pathological processing of tau protein during the formation and maturation of neurofibrillary tangles (NFTs) includes abnormal phosphorylation, conformational changes and truncation of the C-terminus at aspartic-acid(421) (apoptotic product) and glutamic-acid(391) residues. Abnormal phosphorylation and misfolding may serve as recognition signals for ubiquitin-targeting and proteosomal processing. For this reason, we sought to determine whether ubiquitin-targeting of tau is associated with particular tau modifications that herald specific stages of NFTs maturation in the hippocampus of Alzheimer's disease cases. Using multiple tau antibodies, we found that 30% of the total load of NFTs is ubiquitin-associated. As reported previously ubiquitin immunoreactivity was associated with markers of phosphorylated tau in certain NFTs; however, a strong association was also found between ubiquitin and the earliest known truncation event at aspartic-acid(421) . These findings indicate that tau protein in the NFTs may be dually subjected to both apoptotic and proteosomal processing. By contrast ubiquitin immunoreactivity was poorly associated with truncation of tau at glutamic-acid(391) , suggesting that this proteolytic event may be independent of proteosomal activity. It would appear, therefore, that ubiquitin targeting of tau protein occurs at NFTs in the early and intermediate stages of the maturation.
Collapse
Affiliation(s)
- Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
40
|
Bibow S, Mukrasch MD, Chinnathambi S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M. Die dynamische Struktur von Tau-Filamenten. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Bibow S, Mukrasch MD, Chinnathambi S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M. The dynamic structure of filamentous tau. Angew Chem Int Ed Engl 2011; 50:11520-4. [PMID: 21990182 DOI: 10.1002/anie.201105493] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Bibow
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Vana L, Kanaan NM, Ugwu IC, Wuu J, Mufson EJ, Binder LI. Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2533-50. [PMID: 21945902 PMCID: PMC3204017 DOI: 10.1016/j.ajpath.2011.07.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated protein that forms neurofibrillary tangles (NFTs) in the selective vulnerable long projection neurons of the cholinergic basal forebrain (CBF) in Alzheimer's disease (AD). Although CBF neurodegeneration correlates with cognitive decline during AD progression, little is known about the temporal changes of tau accumulation in this region. We investigated tau posttranslational modifications during NFT evolution within the CBF neurons of the nucleus basalis (NB) using tissue from subjects with no cognitive impairment, mild cognitive impairment, and AD. The pS422 antibody was used as an early tau pathology marker that labels tau phosphorylated at Ser422; the TauC3 antibody was used to detect later stage tau pathology. Stereologic evaluation of NB tissue immunostained for pS422 and TauC3 revealed an increase in neurons expressing these tau epitopes during disease progression. We also investigated the occurrence of pretangle tau events within cholinergic NB neurons by dual staining for the cholinergic cell marker, p75(NTR), which displays a phenotypic down-regulation within CBF perikarya in AD. As pS422+ neurons increased in number, p75(NTR)+ neurons decreased, and these changes correlated with both AD neuropathology and cognitive decline. Also, NFTs developed slower in the CBF compared with previously examined cortical regions. Taken together, these results suggest that changes in cognition are associated with pretangle events within NB cholinergic neurons before frank NFT deposition.
Collapse
Affiliation(s)
- Laurel Vana
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 2011; 45:395-408. [PMID: 21933710 DOI: 10.1016/j.nbd.2011.08.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 11/20/2022] Open
Abstract
Frontotemporal dementia (FTD) is typified by behavioral and cognitive changes manifested as altered social comportment and impaired memory performance. To investigate the neurodegenerative consequences of progranulin gene (GRN) mutations, which cause an inherited form of FTD, we used previously generated progranulin knockout mice (Grn-/-). Specifically, we characterized two cohorts of early and later middle-aged wild type and knockout mice using a battery of tests to assess neurological integrity and behavioral phenotypes analogous to FTD. The Grn-/- mice exhibited reduced social engagement and learning and memory deficits. Immunohistochemical approaches were used to demonstrate the presence of lesions characteristic of frontotemporal lobar degeneration (FTLD) with GRN mutation including ubiquitination, microgliosis, and reactive astrocytosis, the pathological substrate of FTD. Importantly, Grn-/- mice also have decreased overall survival compared to Grn+/+ mice. These data suggest that the Grn-/- mouse reproduces some core features of FTD with respect to behavior, pathology, and survival. This murine model may serve as a valuable in vivo model of FTLD with GRN mutation through which molecular mechanisms underlying the disease can be further dissected.
Collapse
|
44
|
Vana L, Kanaan NM, Hakala K, Weintraub ST, Binder LI. Peroxynitrite-induced nitrative and oxidative modifications alter tau filament formation. Biochemistry 2011; 50:1203-12. [PMID: 21210655 PMCID: PMC3040256 DOI: 10.1021/bi101735m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tau undergoes numerous posttranslational modifications during the progression of Alzheimer's disease (AD). Some of these changes accelerate tau aggregation, while others are inhibitory. AD-associated inflammation is thought to create oxygen and nitrogen radicals such as peroxynitrite (PN). In vitro, PN can nitrate many proteins, including tau. We have previously demonstrated that tau's ability to form filaments is profoundly affected by treatment with PN and have attributed this inhibition to tyrosine nitration. However, PN is highly reactive and unstable leading to oxidative amino acid modifications through its free radical byproducts. To test whether PN can modify other amino acids in tau via oxidative modifications, a mutant form of the tau protein lacking all tyrosines (5XY → F) was constructed. 5XY → F tau readily forms filaments; however, like wild-type tau the extent of polymerization was greatly reduced following PN treatment. Since 5XY → F tau cannot be nitrated, it was clear that nonnitrative modifications are generated by PN treatment and that these modifications change tau filament formation. Mass spectrometry was used to identify these oxidative alterations in wild-type tau and 5XY → F tau. PN-treated wild-type tau and 5XY → F tau consistently displayed lysine formylation throughout tau in a nonsequence-specific distribution. Lysine formylation likely results from reactive free radical exposure caused by PN treatment. Therefore, our results indicate that PN treatment of proteins in vitro cannot be used to study protein nitration as it likely induces numerous other random oxidative modifications clouding the interpretations of any functional consequences of tyrosine nitration.
Collapse
Affiliation(s)
- Laurel Vana
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States.
| | | | | | | | | |
Collapse
|
45
|
Tong Y, Xu Y, Scearce-Levie K, Ptácek LJ, Fu YH. COL25A1 triggers and promotes Alzheimer's disease-like pathology in vivo. Neurogenetics 2009; 11:41-52. [PMID: 19548013 PMCID: PMC2807601 DOI: 10.1007/s10048-009-0201-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 12/19/2022]
Abstract
Collagen XXV alpha 1 (COL25A1) is a collagenous type II transmembrane protein purified from senile plaques of Alzheimer's disease (AD) brains. COL25A1 alleles have been associated with increased risk for AD in a Swedish population. COL25A1 is specifically expressed in neurons and binds to aggregated Abeta in vitro. However, its contribution to the pathogenesis of AD and in vivo function are unknown. Here, we report that over-expression of COL25A1 in transgenic mice increases p35/p25 and beta-site APP-cleaving enzyme 1 (BACE1) levels, facilitates intracellular aggregation and extracellular matrix deposits of Abeta, and causes synaptophysin loss and astrocyte activation. COL25A1 mice displayed reduced anxiety-like behavior in elevated plus maze and open field tests and significantly slower swimming speed in Morris water maze. In stable cell lines, motifs in noncollagenous domains of COL25A1 were important for the induction of BACE1 expression. These findings demonstrate that COL25A1 leads to AD-like pathology in vivo. Modulation of COL25A1 function may represent an alternative therapeutic intervention for AD.
Collapse
Affiliation(s)
- Ying Tong
- Department of Neurology, University of California San Francisco, 1550 Fourth Street, Rock Hall Rm548, San Francisco, CA, 94158, USA
| | | | | | | | | |
Collapse
|
46
|
Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284:21647-58. [PMID: 19491400 DOI: 10.1074/jbc.m109.016923] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by an expansion of a polyglutamine (polyQ) domain in the N-terminal region of huntingtin (htt). PolyQ expansion above 35-40 results in disease associated with htt aggregation into inclusion bodies. It has been hypothesized that expanded polyQ domains adopt multiple potentially toxic conformations that belong to different aggregation pathways. Here, we used atomic force microscopy to analyze the effect of a panel of anti-htt antibodies (MW1-MW5, MW7, MW8, and 3B5H10) on aggregate formation and the stability of a mutant htt-exon1 fragment. Two antibodies, MW7 (polyproline-specific) and 3B5H10 (polyQ-specific), completely inhibited fibril formation and disaggregated preformed fibrils, whereas other polyQ-specific antibodies had widely varying effects on aggregation. These results suggest that expanded polyQ domains adopt multiple conformations in solution that can be readily distinguished by monoclonal antibodies, which has important implications for understanding the structural basis for polyQ toxicity and the development of intrabody-based therapeutics for HD.
Collapse
Affiliation(s)
- Justin Legleiter
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mondragón-Rodríguez S, Basurto-Islas G, Binder LI, García-Sierra F. Conformational changes and cleavage; are these responsible for the tau aggregation in Alzheimer’s disease? FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.1.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past, post-translational modifications of tau protein, such as phosphorylation, cleavage and conformational changes, have long been implicated in the pathogenesis of Alzheimer’s disease. Unfortunately, the accurate role and relationship between these pathological modifications during tau aggregation remains under extensive study. We had proposed a chronological model of tau pathological processing during Alzheimer´s disease, in which phosphorylation and cleavage could lead to conformational changes causing aggregation and therefore, cell toxicity. We discuss this issue and review in vitro and in situ evidence that supports the relevance of tau modifications that cause its pathological conformations and toxic aggregation. Thus, we offer a brief discussion regarding conformational change and cleavage as future clinical targets.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute Av., Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| | - Gustavo Basurto-Islas
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute Av., Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| | - Lester I Binder
- Department of Cell & Molecular Biology, Northwestern University Medical School, W129, Tarry 8-754, 303 E Chicago Av., Chicago, IL 60611, USA
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research & Advanced Studies of the National Politechnical Institute, Av. Instituto Politecnico Nacional 2508, CP 07360, Mexico City, Mexico
| |
Collapse
|
48
|
Jeganathan S, Hascher A, Chinnathambi S, Biernat J, Mandelkow EM, Mandelkow E. Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of Tau and generates a pathological (MC-1) conformation. J Biol Chem 2008; 283:32066-76. [PMID: 18725412 DOI: 10.1074/jbc.m805300200] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tau, a neuronal microtubule-associated protein that aggregates in Alzheimer disease is a natively unfolded protein. In solution, Tau adopts a "paperclip" conformation, whereby the N- and C-terminal domains approach each other and the repeat domain ( Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H. J., and Mandelkow, E. (2006) Biochemistry 45, 2283-2293 ). In AD, Tau is in a hyperphosphorylated state. The consequences for microtubule binding or aggregation are a matter of debate. We therefore tested whether phosphorylation alters the conformation of Tau. To avoid the ambiguities of heterogeneous phosphorylation we cloned "pseudo-phosphorylation" mutants of Tau where combinations of Ser or Thr residues were converted into Glu. These mutations were combined with FRET pairs inserted in different locations to allow distance measurements. The results show that the paperclip conformation becomes tighter or looser, depending on the pseudo-phosphorylation state. In particular, pseudo-phosphorylation at the epitope of the diagnostic antibody AT8* (S199E + S202E + T205E) moves the N-terminal domain away from the C-terminal domain. Pseudo-phosphorylation at the PHF1 epitope (S396E + S404E) moves the C-terminal domain away from the repeat domain. In both cases the paperclip conformation is opened up. By contrast, the combination of AT8* and PHF1 sites leads to compaction of the paperclip, such that the N-terminus approaches the repeat domain. The compaction becomes even stronger by combining pseudo-phosphorylated AT8*, AT100, and PHF1 epitopes. This is accompanied by a strong increase in the reaction with conformation-dependent antibody MC1, suggesting the generation of a pathological conformation characteristic for Tau in AD. Furthermore, the compact paperclip conformation enhances the aggregation to paired helical filaments but has little influence on microtubule interactions. The data provide a framework for the global folding of Tau dependent on proline-directed phosphorylation in the domains flanking the repeats and the consequences for pathological properties of Tau.
Collapse
Affiliation(s)
- Sadasivam Jeganathan
- Max Planck Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Mondragón-Rodríguez S, Basurto-Islas G, Santa-Maria I, Mena R, Binder LI, Avila J, Smith MA, Perry G, García-Sierra F. Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease. Int J Exp Pathol 2008; 89:81-90. [PMID: 18336525 DOI: 10.1111/j.1365-2613.2007.00568.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Phosphorylation, cleavage and conformational changes in tau protein all play pivotal roles during Alzheimer's disease (AD). In an effort to determine the chronological sequence of these changes, in this study, using confocal microscopy, we compared phosphorylation at several sites (Ser(199/202/396/404/422)-Thr(205) and the second repeat domain), cleavage of tau (D(421)) and the canonical conformational Alz-50 epitope. While all of these posttranslational modifications are found in neurofibrillary tangles (NFTs) at all stages of the disease, we found significantly higher numbers of phospho-tau positive NFTs when compared with cleaved tau (P = 0.006 in Braak III; P = 0.002 in Braak IV; P = 0.012 in Braak V) or compared with the Alz-50 epitope (P < 0.05). Consistent with these findings, in a double transgenic mice model (Tet/GSK-3beta/VLW) overexpressing the enzyme glycogen synthase kinase-3beta (GSK-3beta) and tau with a triple FTDP-17 mutation (VLW) with AD-like neurodegeneration, phosphorylation at sites Ser(199/202)-Thr(205) was greater than truncated tau. Taken together, these data strongly support the notion that the conformational changes and truncation of tau occur after the phosphorylation of tau. We propose two probable pathways for the pathological processing of tau protein during AD, either phosphorylation and cleavage of tau followed by the Alz-50 conformational change or phosphorylation followed by the conformational change and cleavage as the last step.
Collapse
|
50
|
Corsetti V, Amadoro G, Gentile A, Capsoni S, Ciotti MT, Cencioni MT, Atlante A, Canu N, Rohn TT, Cattaneo A, Calissano P. Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease models. Mol Cell Neurosci 2008; 38:381-92. [PMID: 18511295 DOI: 10.1016/j.mcn.2008.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 03/20/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022] Open
Abstract
Biochemical modifications of tau proteins have been proposed to be among the earliest neurobiological changes in Alzheimer's disease (AD) and correlate better with cognitive symptoms than do beta-amyloid plaques. We have recently reported that adenovirus-mediated overexpression of the NH2 26-230aa tau fragment evokes a potent NMDA-mediated neurotoxic effect in primary neuronal cultures. In order to assess whether such N-terminal tau fragment(s) are indeed produced during apoptosis or neurodegeneration in vivo, we attempted to ascertain their presence in cell and animal models using an anti-tau antibody directed against the N-terminal sequence of human protein located downstream of the caspase(s)-cleavage site DRKD(25)-QGGYTMHQDQ. We provide biochemical evidence that a caspase(s)-cleaved NH2-terminal tau fragment of 20-22 kDa, consistent with the size of the NH2 26-230aa neurotoxic fragment of tau, is generated in vitro in differentiated human SH-SY5Y cells undergoing apoptosis by BDNF withdrawal or following treatment with staurosporine. In addition this NH2-terminally cleaved tau fragment, whose expression correlates with a significant up-regulation of caspase(s) activity, is also specifically detected in vivo in the hippocampus of 15 month-old AD11 transgenic mice, a model in which a progressive AD-like neurodegeneration is induced by the expression of transgenic anti-NGF antibodies. The results support the idea that aberrant activation of caspase(s), following apoptotic stimuli or neurodegeneration insults, may produce one or more toxic NH2 tau fragments, that further contribute to propagate and increase cellular dysfunctions in AD.
Collapse
Affiliation(s)
- V Corsetti
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|