1
|
Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, Goh BH, Zacconi F, de Jesus Andreoli Pinto T, Kumbhar P, Disouza J, Dua K, Singh SK. Exploring nanoparticular platform in delivery of repurposed drug for Alzheimer's disease: current approaches and future perspectives. Expert Opin Drug Deliv 2024:1-22. [PMID: 39397403 DOI: 10.1080/17425247.2024.2414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD. AREAS COVERED In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated. EXPERT OPINION The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Overseas R & D Centre, Overseas HealthCare Pvt. Ltd, Phillaur, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, Alabama, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Darul Ehsan, Selangor, Malaysia
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Cat´ olica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Santiago, Chile
| | | | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
2
|
Syvänen V, Koistinaho J, Lehtonen Š. Identification of the abnormalities in astrocytic functions as potential drug targets for neurodegenerative disease. Expert Opin Drug Discov 2024; 19:603-616. [PMID: 38409817 DOI: 10.1080/17460441.2024.2322988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Historically, astrocytes were seen primarily as a supportive cell population within the brain; with neurodegenerative disease research focusing exclusively on malfunctioning neurons. However, astrocytes perform numerous tasks that are essential for maintenance of the central nervous system`s complex processes. Disruption of these functions can have negative consequences; hence, it is unsurprising to observe a growing amount of evidence for the essential role of astrocytes in the development and progression of neurodegenerative diseases. Targeting astrocytic functions may serve as a potential disease-modifying drug therapy in the future. AREAS COVERED The present review emphasizes the key astrocytic functions associated with neurodegenerative diseases and explores the possibility of pharmaceutical interventions to modify these processes. In addition, the authors provide an overview of current advancement in this field by including studies of possible drug candidates. EXPERT OPINION Glial research has experienced a significant renaissance in the last quarter-century. Understanding how disease pathologies modify or are caused by astrocyte functions is crucial when developing treatments for brain diseases. Future research will focus on building advanced models that can more precisely correlate to the state in the human brain, with the goal of routinely testing therapies in these models.
Collapse
Affiliation(s)
- Valtteri Syvänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, Helsinki Institute of Life Science, and Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Hong D, Zhang C, Wu W, Lu X, Zhang L. Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis. Front Neurol 2023; 14:1133546. [PMID: 37153665 PMCID: PMC10157060 DOI: 10.3389/fneur.2023.1133546] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
There are trillions of different microorganisms in the human digestive system. These gut microbes are involved in the digestion of food and its conversion into the nutrients required by the body. In addition, the gut microbiota communicates with other parts of the body to maintain overall health. The connection between the gut microbiota and the brain is known as the gut-brain axis (GBA), and involves connections via the central nervous system (CNS), the enteric nervous system (ENS), and endocrine and immune pathways. The gut microbiota regulates the central nervous system bottom-up through the GBA, which has prompted researchers to pay considerable attention to the potential pathways by which the gut microbiota might play a role in the prevention and treatment of amyotrophic lateral sclerosis (ALS). Studies with animal models of ALS have shown that dysregulation of the gut ecology leads to dysregulation of brain-gut signaling. This, in turn, induces changes in the intestinal barrier, endotoxemia, and systemic inflammation, which contribute to the development of ALS. Through the use of antibiotics, probiotic supplementation, phage therapy, and other methods of inducing changes in the intestinal microbiota that can inhibit inflammation and delay neuronal degeneration, the clinical symptoms of ALS can be alleviated, and the progression of the disease can be delayed. Therefore, the gut microbiota may be a key target for effective management and treatment of ALS.
Collapse
Affiliation(s)
- Du Hong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wenshuo Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohui Lu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Liping Zhang
| |
Collapse
|
4
|
Dhillon NK, Adjamian N, Fierro NM, Conde G, Barmparas G, Ley EJ. Early Antibiotic Administration is Independently Associated with Improved Survival in Traumatic Brain Injury. J Surg Res 2021; 270:495-502. [PMID: 34808469 DOI: 10.1016/j.jss.2021.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Central and systemic immune dysfunction after traumatic brain injury (TBI) can lead to infectious-related complications, which may result in delayed mortality. The role of early empiric antibiotics after TBI has not been characterized to date, but is recommended in select cases to decrease complications. We aimed to determine the relationship between early antibiotic use and in-hospital mortality in TBI patients. METHODS A retrospective review was conducted of TBI patients requiring ICU admission at an urban, academic, Level I trauma center from 01/2014 to 08/2016. Data collection included demographics, injury characteristics, details regarding antibiotic use, and outcomes. Early antibiotic administration was defined as any antibiotic given within 48 hs from admission. Patients given early antibiotics (EARLY) were compared to those who received their first dose later or did not receive any antibiotics (non-EARLY). RESULTS Of the 488 TBI patients meeting inclusion criteria, 189 (38.7%) received early antibiotics. EARLY patients were younger (EARLY 54.2 versus non-EARLY 61.5 ys, P <0.01) and more likely to be male (71.4% versus 60.9%, P = 0.02). Injury severity scores (23.6 versus 17.2, P <0.01) and regional head abbreviated injury scale scores (3.9 versus 3.7, P <0.01) were significantly higher in patients who received early antibiotics. Unadjusted in-hospital mortality rates were similar, however EARLY was associated with a lower mortality rate (AOR 0.17, 95% CI: 0.07 - 0.43, adjusted P <0.01) after adjusting for confounders. CONCLUSIONS Despite presenting with a higher injury burden, TBI patients who received early antibiotics had a lower associated mortality rate compared to their counterparts. Future investigations are necessary to understand the underlying mechanisms that result in this potential survival benefit.
Collapse
Affiliation(s)
- Navpreet K Dhillon
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California
| | - Norair Adjamian
- Department of Surgery, Community Memorial Health System, Ventura, California
| | - Nicole M Fierro
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California
| | - Geena Conde
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California
| | - Galinos Barmparas
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eric J Ley
- Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
5
|
Association of Caspase 3 Activation and H2AX γ Phosphorylation in the Aging Brain: Studies on Untreated and Irradiated Mice. Biomedicines 2021; 9:biomedicines9091166. [PMID: 34572352 PMCID: PMC8468010 DOI: 10.3390/biomedicines9091166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphorylation of H2AX is a response to DNA damage, but γH2AX also associates with mitosis and/or apoptosis. We examined the effects of X-rays on DNA integrity to shed more light on the significance of H2AX phosphorylation and its relationship with activation of caspase 3 (CASP3), the main apoptotic effector. After administration of the S phase marker BrdU, brains were collected from untreated and irradiated (10 Gray) 24-month-old mice surviving 15 or 30 min after irradiation. After paraffin embedding, brain sections were single- or double-stained with antibodies against γH2AX, p53-binding protein 1 (53BP1) (which is recruited during the DNA damage response (DDR)), active CASP3 (cCASP3), 5-Bromo-2-deoxyuridine (BrdU), and phosphorylated histone H3 (pHH3) (which labels proliferating cells). After statistical analysis, we demonstrated that irradiation not only induced a robust DDR with the appearance of γH2AX and upregulation of 53BP1 but also that cells with damaged DNA attempted to synthesize new genetic material from the rise in BrdU immunostaining, with increased expression of cCASP3. Association of γH2AX, 53BP1, and cCASP3 was also evident in normal nonirradiated mice, where DNA synthesis appeared to be linked to disturbances in DNA repair mechanisms rather than true mitotic activity.
Collapse
|
6
|
Mitochondria and Antibiotics: For Good or for Evil? Biomolecules 2021; 11:biom11071050. [PMID: 34356674 PMCID: PMC8301944 DOI: 10.3390/biom11071050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.
Collapse
|
7
|
Li X, Wang W, Yan J, Zeng F. Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease. Front Neurosci 2021; 15:678154. [PMID: 34220434 PMCID: PMC8242205 DOI: 10.3389/fnins.2021.678154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianghong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Yadav N, Thakur AK, Shekhar N, Ayushi. Potential of Antibiotics for the Treatment and Management of Parkinson Disease: An Overview. Curr Drug Res Rev 2021; 13:166-171. [PMID: 33719951 DOI: 10.2174/2589977513666210315095133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Evidences have emerged over the last 2 decades to ascertain the proof of concepts viz. mitochondrial dysfunction, inflammation-derived oxidative damage and cytokine-induced toxicity that play a significant role in Parkinson's disease (PD). The available pharmacotherapies for PD are mainly symptomatic and typically indications of L-DOPA to restrain dopamine deficiency and their consequences. In the 21st century, the role of the antibiotics has emerged at the forefront of medicine in health and human illness. There are several experimental and pre-clinical evidences that supported the potential use of antibiotic as neuroprotective agent. The astonishing effects of antibiotics and their neuroprotective properties against neurodegeneration and neuro-inflammation would be phenomenal for the development of effective therapy against PD. Antibiotics are also testified as useful not only to prevent the formation of alpha-synuclein but also act on mitochondrial dysfunction and neuro-inflammation. Thus, the possible therapy with antibiotics in PD would impact both the pathways leading to neuronal cell death in substantia nigra and pars compacta in midbrain. Moreover, the antibiotic based pharmacotherapy will open a scientific research passageway to add more to the evidence based and rational use of antibiotics for the treatment and management of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Narayan Yadav
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ayushi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| |
Collapse
|
9
|
Keuters MH, Keksa-Goldsteine V, Dhungana H, Huuskonen MT, Pomeshchik Y, Savchenko E, Korhonen PK, Singh Y, Wojciechowski S, Lehtonen Š, Kanninen KM, Malm T, Sirviö J, Muona A, Koistinaho M, Goldsteins G, Koistinaho J. An arylthiazyne derivative is a potent inhibitor of lipid peroxidation and ferroptosis providing neuroprotection in vitro and in vivo. Sci Rep 2021; 11:3518. [PMID: 33568697 PMCID: PMC7876050 DOI: 10.1038/s41598-021-81741-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Lipid peroxidation-initiated ferroptosis is an iron-dependent mechanism of programmed cell death taking place in neurological diseases. Here we show that a condensed benzo[b]thiazine derivative small molecule with an arylthiazine backbone (ADA-409-052) inhibits tert-Butyl hydroperoxide (TBHP)-induced lipid peroxidation (LP) and protects against ferroptotic cell death triggered by glutathione (GSH) depletion or glutathione peroxidase 4 (GPx4) inhibition in neuronal cell lines. In addition, ADA-409-052 suppresses pro-inflammatory activation of BV2 microglia and protects N2a neuronal cells from cell death induced by pro-inflammatory RAW 264.7 macrophages. Moreover, ADA-409-052 efficiently reduces infarct volume, edema and expression of pro-inflammatory genes in a mouse model of thromboembolic stroke. Targeting ferroptosis may be a promising therapeutic strategy in neurological diseases involving severe neuronal death and neuroinflammation.
Collapse
Affiliation(s)
- Meike Hedwig Keuters
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Velta Keksa-Goldsteine
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hiramani Dhungana
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Mikko T Huuskonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yuriy Pomeshchik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Savchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paula K Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yajuvinder Singh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 63, 00014, Helsinki, Finland.
| |
Collapse
|
10
|
Azzam P, Mroueh M, Francis M, Daher AA, Zeidan YH. Radiation-induced neuropathies in head and neck cancer: prevention and treatment modalities. Ecancermedicalscience 2020; 14:1133. [PMID: 33281925 PMCID: PMC7685771 DOI: 10.3332/ecancer.2020.1133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth most common human malignancy with a global incidence of 650,000 cases per year. Radiotherapy (RT) is commonly used as an effective therapy to treat tumours as a definitive or adjuvant treatment. Despite the substantial advances in RT contouring and dosage delivery, patients suffer from various radiation-induced complications, among which are toxicities to the nervous tissues in the head and neck area. Radiation-mediated neuropathies manifest as a result of increased oxidative stress-mediated apoptosis, neuroinflammation and altered cellular function in the nervous tissues. Eventually, molecular damage results in the formation of fibrotic tissues leading to susceptible loss of function of numerous neuronal substructures. Neuropathic sequelae following irradiation in the head and neck area include sensorineural hearing loss, alterations in taste and smell functions along with brachial plexopathy, and cranial nerves palsies. Numerous management options are available to relieve radiation-associated neurotoxicities notwithstanding treatment alternatives that remain restricted with limited benefits. In the scope of this review, we discuss the use of variable management and therapeutic modalities to palliate common radiation-induced neuropathies in head and neck cancers.
Collapse
Affiliation(s)
- Patrick Azzam
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Manal Mroueh
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marina Francis
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Youssef H Zeidan
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
11
|
Pariset E, Malkani S, Cekanaviciute E, Costes SV. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol 2020; 97:S132-S150. [PMID: 32946305 DOI: 10.1080/09553002.2020.1820598] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Harmful effects of ionizing radiation on the Central Nervous System (CNS) are a concerning outcome in the field of cancer radiotherapy and form a major risk for deep space exploration. Both acute and chronic CNS irradiation induce a complex network of molecular and cellular alterations including DNA damage, oxidative stress, cell death and systemic inflammation, leading to changes in neuronal structure and synaptic plasticity with behavioral and cognitive consequences in animal models. Due to this complexity, countermeasure or therapeutic approaches to reduce the harmful effects of ionizing radiation include a wide range of protective and mitigative strategies, which merit a thorough comparative analysis. MATERIALS AND METHODS We reviewed current approaches for developing countermeasures to both targeted and non-targeted effects of ionizing radiation on the CNS from the molecular and cellular to the behavioral level. RESULTS We focus on countermeasures that aim to mitigate the four main detrimental actions of radiation on CNS: DNA damage, free radical formation and oxidative stress, cell death, and harmful systemic responses including tissue death and neuroinflammation. We propose a comprehensive review of CNS radiation countermeasures reported for the full range of irradiation types (photons and particles, low and high linear energy transfer) and doses (from a fraction of gray to several tens of gray, fractionated and unfractionated), with a particular interest for exposure conditions relevant to deep-space environment and radiotherapy. Our review reveals the importance of combined strategies that increase DNA protection and repair, reduce free radical formation and increase their elimination, limit inflammation and improve cell viability, limit tissue damage and increase repair and plasticity. CONCLUSIONS The majority of therapeutic approaches to protect the CNS from ionizing radiation have been limited to acute high dose and high dose rate gamma irradiation, and few are translatable from animal models to potential human application due to harmful side effects and lack of blood-brain barrier permeability that precludes peripheral administration. Therefore, a promising research direction would be to focus on practical applicability and effectiveness in a wider range of irradiation paradigms, from fractionated therapeutic to deep space radiation. In addition to discovering novel therapeutics, it would be worth maximizing the benefits and reducing side effects of those that already exist. Finally, we suggest that novel cellular and tissue models for developing and testing countermeasures in the context of other impairments might also be applied to the field of CNS responses to ionizing radiation.
Collapse
Affiliation(s)
- Eloise Pariset
- Universities Space Research Association, Columbia, MD, USA.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sherina Malkani
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.,Young Scientist Program, Blue Marble Space Institute of Science, Moffett Field, CA, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
12
|
Oliveira AC, Richards EM, Karas MM, Pepine CJ, Raizada MK. Would Repurposing Minocycline Alleviate Neurologic Manifestations of COVID-19? Front Neurosci 2020; 14:577780. [PMID: 33117121 PMCID: PMC7561411 DOI: 10.3389/fnins.2020.577780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aline C Oliveira
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marianthi M Karas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carl J Pepine
- Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Sabirzhanov B, Makarevich O, Barrett JP, Jackson IL, Glaser EP, Faden AI, Stoica BA. Irradiation-Induced Upregulation of miR-711 Inhibits DNA Repair and Promotes Neurodegeneration Pathways. Int J Mol Sci 2020; 21:ijms21155239. [PMID: 32718090 PMCID: PMC7432239 DOI: 10.3390/ijms21155239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- Correspondence: (B.S.); (B.A.S.)
| | - Oleg Makarevich
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - James P. Barrett
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Isabel L. Jackson
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF 700-B, Baltimore, MD 21201, USA;
| | - Ethan P. Glaser
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Alan I. Faden
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
| | - Bogdan A. Stoica
- Center for Shock Trauma Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-015, Baltimore, MD 21201, USA; (O.M.); (J.P.B.); (E.P.G.); (A.I.F.)
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Correspondence: (B.S.); (B.A.S.)
| |
Collapse
|
14
|
Down-Regulation of miR-23a-3p Mediates Irradiation-Induced Neuronal Apoptosis. Int J Mol Sci 2020; 21:ijms21103695. [PMID: 32456284 PMCID: PMC7279507 DOI: 10.3390/ijms21103695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Radiation-induced central nervous system toxicity is a significant risk factor for patients receiving cancer radiotherapy. Surprisingly, the mechanisms responsible for the DNA damage-triggered neuronal cell death following irradiation have yet to be deciphered. Using primary cortical neuronal cultures in vitro, we demonstrated that X-ray exposure induces the mitochondrial pathway of intrinsic apoptosis and that miR-23a-3p plays a significant role in the regulation of this process. Primary cortical neurons exposed to irradiation show the activation of DNA-damage response pathways, including the sequential phosphorylation of ATM kinase, histone H2AX, and p53. This is followed by the p53-dependent up-regulation of the pro-apoptotic Bcl2 family molecules, including the BH3-only molecules PUMA, Noxa, and Bim, leading to mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c, which activates caspase-dependent apoptosis. miR-23a-3p, a negative regulator of specific pro-apoptotic Bcl-2 family molecules, is rapidly decreased after neuronal irradiation. By increasing the degradation of PUMA and Noxa mRNAs in the RNA-induced silencing complex (RISC), the administration of the miR-23a-3p mimic inhibits the irradiation-induced up-regulation of Noxa and Puma. These changes result in an attenuation of apoptotic processes such as MOMP, the release of cytochrome c and caspases activation, and a reduction in neuronal cell death. The neuroprotective effects of miR-23a-3p administration may not only involve the direct inhibition of pro-apoptotic Bcl-2 molecules downstream of p53 but also include the attenuation of secondary DNA damage upstream of p53. Importantly, we demonstrated that brain irradiation in vivo results in the down-regulation of miR-23a-3p and the elevation of pro-apoptotic Bcl2-family molecules PUMA, Noxa, and Bax, not only broadly in the cortex and hippocampus, except for Bax, which was up-regulated only in the hippocampus but also selectively in isolated neuronal populations from the irradiated brain. Overall, our data suggest that miR-23a-3p down-regulation contributes to irradiation-induced intrinsic pathways of neuronal apoptosis. These regulated pathways of neurodegeneration may be the target of effective neuroprotective strategies using miR-23a-3p mimics to block their development and increase neuronal survival after irradiation.
Collapse
|
15
|
Obrenovich M, Jaworski H, Tadimalla T, Mistry A, Sykes L, Perry G, Bonomo RA. The Role of the Microbiota-Gut-Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms 2020; 8:E784. [PMID: 32456229 PMCID: PMC7285349 DOI: 10.3390/microorganisms8050784] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
: The human gut hosts a wide and diverse ecosystem of microorganisms termed the microbiota, which line the walls of the digestive tract and colon where they co-metabolize digestible and indigestible food to contribute a plethora of biochemical compounds with diverse biological functions. The influence gut microbes have on neurological processes is largely yet unexplored. However, recent data regarding the so-called leaky gut, leaky brain syndrome suggests a potential link between the gut microbiota, inflammation and host co-metabolism that may affect neuropathology both locally and distally from sites where microorganisms are found. The focus of this manuscript is to draw connection between the microbiota-gut-brain (MGB) axis, antibiotics and the use of "BUGS AS DRUGS" for neurodegenerative diseases, their treatment, diagnoses and management and to compare the effect of current and past pharmaceuticals and antibiotics for alternative mechanisms of action for brain and neuronal disorders, such as Alzheimer disease (AD), Amyotrophic Lateral Sclerosis (ALS), mood disorders, schizophrenia, autism spectrum disorders and others. It is a paradigm shift to suggest these diseases can be largely affected by unknown aspects of the microbiota. Therefore, a future exists for applying microbial, chemobiotic and chemotherapeutic approaches to enhance translational and personalized medical outcomes. Microbial modifying applications, such as CRISPR technology and recombinant DNA technology, among others, echo a theme in shifting paradigms, which involve the gut microbiota (GM) and mycobiota and will lead to potential gut-driven treatments for refractory neurologic diseases.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Hayden Jaworski
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Tara Tadimalla
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Adil Mistry
- Cleveland State University Departments of Chemistry and Engineering, Cleveland, OH 44115, USA;
| | - Lorraine Sykes
- Department of Laboratory Medicine, Metro Health Medical Center, Cleveland, OH 44109, USA;
| | - George Perry
- Department of Biology University of Texas San Antonio, San Antonio, TX 78249, USA;
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA; (H.J.); (T.T.); (R.A.B.)
- Departments of Chemistry, Biochemistry, Pathology and Molecular Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Yuan T, Manohar K, Latorre R, Orock A, Greenwood-Van Meerveld B. Inhibition of Microglial Activation in the Amygdala Reverses Stress-Induced Abdominal Pain in the Male Rat. Cell Mol Gastroenterol Hepatol 2020; 10:527-543. [PMID: 32408032 PMCID: PMC7394753 DOI: 10.1016/j.jcmgh.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Psychological stress is a trigger for the development of irritable bowel syndrome and associated symptoms including abdominal pain. Although irritable bowel syndrome patients show increased activation in the limbic brain, including the amygdala, the underlying molecular and cellular mechanisms regulating visceral nociception in the central nervous system are incompletely understood. In a rodent model of chronic stress, we explored the role of microglia in the central nucleus of the amygdala (CeA) in controlling visceral sensitivity. Microglia are activated by environmental challenges such as stress, and are able to modify neuronal activity via synaptic remodeling and inflammatory cytokine release. Inflammatory gene expression and microglial activity are regulated negatively by nuclear glucocorticoid receptors (GR), which are suppressed by the stress-activated pain mediator p38 mitogen-activated protein kinases (MAPK). METHODS Fisher-344 male rats were exposed to water avoidance stress (WAS) for 1 hour per day for 7 days. Microglia morphology and the expression of phospho-p38 MAPK and GR were analyzed via immunofluorescence. Microglia-mediated synaptic remodeling was investigated by quantifying the number of postsynaptic density protein 95-positive puncta. Cytokine expression levels in the CeA were assessed via quantitative polymerase chain reaction and a Luminex assay (Bio-Rad, Hercules, CA). Stereotaxic infusion into the CeA of minocycline to inhibit, or fractalkine to activate, microglia was followed by colonic sensitivity measurement via a visceromotor behavioral response to isobaric graded pressures of tonic colorectal distension. RESULTS WAS induced microglial deramification in the CeA. Moreover, WAS induced a 3-fold increase in the expression of phospho-p38 and decreased the ratio of nuclear GR in the microglia. The number of microglia-engulfed postsynaptic density protein 95-positive puncta in the CeA was increased 3-fold by WAS, while cytokine levels were unchanged. WAS-induced changes in microglial morphology, microglia-mediated synaptic engulfment in the CeA, and visceral hypersensitivity were reversed by minocycline whereas in stress-naïve rats, fractalkine induced microglial deramification and visceral hypersensitivity. CONCLUSIONS Our data show that chronic stress induces visceral hypersensitivity in male rats and is associated with microglial p38 MAPK activation, GR dysfunction, and neuronal remodeling in the CeA.
Collapse
Affiliation(s)
- Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Krishna Manohar
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rocco Latorre
- Department of Basic Science and Craniofacial Biology, New York University, New York City, New York
| | - Albert Orock
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,Oklahoma City VA Health Care System, Oklahoma City, Oklahoma,Correspondence Address correspondence to: Beverley Greenwood-Van Meerveld, PhD, O’Donoghue Building, Room 332, 1122 NE 13th Street, Oklahoma City, Oklahoma 73117.
| |
Collapse
|
17
|
Rauer S, Kastenbauer S, Hofmann H, Fingerle V, Huppertz HI, Hunfeld KP, Krause A, Ruf B, Dersch R. Guidelines for diagnosis and treatment in neurology - Lyme neuroborreliosis. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2020; 18:Doc03. [PMID: 32341686 PMCID: PMC7174852 DOI: 10.3205/000279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Indexed: 12/12/2022]
Abstract
Lyme borreliosis is the most common tick-borne infectious disease in Europe. A neurological manifestation occurs in 3–15% of infections and can manifest as polyradiculitis, meningitis and (rarely) encephalomyelitis. This S3 guideline is directed at physicians in private practices and clinics who treat Lyme neuroborreliosis in children and adults. Twenty AWMF member societies, the Robert Koch Institute, the German Borreliosis Society and three patient organisations participated in its development. A systematic review and assessment of the literature was conducted by the German Cochrane Centre, Freiburg (Cochrane Germany). The main objectives of this guideline are to define the disease and to give recommendations for the confirmation of a clinically suspected diagnosis by laboratory testing, antibiotic therapy, differential diagnostic testing and prevention.
Collapse
Affiliation(s)
| | | | | | - Volker Fingerle
- German Society for Hygiene and Microbiology (DGHM), Münster, Germany
| | - Hans-Iko Huppertz
- German Society of Paediatrics and Adolescent Medicine (DGKJ), Berlin, Germany.,German Society of Paediatric Infectology (DGPI), Berlin, Germany
| | - Klaus-Peter Hunfeld
- The German United Society of Clinical Chemistry and Laboratory Medicine (DGKL), Bonn, Germany.,INSTAND e.V., Düsseldorf, Germany
| | | | - Bernhard Ruf
- German Society of Infectious Diseases (DGI), Berlin, Germany
| | - Rick Dersch
- German Society of Neurology (DGN), Berlin, Germany.,Cochrane Germany, Faculty of Medicine, University of Freiburg, Germany
| | | |
Collapse
|
18
|
Deshpande D, Pasipanodya JG, Srivastava S, Martin KR, Athale S, van Zyl J, Antiabong J, Koeuth T, Lee PS, Dheda K, Gumbo T. Minocycline Immunomodulates via Sonic Hedgehog Signaling and Apoptosis and Has Direct Potency Against Drug-Resistant Tuberculosis. J Infect Dis 2020; 219:975-985. [PMID: 30597040 DOI: 10.1093/infdis/jiy587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant tuberculosis represents a global emergency, requiring new drugs. We found that minocycline was highly potent in laboratory strains of Mycobacterium tuberculosis and that 30 drug-susceptible and multidrug/extensively drug-resistant clinical strains were susceptible to clinically achievable concentrations. In the hollow fiber system model, lung concentration-time profiles of 7 mg/kg/day human-equivalent minocycline dose achieved bacterial kill rates equivalent to those of first-line antituberculosis agents. Minocycline killed extracellular bacilli directly. Minocycline also killed intracellular bacilli indirectly, via concentration-dependent granzyme A-driven apoptosis. Moreover, minocycline demonstrated dose-dependent antiinflammatory activity and downregulation of extracellular matrix-based remodeling pathways and, thus, could protect patients from tuberculosis immunopathology. In RNA sequencing of repetitive samples from the hollow fiber system and in independent protein abundance experiments, minocycline demonstrated dose-dependent inhibition of sonic hedgehog-patched-gli signaling. These findings have implications for improved lung remodeling and for dual immunomodulation and direct microbial kill-based treatment shortening regimens for drug-susceptible and drug-resistant latent and active M. tuberculosis infection.
Collapse
Affiliation(s)
- Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Jotam G Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Katherine R Martin
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Shruti Athale
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Johanna van Zyl
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - John Antiabong
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Thearith Koeuth
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Pooi S Lee
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas
| | - Keertan Dheda
- Division of Pulmonology, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, South Africa
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Dallas, Texas.,Division of Pulmonology, Centre for Lung Infection and Immunity, University of Cape Town Lung Institute, South Africa
| |
Collapse
|
19
|
Cash H, Dean D. The effects of low-dose radiation on articular cartilage: a review. J Biol Eng 2019; 13:1. [PMID: 30627214 PMCID: PMC6322226 DOI: 10.1186/s13036-018-0125-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a specialized connective tissue, predominately composed of water, collagen, and proteoglycans, that provides a smooth, lubricated surface for articulation in joints. It has long been considered radioinsensitive and therefore unaffected by exposure to radiation in medical settings. Due to the increased amount of yearly radiation exposure through radiotherapy and ionizing radiation diagnostic procedures, there has been a renewed interest in how radioinsensitive articular cartilage actually is. Despite this renewed interest, the majority of these studies do not focus on articular cartilage as their primary goal, but rather, have observed the effects of total body irradiation. Since many of these studies do not report the type of irradiation used, the rate of exposure, or use consistent models, there are inconsistencies in these studies, which make comparing and translating the results difficult. Previous literature reviews have found less than 60 studies discussing the effects of radiation on articular cartilage and its components both in vitro and in vivo. However, despite the inconsistencies, these reviews and studies have drawn the same overall conclusion that this research needs to be continued and broadened in order to make a consistent conclusion on the radioinsensitivity of articular cartilage. Therefore, the goal of this review is to categorize and summarize current findings in literature discussing the effects of radiation on articular cartilage.
Collapse
Affiliation(s)
- Hannah Cash
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634 USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634 USA
| |
Collapse
|
20
|
Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. ALZHEIMERS RESEARCH & THERAPY 2018; 10:59. [PMID: 29935546 PMCID: PMC6015462 DOI: 10.1186/s13195-018-0394-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Background Alzheimer’s disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. Methods In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. Results We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Conclusions Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD. Electronic supplementary material The online version of this article (10.1186/s13195-018-0394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D M Vargas
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - E R Zimmer
- Pharmacology Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.,National Science Technology Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq), Porto Alegre, Brazil
| |
Collapse
|
21
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
22
|
Kalm M, Andreasson U, Björk-Eriksson T, Zetterberg H, Pekny M, Blennow K, Pekna M, Blomgren K. C3 deficiency ameliorates the negative effects of irradiation of the young brain on hippocampal development and learning. Oncotarget 2017; 7:19382-94. [PMID: 27029069 PMCID: PMC4991390 DOI: 10.18632/oncotarget.8400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy in the treatment of pediatric brain tumors is often associated with debilitating late-appearing adverse effects, such as intellectual impairment. Areas in the brain harboring stem cells are particularly sensitive to irradiation (IR) and loss of these cells may contribute to cognitive deficits. It has been demonstrated that IR-induced inflammation negatively affects neural progenitor differentiation. In this study, we used mice lacking the third complement component (C3−/−) to investigate the role of complement in a mouse model of IR-induced injury to the granule cell layer (GCL) of the hippocampus. C3−/− and wild type (WT) mice received a single, moderate dose of 8 Gy to the brain on postnatal day 10. The C3−/− mice displayed 55 % more microglia (Iba-1+) and a trend towards increase in proliferating cells in the GCL compared to WT mice 7 days after IR. Importantly, months after IR C3−/− mice made fewer errors than WT mice in a reversal learning test indicating better learning capacity in C3−/− mice after IR. Notably, months after IR C3−/− and WT mice had similar GCL volumes, survival of newborn cells (BrdU), microglia (Iba-1) and astrocyte (S100β) numbers in the GCL. In summary, our data show that the complement system contributes to IR-induced loss of proliferating cells and maladaptive inflammatory responses in the acute phase after IR, leading to impaired learning capacity in adulthood. Targeting the complement system is hence promising for future strategies to reduce the long-term adverse consequences of IR in the young brain.
Collapse
Affiliation(s)
- Marie Kalm
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Retzlaff CL, Kussrow A, Schorkopf T, Saetear P, Bornhop DJ, Hardaway JA, Sturgeon SM, Wright J, Blakely RD. Metallo-β-lactamase Domain-Containing Protein 1 (MBLAC1) Is a Specific, High-Affinity Target for the Glutamate Transporter Inducer Ceftriaxone. ACS Chem Neurosci 2017; 8:2132-2138. [PMID: 28783953 DOI: 10.1021/acschemneuro.7b00232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ceftriaxone, a β-lactam antibiotic, has been reported to act independently of its antimicrobial actions to normalize perturbed central nervous system glutamate levels, principally by elevating expression of glial glutamate transporters. Identification of a specific, high-affinity target for ceftriaxone could significantly impact therapeutic development for multiple brain disorders, ranging from neurodegenerative disorders to addiction. Recently, we identified a glial-expressed Caenorhabditis elegans gene, swip-10, that encodes a metallo-β-lactamase domain-containing protein, and limits glutamate-dependent changes in dopamine neuron excitability. Bioinformatic analyses identified MBLAC1 as the likely mammalian orthologue of swip-10. Using cyanogen bromide immobilized ceftriaxone for affinity capture experiments and backscattering interferometry to monitor MBLAC1 binding of unmodified ceftriaxone, we obtained evidence for specific, high affinity (KD = 2.2 μM) binding of ceftriaxone to MBLAC1. We discuss our findings with respect to MBLAC1 as a potentially exclusive, high-affinity binding partner of ceftriaxone in the CNS, and the path forward in the development of novel, MBLAC1-based therapeutics.
Collapse
Affiliation(s)
- Cassandra L. Retzlaff
- Department
of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | - Randy D. Blakely
- Department
of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
24
|
Siengdee P, Pradit W, Euppayo T, Chomdej S, Nganvongpanit K. Comparison of the effects of cefazolin and ceftriaxone on canine chondrocyte culture. J Vet Pharmacol Ther 2017; 40:604-617. [PMID: 28317140 DOI: 10.1111/jvp.12401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Abstract
Cephalosporins (CEFs) are antibiotics frequently used to treat bone infections and septic arthritis. The effects of CEFs on chondrocytes have not been studied until now. Cefazolin (cef1) and ceftriaxone (cef3), first-and third-generation CEFs, were selected to investigate their direct effects on normal and osteoarthritic (OA) primary canine chondrocytes, which were either nonstimulated or stimulated with the pro-inflammatory cytokine IL-1β. In our results, treatment with CEFs increased the negative effects on both conditioned normal and OA chondrocytes, especially when applied to IL-1β-stimulated cells (inflammatory stimulus). CEFs significantly decreased cell viability and induced apoptotic cell death in both normal and OA chondrocytes; moreover, treatment with cef1 caused necrotic cell death in OA chondrocytes. Cef3 treatment could increase s-GAG synthesis in normal cells preincubated with IL-1β, while cef1 had no significant effect. The expression of TNF was clearly downregulated after cef3 treatments, whereas it was upregulated after cef1 treatments. However, cef3 induced stronger downregulation of TIMP1 and the extracellular matrix component genes COL2A1 and ACAN. In conclusion, these results suggest both the cytotoxic effects of CEFs and their adverse effects on chondrogenic marker genes at the transcriptional level, which provide additional insight into the clinical application of cef1 and cef3.
Collapse
Affiliation(s)
- P Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - W Pradit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - T Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - S Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - K Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
25
|
Strahan JA, Walker WH, Montgomery TR, Forger NG. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain. Dev Neurobiol 2016; 77:753-766. [PMID: 27706925 DOI: 10.1002/dneu.22457] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017.
Collapse
Affiliation(s)
- J Alex Strahan
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - William H Walker
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Taylor R Montgomery
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| | - Nancy G Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia, 30302
| |
Collapse
|
26
|
Tetracycline hydrochloride: A potential clinical drug for radioprotection. Chem Biol Interact 2016; 245:90-9. [DOI: 10.1016/j.cbi.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 12/23/2022]
|
27
|
Arezoomandan R, Haghparast A. Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior. Can J Physiol Pharmacol 2015; 94:257-64. [PMID: 26745749 DOI: 10.1139/cjpp-2015-0209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Relapse to drug use is one of the most difficult clinical problems in treating addiction. Glial activation has been linked with the drug abuse, and the glia modulators such as minocycline can modulate the drug abuse effects. The aim of the present study was to determine whether minocycline could attenuate the maintenance and reinstatement of morphine. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) for 3 days. Following the acquisition of the CPP, the rats were given daily bilateral intra-NAc injections of either minocycline (1, 5, and 10 μg/0.5 μL) or saline (0.5 μL). The animals were tested for conditioning score 60 min after each injection. To induce the reinstatement, a priming dose of morphine (1 mg/kg) was injected 1 day after the final extinction day. The morphine-induced CPP lasted for 7 days after cessation of morphine treatment. Our data revealed that a priming dose of morphine could reinstate the extinguished morphine-induced CPP. Daily intra-accumbal injection of minocycline during the extinction period blocked the maintenance of morphine CPP and also attenuated the priming-induced reinstatement. Our findings indicated that minocycline could facilitate the extinction and attenuate the reinstatement of morphine. These results provided new evidence that minocycline might be considered as a promising therapeutic agent for the treatment of several symptoms associated with morphine abuse.
Collapse
Affiliation(s)
- Reza Arezoomandan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Abstract
Lyme disease, caused by the Borrelia burgdorferi bacterium, is the most common vector-borne disease in the northern hemisphere. The clinical presentation varies with disease stage, and neurological manifestations (often referred to as Lyme neuroborreliosis) are reported in up to 12% of patients with Lyme disease. Most aspects of the epidemiology, clinical manifestation and treatment of Lyme neuroborreliosis are well known and accepted; only the management of so-called chronic Lyme disease is surrounded by considerable controversy. This term is used for disparate patient groups, including those who have untreated late-stage infection (for example, late neuroborreliosis), those with subjective symptoms that persist after treatment (termed 'post-treatment Lyme disease syndrome' [PTLDS]), and those with unexplained subjective complaints that may or may not be accompanied by positive test results for B. burgdorferi infection in serum (here called 'chronic Lyme disease'). The incidence of PTLDS is still a matter of debate, and its pathogenesis is unclear, but there is evidence that these patients do not have ongoing B. burgdorferi infection and, thus, do not benefit from additional antibiotic therapy. Chronic Lyme disease lacks an accepted clinical definition, and most patients who receive this diagnosis have other illnesses. Thus, a careful diagnostic work-up is needed to ensure proper treatment.
Collapse
Affiliation(s)
- Uwe Koedel
- Clinic Grosshadern of the Ludwig-Maximilians University of Munich, Department of Neurology, Marchioninistrasse 15, D-81377 Munich, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority &German National Reference Centre for Borrelia, Veterinärstrasse 2, 85764 Oberschleissheim, Germany
| | - Hans-Walter Pfister
- Clinic Grosshadern of the Ludwig-Maximilians University of Munich, Department of Neurology, Marchioninistrasse 15, D-81377 Munich, Germany
| |
Collapse
|
29
|
Uckun OM, Alagoz F, Secer M, Karakoyun O, Ocakcioglu A, Yildirim AE, Yımaz F, Sahinoglu M, Divanlioglu D, Dalgic A, Daglioglu E, Belen AD. Neuroprotective effects of tetracyclines on blunt head trauma: An experimental study on rats. J Neurosci Rural Pract 2015; 6:27-32. [PMID: 25552848 PMCID: PMC4244784 DOI: 10.4103/0976-3147.143186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Prevention of primary damage caused by head trauma may be avoided with protective measures and techniques which is a public health concern. Experimental and clinical studies about treatment of head trauma were all centered to prevent secondary damage caused by physiopathological changes following primary injury. Neuroprotective features of tetracyclines were the focus of several experimental studies in the last decade. In the present study we aimed to investigate the neuroprotective effects of tetracycline in an experimental model of blunt brain injury in rats. Materials and Methods: 32 male Sprague-Dawley rats were divided into four experimental groups (n = 8). Head trauma was not performed in control group (group 1, craniectomy only). In the second group, head trauma and craniectomy were performed. Intraperitoneal saline was used in addition to trauma and craniectomy for treatment in group 3 whereas intraperitoneal tetracycline and saline were used for treatment in group 4. Results: When histological examinations performed by transmission electron microscopy were evaluated, injury at ultrastructural level was demonstrated to be less pronounced in tetracycline group with decreased lipid peroxidation levels. Conclusion: In accordance with these findings, we conclude that systemic tetracycline administration is effective in reduction of secondary brain damage and brain edema and thus it may be considered as a therapeutic option.
Collapse
Affiliation(s)
| | - Fatih Alagoz
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Mehmet Secer
- Sahit Kamil State Hospital, Neurosurgery Clinics, Gaziantep, Turkey
| | - Oguz Karakoyun
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Ayhan Ocakcioglu
- Afsin State Hospital, Neurosurgery Clinics, Kahramanmaras, Turkey
| | - Ali Erdem Yildirim
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Fevzi Yımaz
- Ankara Numune Education and Research Hospital, Emergency Clinics, Ankara, Turkey
| | - Mert Sahinoglu
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Denizhan Divanlioglu
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Ali Dalgic
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Ergun Daglioglu
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| | - Ahmet Deniz Belen
- Ankara Numune Education and Research Hospital, Neurosurgery Clinics, Ankara, Turkey
| |
Collapse
|
30
|
Golestaneh L, Lindsey K, Malhotra P, Kargoli F, Farkas E, Barner H, Qazi R, Schmidt A, Rauchman M, Al-Aly Z, Johnson R, Martin K, Dagher P, Friedman A, El-Achkar TM. Acute kidney injury after cardiac surgery: is minocycline protective? J Nephrol 2014; 28:193-9. [PMID: 25348221 DOI: 10.1007/s40620-014-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Acute kidney injury (AKI) after cardiac bypass surgery (CABG) is common and carries a significant association with morbidity and mortality. Since minocycline therapy attenuates kidney injury in animal models of AKI, we tested its effects in patients undergoing CABG. DESIGN, SETTING, PARTICIPANTS AND MEASUREMENTS This is a randomized, double-blinded, placebo-controlled, multi-center study. We screened high risk patients who were scheduled to undergo CABG in two medical centers between Jan 2008 and June 2011. 40 patients were randomized and 19 patients in each group completed the study. Minocycline prophylaxis was given twice daily, at least for four doses prior to CABG. Primary outcome was defined as AKI [0.3 mg/dl increase in creatinine (Cr)] within 5 days after surgery. Daily serum Cr for 5 days, various clinical and hemodynamic measures and length of stay were recorded. RESULTS The two groups had similar baseline and intra-operative characteristics. The primary outcome occurred in 52.6% of patients in the minocycline group as compared to 36.8% of patients in the placebo group (p = 0.51). Peak Cr was 1.6 ± 0.7 vs. 1.5 ± 0.7 mg/dl (p = 0.45) in minocycline and placebo groups, respectively. Death at 30 days occurred in 0 vs. 10.5% in the minocycline and placebo groups, respectively (p = 0.48). There were no differences in post-operative length of stay, and cardiovascular events between the two groups. There was a trend towards lower diastolic pulmonary artery pressure [16.8 ± 4.7 vs. 20.7 ± 6.6 mmHg (p = 0.059)] and central venous pressure [11.8 ± 4.3 vs. 14.6 ± 5.6 mmHg (p = 0.13)] in the minocycline group compared to placebo on the first day after surgery. CONCLUSIONS Minocycline did not protect against AKI post-CABG.
Collapse
Affiliation(s)
- Ladan Golestaneh
- Montefiore Medical Center, Albert Einstein Medical Center, 3411 Wayne Ave, Suite 5H, Bronx, NY, 10467, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, Hayden D, Shui A, Brooks B, Conwit R, Felsenstein D, Greenblatt DJ, Keroack M, Kissel JT, Miller R, Rosenfeld J, Rothstein JD, Simpson E, Tolkoff-Rubin N, Zinman L, Shefner JM. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014; 13:1083-1091. [PMID: 25297012 DOI: 10.1016/s1474-4422(14)70222-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Glutamate excitotoxicity might contribute to the pathophysiology of amyotrophic lateral sclerosis. In animal models, decreased excitatory aminoacid transporter 2 (EAAT2) overexpression delays disease onset and prolongs survival, and ceftriaxone increases EAAT2 activity. We aimed to assess the safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis in a combined phase 1, 2, and 3 clinical trial. METHODS This three-stage randomised, double-blind, placebo-controlled study was done at 59 clinical sites in the USA and Canada between Sept 4, 2006, and July 30, 2012. Eligible adult patients had amyotrophic lateral sclerosis, a vital capacity of more than 60% of that predicted for age and height, and symptom duration of less than 3 years. In stages 1 (pharmacokinetics) and 2 (safety), participants were randomly allocated (2:1) to ceftriaxone (2 g or 4 g per day) or placebo. In stage 3 (efficacy), participants assigned to ceftriaxone in stage 2 received 4 g ceftriaxone, participants assigned to placebo in stage 2 received placebo, and new participants were randomly assigned (2:1) to 4 g ceftriaxone or placebo. Participants, family members, and site staff were masked to treatment assignment. Randomisation was done by a computerised randomisation sequence with permuted blocks of 3. Participants received 2 g ceftriaxone or placebo twice daily through a central venous catheter administered at home by a trained caregiver. To minimise biliary side-effects, participants assigned to ceftriaxone also received 300 mg ursodeoxycholic acid twice daily and those assigned to placebo received matched placebo capsules. The coprimary efficacy outcomes were survival and functional decline, measured as the slope of Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00349622. FINDINGS Stage 3 included 66 participants from stages 1 and 2 and 448 new participants. In total, 340 participants were randomly allocated to ceftriaxone and 173 to placebo. During stages 1 and 2, mean ALSFRS-R declined more slowly in participants who received 4 g ceftriaxone than in those on placebo (difference 0·51 units per month, 95% CI 0·02 to 1·00; p=0·0416), but in stage 3 functional decline between the treatment groups did not differ (0·09, -0·06 to 0·24; p=0·2370). No significant differences in survival between the groups were recorded in stage 3 (HR 0·90, 95% CI 0·71 to 1·15; p=0·4146). Gastrointestinal adverse events and hepatobiliary adverse events were more common in the ceftriaxone group than in the placebo group (gastrointestinal, 245 of 340 [72%] ceftriaxone vs 97 of 173 [56%] placebo, p=0·0004; hepatobiliary, 211 [62%] vs 19 [11%], p<0·0001). Significantly more participants who received ceftriaxone had serious hepatobiliary serious adverse events (41 participants [12%]) than did those who received placebo (0 participants). INTERPRETATION Despite promising stage 2 data, stage 3 of this trial of ceftriaxone in amyotrophic lateral sclerosis did not show clinical efficacy. The adaptive design allowed for seamless transition from one phase to another, and central venous catheter use in the home setting was shown to be feasible. FUNDING National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
| | - Sarah Titus
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Hong Yu
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Amy Shui
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Robin Conwit
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | | | | | | | - Robert Miller
- California Pacific Medical Center, San Francisco, CA, USA
| | | | | | | | | | - Lorne Zinman
- Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Jeremy M Shefner
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | | |
Collapse
|
32
|
Ruzza P, Siligardi G, Hussain R, Marchiani A, Islami M, Bubacco L, Delogu G, Fabbri D, Dettori MA, Sechi M, Pala N, Spissu Y, Migheli R, Serra PA, Sechi G. Ceftriaxone blocks the polymerization of α-synuclein and exerts neuroprotective effects in vitro. ACS Chem Neurosci 2014; 5:30-8. [PMID: 24099687 DOI: 10.1021/cn400149k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The β-lactam antibiotic ceftriaxone was suggested as a therapeutic agent in several neurodegenerative disorders, either for its ability to counteract glutamate-mediated toxicity, as in cerebral ischemia, or for its ability to enhance the degradation of misfolded proteins, as in Alexander's disease. Recently, the efficacy of ceftriaxone in neuroprotection of dopaminergic neurons in a rat model of Parkinson's disease was documented. However, which characteristics of ceftriaxone mediate its therapeutic effects remains unclear. Since, at the molecular level, neuronal α-synuclein inclusions and pathological α-synuclein transmission play a leading role in initiation of Parkinson-like neurodegeneration, we thought of investigating, by circular dichroism spectroscopy, the capability of ceftriaxone to interact with α-synuclein. We found that ceftriaxone binds with good affinity to α-synuclein and blocks its in vitro polymerization. Considering this finding, we also documented that ceftriaxone exerts neuroprotective action in an in vitro model of Parkinson's disease. Our data, in addition to the findings on neuroprotective activity of ceftriaxone on Parkinson-like neurodegeneration in vivo, indicates ceftriaxone as a potential agent in treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Anna Marchiani
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Mehmet Islami
- Institute of Biomolecular Chemistry of CNR, Padua Unit, Padua 35131, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua 35121, Italy
| | - Giovanna Delogu
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Davide Fabbri
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Maria A. Dettori
- Institute of Biomolecular
Chemistry of CNR, Sassari Unit, Sassari 07100, Italy
| | - Mario Sechi
- Department
of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Nicolino Pala
- Department
of Chemistry and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Ylenia Spissu
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - Rossana Migheli
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - Pier A. Serra
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| | - GianPietro Sechi
- Department of Clinical
and Experimental Medicine, Medical School, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
33
|
Tosyali PMC, Patel S, Varas DBA, Alcera E, Coffey DBJ. Ceftriaxone and infection in first episode adolescent psychosis. J Child Adolesc Psychopharmacol 2013; 23:693-6. [PMID: 24350815 DOI: 10.1089/cap.2013.23102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Presenters Mehmet C Tosyali
- 1 Adolescent Inpatient Services, Department of Child Adolescent Psychiatry, Bellevue Hospital Center , New York, New York
| | | | | | | | | |
Collapse
|
34
|
Berry JD, Shefner JM, Conwit R, Schoenfeld D, Keroack M, Felsenstein D, Krivickas L, David WS, Vriesendorp F, Pestronk A, Caress JB, Katz J, Simpson E, Rosenfeld J, Pascuzzi R, Glass J, Rezania K, Rothstein JD, Greenblatt DJ, Cudkowicz ME. Design and initial results of a multi-phase randomized trial of ceftriaxone in amyotrophic lateral sclerosis. PLoS One 2013; 8:e61177. [PMID: 23613806 PMCID: PMC3629222 DOI: 10.1371/journal.pone.0061177] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/27/2013] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Ceftriaxone increases expression of the astrocytic glutamate transporter, EAAT2, which might protect from glutamate-mediated excitotoxicity. A trial using a novel three stage nonstop design, incorporating Phases I-III, tested ceftriaxone in ALS. Stage 1 determined the cerebrospinal fluid pharmacokinetics of ceftriaxone in subjects with ALS. Stage 2 evaluated safety and tolerability for 20-weeks. Analysis of the pharmacokinetics, tolerability, and safety was used to determine the ceftriaxone dosage for Stage 3 efficacy testing. METHODS In Stage 1, 66 subjects at ten clinical sites were enrolled and randomized equally into three study groups receiving intravenous placebo, ceftriaxone 2 grams daily or ceftriaxone 4 grams daily divided BID. Participants provided serum and cerebrospinal fluid for pharmacokinetic analysis on study day 7. Participants continued their assigned treatment in Stage 2. The Data and Safety Monitoring Board (DSMB) reviewed the data after the last participants completed 20 weeks on study drug. RESULTS Stage 1 analysis revealed linear pharmacokinetics, and CSF trough levels for both dosage levels exceeding the pre-specified target trough level of 1 µM (0.55 µg/mL). Tolerability (Stages 1 and 2) results showed that ceftriaxone at dosages up to 4 grams/day was well tolerated at 20 weeks. Biliary adverse events were more common with ceftriaxone but not dose-dependent and improved with ursodeoxycholic (ursodiol) therapy. CONCLUSIONS The goals of Stages 1 and 2 of the ceftriaxone trial were successfully achieved. Based on the pre-specified decision rules, the DSMB recommended the use of ceftriaxone 4 g/d (divided BID) for Stage 3, which recently closed. TRIAL REGISTRATION ClinicalTrials.gov NCT00349622.
Collapse
Affiliation(s)
- James D. Berry
- Neurology Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy M. Shefner
- Department of NeurologyState University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Robin Conwit
- National Institute of Neurologic Disorders and Stroke, Bethesda, Maryland, United States of America
| | - David Schoenfeld
- Department of Biostatistics, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Myles Keroack
- Department of Gastroenterology, Marshfield Clinic, Eau Claire, Wisconsin, United States of America
| | - Donna Felsenstein
- Infectious Disease Unit/Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Krivickas
- Neurology Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William S. David
- Neurology Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francine Vriesendorp
- Department of NeurologyState University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Alan Pestronk
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - James B. Caress
- Department of Neurology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jonathan Katz
- Department of Neurology, California Pacific Medical Center, San Francisco, California, United States of America
| | - Ericka Simpson
- Department of Neurology, Methodist Neurological Institute, Houston, Texas, United States of America
| | - Jeffrey Rosenfeld
- Department of Neurology, University of California San Francisco Fresno, Neuroscience Institute, Fresno, California, United States of America
| | - Robert Pascuzzi
- Department of Neurology, Indiana University, Indianapolis, Indiana, United States of America
| | - Jonathan Glass
- Department of Neurology, Emory University, Atlanta, Georgia, United States of America
| | - Kourosh Rezania
- Department of Neurology, University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David J. Greenblatt
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Merit E. Cudkowicz
- Neurology Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
35
|
Choudry RB, Cudkowicz ME. Clinical Trials in Amyotrophic Lateral Sclerosis: The Tenuous Past and the Promising Future. J Clin Pharmacol 2013; 45:1334-44. [PMID: 16291708 DOI: 10.1177/0091270005282631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The past decade of research in amyotrophic lateral sclerosis has contributed to a greater understanding of the disease process, the development of relevant animal models, and the identification of several therapeutic approaches that may delay disease progression. Completed and ongoing clinical trials and the process of selecting drugs for clinical trials are presented.
Collapse
Affiliation(s)
- Rabia B Choudry
- Neurology Clinical Trials Unit, Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, GRB 1256, Boston, MA 02114, USA.
| | | |
Collapse
|
36
|
Yagnik RM, Benzeroual KE. Tigecycline prevents LPS-induced release of pro-inflammatory and apoptotic mediators in neuronal cells. Toxicol In Vitro 2013. [DOI: 10.1016/j.tiv.2012.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Early activation of microglia triggers long-lasting impairment of adult neurogenesis in the olfactory bulb. J Neurosci 2012; 32:3652-64. [PMID: 22423088 DOI: 10.1523/jneurosci.6394-11.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglia, the innate immune cells of the brain, engulf and eliminate cellular debris during brain injury and disease. Recent observations have extended their roles to the healthy brain, but the functional impact of activated microglia on neural plasticity has so far been elusive. To explore this issue, we investigated the role of microglia in the function of the adult olfactory bulb network in which both sensory afferents and local microcircuits are continuously molded by the arrival of adult-born neurons. We show here that the adult olfactory bulb hosts a large population of resident microglial cells. Deafferentation of the olfactory bulb resulted in a transient activation of microglia and a concomitant reduction of adult olfactory bulb neurogenesis. One day after sensory deafferentation, microglial cells proliferate in the olfactory bulb, and their numbers peaked at day 3, and reversed at day 7 after lesion. Similar lesions performed on immunodeficient mice demonstrate that the both innate and adaptive lymphocyte responses are dispensable for the lesion-induced microglial proliferation and activation. In contrast, when mice were treated with an antiinflammatory drug to prevent microglial activation, olfactory deafferentation did not reduce adult neurogenesis, showing that activated microglial cells per se, and not the lack of sensory experience, relates to the survival of adult-born neurons. We conclude that the status of the resident microglia in the olfactory bulb is an important factor directly regulating the survival of immature adult-born neurons.
Collapse
|
38
|
Minocycline protects cardiac myocytes against simulated ischemia–reperfusion injury by inhibiting poly(ADP-ribose) polymerase-1. J Cardiovasc Pharmacol 2012; 56:659-68. [PMID: 20881608 DOI: 10.1097/fjc.0b013e3181faeaf0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is an increase in reactive oxygen and nitrogen species in cardiomyocytes during myocardial ischemia/reperfusion injury. This leads to oxidative DNA damage and activation of nuclear repair enzymes such as poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 activation promotes DNA repair under normal conditions. However, excessive activation of PARP-1 leads to cell death. We report that PARP-1 enzymatic activity is directly inhibited by minocycline, and we propose that one mechanism of minocycline cardioprotection is the result of PARP-1 inhibition. Using cultured adult rat cardiac myocytes, we evaluated the mechanism of minocycline protection in which PARP-1 activation was induced by simulated ischemia/reperfusion injury using oxygen–glucose deprivation.We found an increase in reactive oxygen species production, PARP-1 activation, and PARP-1-mediated cell death after simulated ischemia/reperfusion. Cell death was significantly reduced by the PARP inhibitors 3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (10 μM) and PJ-34 (500 nM) or by minocycline (500 nM). Cellular NAD(+) depletion and poly(ADP-ribose) formation, which are biochemical markers of PARP-1 activation, were also blocked by minocycline. Finally, simulated ischemia/reperfusion led to induction of the mitochondrial permeability transition, which was prevented by minocycline. Therefore, we propose that the protective effect of minocycline on cardiac myocyte survival is the result of inhibition of PARP-1 activity.
Collapse
|
39
|
Leung TCH, Lui CNP, Chen LW, Yung WH, Chan YS, Yung KKL. Ceftriaxone ameliorates motor deficits and protects dopaminergic neurons in 6-hydroxydopamine-lesioned rats. ACS Chem Neurosci 2012; 3:22-30. [PMID: 22860178 DOI: 10.1021/cn200072h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/26/2011] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease is caused by the degeneration of dopaminergic neurons in substantia nigra. There is no current promising treatment for neuroprotection of dopaminergic neurons. Ceftriaxone is a beta-lactam antibiotic and has been reported to offer neuroprotective effects (Rothstein, J.-D., Patel, S., Regan, M.-R., Haenggeli, C., Huang, Y.-H., Bergles, D.-E., Jin, L., Dykes, H.-M., Vidensky, S., Chung, D.-S., Toan, S.-V., Bruijn, L.-I., Su, Z.-Z., Gupta, P., and Fisher, P.-B. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression Nature433, 73-77). In the present study, efficacy of ceftriaxone in neuroprotection of dopaminergic neurons and amelioration of motor deficits in a rat model of Parkinson's disease were investigated. Ceftriaxone was administrated in 6-hydroxydopamine-lesioned rats. Using behavioral tests, grip strength and numbers of apomorphine-induced contralateral rotation were declined in the ceftriaxone-treated group. More importantly, cell death of dopaminergic neurons was found to decrease. In addition, both the protein expression and immunoreactivity for GLT-1 were up-regulated. The present results strongly indicate that ceftriaxone is a potential agent in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- T. C. H. Leung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - C. N. P. Lui
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - L. W. Chen
- Institute of Neurosciences, The Forth Military Medical University, Xian, PR China
| | - W. H. Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong
| | - Y. S. Chan
- Department of Physiology and Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - K. K. L. Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
40
|
Vasko MR, Guo C, Thompson EL, Kelley MR. The repair function of the multifunctional DNA repair/redox protein APE1 is neuroprotective after ionizing radiation. DNA Repair (Amst) 2011; 10:942-52. [PMID: 21741887 DOI: 10.1016/j.dnarep.2011.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 11/19/2022]
Abstract
Although exposure to ionizing radiation (IR) can produce significant neurotoxicity, the mechanisms mediating this toxicity remain to be determined. Previous studies using neurons isolated from the central nervous system show that IR produces reactive oxygen species and oxidative DNA damage in those cells. Because the base excision DNA repair pathway repairs single-base modifications caused by ROS, we asked whether manipulating this pathway by altering APE1 expression would affect radiation-induced neurotoxicity. In cultures of adult hippocampal and sensory neurons, IR produces DNA damage as measured by phosphorylation of histone H2A.X and results in dose-dependent cell death. In isolated sensory neurons, we demonstrate for the first time that radiation decreases the capsaicin-evoked release of the neuropeptide CGRP. Reducing APE1 expression in cultured cells augments IR-induced neurotoxicity, whereas overexpressing APE1 is neuroprotective. Using lentiviral constructs with a neuronal specific promoter that selectively expresses APE1s different functions in neurons, we show that selective expression of the DNA repair competent (redox inactive) APE1 constructs in sensory neurons resurrects cell survival and neuronal function, whereas use of DNA-repair deficient (redox active) constructs is not protective. Use of an APE1 redox-specific inhibitor, APX3330, also facilitates neuronal protection against IR-induced toxicity. These results demonstrate for the first time that the repair function of APE1 is required to protect both hippocampal and DRG neuronal cultures--specifically neuronal cells--from IR-induced damage, while the redox activity of APE1 does not appear to be involved.
Collapse
Affiliation(s)
- Michael R Vasko
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, 635 Barnhill Drive Room MSA401, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
41
|
Hwang J, Zheng LT, Ock J, Lee MG, Kim SH, Lee HW, Lee WH, Park HC, Suk K. Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology 2008; 55:826-34. [PMID: 18639562 DOI: 10.1016/j.neuropharm.2008.06.045] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 05/26/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
Abstract
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may contribute to neuronal cell death. Inhibition of glial activation may alleviate neurodegeneration under these conditions. In the present study, the antiinflammatory and neuroprotective effects of tricyclic antidepressants were investigated using cultured brain cells as a model. The results showed that clomipramine and imipramine significantly decreased the production of nitric oxide or tumor necrosis factor-alpha (TNF-alpha) in microglia and astrocyte cultures. Clomipramine and imipramine also attenuated the expression of inducible nitric oxide synthase and proinflammatory cytokines such as interleukin-1beta and TNF-alpha at mRNA levels. In addition, clomipramine and imipramine inhibited IkappaB degradation, nuclear translocation of the p65 subunit of NF-kappaB, and phosphorylation of p38 mitogen-activated protein kinase in the lipopolysaccharide-stimulated microglia cells. Moreover, clomipramine and imipramine were neuroprotective as the drugs reduced microglia-mediated neuroblastoma cell death in a microglia/neuron co-culture. Therefore, these results imply that clomipramine and imipramine have antiinflammatory and neuroprotective effects in the central nervous system by modulating glial activation.
Collapse
Affiliation(s)
- Jaegyu Hwang
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xie J, Nair A, Hermiston TW. A comparative study examining the cytotoxicity of inducible gene expression system ligands in different cell types. Toxicol In Vitro 2008; 22:261-6. [DOI: 10.1016/j.tiv.2007.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 08/14/2007] [Accepted: 08/30/2007] [Indexed: 11/26/2022]
|
43
|
Ju M, Lee HJ, Lee SJ, Seo ES, Park HJ, Lee KY, Lee GH, Choi EJ, Kim JK, Lee JW, Chung HL, Kim WT. Neuroprotective effects of geneticin (G418) via apoptosis in perinatal hypoxic-ischemic brain injury. KOREAN JOURNAL OF PEDIATRICS 2008. [DOI: 10.3345/kjp.2008.51.2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mi Ju
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Hyun Ju Lee
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Sun Ju Lee
- Department of Pediatrics, School of Medicine, DongGuk University, Kyeong-Ju, Korea
| | - Eo Su Seo
- Department of Ophthalmology, School of Medicine, DongGuk University, Kyeong-Ju, Korea
| | - Hye Jin Park
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Kye Yang Lee
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Gyeong Hoon Lee
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Eun Jin Choi
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jin Kyung Kim
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Jong Won Lee
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Hai Lee Chung
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Woo Taek Kim
- Department of Pediatrics, School of Medicine, Catholic University of Daegu, Daegu, Korea
| |
Collapse
|
44
|
Harvey WT, Martz D. Motor neuron disease recovery associated with IV ceftriaxone and anti-Babesia therapy. Acta Neurol Scand 2007; 115:129-31. [PMID: 17212618 DOI: 10.1111/j.1600-0404.2006.00727.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report summarizes what we believe to be the first verifiable case of a significant and progressive motor neuron disease (MND) consistent with amyotrophic lateral sclerosis that resolved during treatment with i.v. ceftriaxone plus oral atovaquone and mefloquine. The rationale for use of these antibiotics was (i) positive testing for Borrelia burgdorferi and (ii) red blood cell ring forms consistent with Babesia species infection. The patient has continued to be free of MND signs and symptoms for 15 months, although some symptoms consistent with disseminated Borreliosis remain.
Collapse
Affiliation(s)
- W T Harvey
- Rocky Mountain Chronic Disease Specialists, L.L.C., North Circle Drive, Colorado Springs, CO 80909, USA.
| | | |
Collapse
|
45
|
Moisse K, Strong MJ. Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1083-93. [PMID: 16624536 DOI: 10.1016/j.bbadis.2006.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/17/2006] [Accepted: 03/05/2006] [Indexed: 12/31/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons are selectively targeted. Although the underlying cause remains unclear, evidence suggests a role for innate immunity in disease pathogenesis. Neuroinflammation in areas of motor neuron loss is evident in presymptomatic mouse models of ALS and in human patients. Efforts aimed at attenuating the inflammatory response in ALS animal models have delayed symptom onset and extended survival. Seemingly conversely, attempts to sensitize cells of the innate immune system and modulate their phenotype have also shown efficacy. Effectors of innate immunity in the CNS appear to have ambivalent potential to promote either repair or injury. Because ALS is a syndromic disease in which glutamate excitotoxicity, altered cytoskeletal protein metabolism, oxidative injury, mitochondrial dysfunction and neuroinflammation all contribute to motor neuron degeneration, targeting inflammation via modulation of microglial function therefore holds significant potential as one aspect of therapeutic intervention and could provide insight into the exclusive vulnerability of motor neurons.
Collapse
Affiliation(s)
- Katie Moisse
- Cell Biology Research Group, Robarts Research Institute, Department of Clinical Neurological Sciences, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
46
|
Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A 2006; 103:9685-90. [PMID: 16769901 PMCID: PMC1480467 DOI: 10.1073/pnas.0600554103] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1), when activated by DNA damage, promotes both cell death and inflammation. Here we report that PARP-1 enzymatic activity is directly inhibited by minocycline and other tetracycline derivatives that have previously been shown to have neuroprotective and anti-inflammatory actions. These agents were evaluated by using cortical neuron cultures in which PARP-1 activation was induced by the genotoxic agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or 3-morpholinosydnonimine (SIN-1). In both conditions, neuronal death was reduced by >80% either by 10 muM 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone, an established PARP inhibitor, or by 100 nM minocycline. Neuronal NAD(+) depletion and poly(ADP-ribose) formation, which are biochemical markers of PARP-1 activation, were also blocked by 100 nM minocycline. A direct, competitive inhibition of PARP-1 by minocycline (K(i) = 13.8 +/- 1.5 nM) was confirmed by using recombinant PARP-1 in a cell-free assay. Comparison of several tetracycline derivatives showed a strong correlation (r(2) = 0.87) between potency as a PARP-1 inhibitor and potency as a neuroprotective agent during MNNG incubations, with the rank order of potency being minocycline > doxycycline > demeclocycline > chlortetracycline. These compounds are known to have other actions that could contribute their neuroprotective effects, but at far higher concentrations than shown here to inhibit PARP-1. The neuroprotective and antiinflammatory effects of minocycline and other tetracycline derivatives may be attributable to PARP-1 inhibition in some settings.
Collapse
Affiliation(s)
- Conrad C. Alano
- Department of Neurology, University of California and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121
| | - Tiina M. Kauppinen
- Department of Neurology, University of California and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121
| | - Andreu Viader Valls
- Department of Neurology, University of California and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121
| | - Raymond A. Swanson
- Department of Neurology, University of California and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006; 97:1314-26. [PMID: 16638021 DOI: 10.1111/j.1471-4159.2006.03799.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Minocycline, a clinically used tetracycline for over 40 years, crosses the blood-brain barrier and prevents caspase up-regulation. It reduces apoptosis in mouse models of Huntington's disease and familial amyotrophic lateral sclerosis (ALS) and is in clinical trial for sporadic ALS. Because apoptosis also occurs after brain and spinal cord (SCI) injury, its prevention may be useful in improving recovery. We analyzed minocycline's neuroprotective effects over 28 days following contusion SCI and found significant functional recovery compared to tetracycline. Histology, immunocytochemistry, and image analysis indicated statistically significant tissue sparing, reduced apoptosis and microgliosis, and less activated caspase-3 and substrate cleavage. Since our original report in abstract form, others have published both positive and negative effects of minocycline in various rodent models of SCI and with various routes of administration. We have since found decreased tumor necrosis factor-alpha, as well as caspase-3 mRNA expression, as possible mechanisms of action for minocycline's ameliorative action. These results support reports that modulating apoptosis, caspases, and microglia provide promising therapeutic targets for prevention and/or limiting the degree of functional loss after CNS trauma. Minocycline, and more potent chemically synthesized tetracyclines, may find a place in the therapeutic arsenal to promote recovery early after SCI in humans.
Collapse
Affiliation(s)
- Barry W Festoff
- Neurobiology Research Laboratory, Heartland Veterans Health Network, Department of Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Weydt P, Möller T. The role of microglial cells in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am 2005; 16:1081-90, xi. [PMID: 16214061 DOI: 10.1016/j.pmr.2005.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Patrick Weydt
- Department of Laboratory Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | | |
Collapse
|
49
|
Sathasivam S, Grierson AJ, Shaw PJ. Characterization of the caspase cascade in a cell culture model of SOD1-related familial amyotrophic lateral sclerosis: expression, activation and therapeutic effects of inhibition. Neuropathol Appl Neurobiol 2005; 31:467-85. [PMID: 16150118 DOI: 10.1111/j.1365-2990.2005.00658.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is increasing evidence that apoptosis or a similar programmed cell death pathway is the mechanism of cell death responsible for motor neurone degeneration in amyotrophic lateral sclerosis. Knowledge of the relative importance of different caspases in the cell death process is at present incomplete. In addition, there is little information on the critical point of the death pathway when the process of dying becomes irreversible. In this study, using the well-established NSC34 motor neurone-like cell line stably transfected with empty vector, normal or mutant human Cu-Zn superoxide dismutase (SOD1), we have characterized the activation of the caspase cascade in detail, revealing that the activation of caspases-9, -3 and -8 are important in motor neurone death and that the presence of mutant SOD1 causes increased activation of components of the apoptotic cascade under both basal culture conditions and following oxidative stress induced by serum withdrawal. Activation of the caspases identified in the cellular model has been confirmed in the G93A SOD1 transgenic mice. Furthermore, investigation of the effects of anti-apoptotic neuroprotective agents including specific caspase inhibitors, minocycline and nifedipine, have supported the importance of the mitochondrion-dependent apoptotic pathway in the death process and revealed that the upstream caspase cascade needs to be inhibited if useful neuro-protection is to be achieved.
Collapse
Affiliation(s)
- S Sathasivam
- Laboratory of origin: Academic Neurology Unit, Section of Neuroscience, Division of Genomic Medicine, The Medical School, Beech Hill Road, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
50
|
Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005; 25:1138-49. [PMID: 15874975 PMCID: PMC2262097 DOI: 10.1038/sj.jcbfm.9600121] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of neonatal stroke is high and currently there are no strategies to protect the neonatal brain from stroke or reduce the sequelae. Agents capable of modifying inflammatory processes hold promise. We set out to determine whether delayed administration of one such agent, minocycline, protects the immature brain in a model of transient middle cerebral artery (MCA) occlusion in 7-day-old rat pups. Injury volume in minocycline (45 mg/kg/dose, beginning at 2 h after MCA occlusion) and vehicle-treated pups was determined 24 h and 7 days after onset of reperfusion. Accumulation of activated microglia/macrophages, phosphorylation of mitogen-activated protein kinase (MAPK) p38 in the brain, and concentrations of inflammatory mediators in plasma and brain were determined at 24 h. Minocycline significantly reduced the volume of injury at 24 h but not 7 days after transient MCA occlusion. The beneficial effect of minocycline acutely after reperfusion was not associated with changed ED1 phenotype, nor was the pattern of MAPK p38 phosphorylation altered. Minocycline reduced accumulation of IL-1beta and CINC-1 in the systemic circulation but failed to affect the increased levels of IL-1beta, IL-18, MCP-1 or CINC-1 in the injured brain tissue. Therefore, minocycline provides early but transient protection, which is largely independent of microglial activation or activation of the MAPK p38 pathway.
Collapse
Affiliation(s)
- Christine Fox
- Department of Neurology, University of California, San Francisco, California, USA
| | - Andra Dingman
- Department of Neurology, University of California, San Francisco, California, USA
| | - Nikita Derugin
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Michael F Wendland
- Department of Radiology, University of California, San Francisco, California, USA
| | - Catherine Manabat
- Department of Neurology, University of California, San Francisco, California, USA
| | - Shaoquan Ji
- Linco Research, Inc., St. Charles, Missouri, USA
| | - Donna M Ferriero
- Department of Neurology, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Zinaida S Vexler
- Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|