1
|
Lee TA, Peng J, Walia D, Gonzales R, Hutter T. Experimental and numerical investigation of microdialysis probes for ethanol metabolism studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4322-4332. [PMID: 38888243 PMCID: PMC11223630 DOI: 10.1039/d4ay00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.
Collapse
Affiliation(s)
- Tse-Ang Lee
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jessie Peng
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Divjot Walia
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Rueben Gonzales
- College of Pharmacy, Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya Hutter
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Altendorfer-Kroath T, Hummer J, Kollmann D, Boulgaropoulos B, Raml R, Birngruber T. Quantification of the Therapeutic Antibody Ocrelizumab in Mouse Brain Interstitial Fluid Using Cerebral Open Flow Microperfusion and Simultaneous Monitoring of the Blood-Brain Barrier Integrity. Pharmaceutics 2023; 15:1880. [PMID: 37514066 PMCID: PMC10383368 DOI: 10.3390/pharmaceutics15071880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing relevance of improved therapeutic monoclonal antibodies (mAbs) to treat neurodegenerative diseases has strengthened the need to reliably measure their brain pharmacokinetic (PK) profiles. The aim of this study was, therefore, to absolutely quantify the therapeutic antibody ocrelizumab (OCR) as a model antibody in mouse brain interstitial fluid (ISF), and to record its PK profile by using cerebral open flow microperfusion (cOFM). Further, to monitor the blood-brain barrier (BBB) integrity using an endogenous antibody with a similar molecular size as OCR. The study was conducted on 13 male mice. Direct and absolute OCR quantification was performed with cOFM in combination with zero flow rate, and subsequent bioanalysis of the obtained cerebral ISF samples. For PK profile recording, cerebral ISF samples were collected bi-hourly, and brain tissue and plasma were collected once at the end of the sampling period. The BBB integrity was monitored during the entire PK profile recording by using endogenous mouse immunoglobulin G1. We directly and absolutely quantified OCR and recorded its brain PK profile over 96 h. The BBB remained intact during the PK profile recording. The resulting data provide the basis for reliable PK assessment of therapeutic antibodies in the brain thus favoring the further development of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Joanna Hummer
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Denise Kollmann
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Reingard Raml
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
3
|
Tran NT, Kowalski GM, Muccini AM, Nitsos I, Hale N, Snow RJ, Walker DW, Ellery SJ. Creatine supplementation reduces the cerebral oxidative and metabolic stress responses to acute in utero hypoxia in the late-gestation fetal sheep. J Physiol 2022; 600:3193-3210. [PMID: 35587817 PMCID: PMC9542404 DOI: 10.1113/jp282840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real‐time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days’ gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg−1 h−1) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from −24 to 72 h post‐UCO and analysed for percentage change of hydroxyl radicals (•OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post‐mortem 72 h post‐UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral •OH outflow 0 to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia (PO2 and SO2) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and •OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of •OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia.
![]() Key points Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine‐monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days’ gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and •OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.
Collapse
Affiliation(s)
- Nhi Thao Tran
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia.,Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna M Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Genetic Research Services, University of Queensland, Queensland, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Nadia Hale
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Rod J Snow
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Takahashi CE, Virmani D, Chung DY, Ong C, Cervantes-Arslanian AM. Blunt and Penetrating Severe Traumatic Brain Injury. Neurol Clin 2021; 39:443-469. [PMID: 33896528 DOI: 10.1016/j.ncl.2021.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Severe traumatic brain injury is a common problem. Current practices focus on the importance of early resuscitation, transfer to high-volume centers, and provider expertise across multiple specialties. In the emergency department, patients should receive urgent intracranial imaging and consideration for tranexamic acid. Close observation in the intensive care unit environment helps identify problems, such as seizure, intracranial pressure crisis, and injury progression. In addition to traditional neurologic examination, patients benefit from use of intracranial monitors. Monitors gather physiologic data on intracranial and cerebral perfusion pressures to help guide therapy. Brain tissue oxygenation monitoring and cerebromicrodialysis show promise in studies.
Collapse
Affiliation(s)
- Courtney E Takahashi
- Department of Neurology, Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA.
| | - Deepti Virmani
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - David Y Chung
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Charlene Ong
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - Anna M Cervantes-Arslanian
- Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| |
Collapse
|
5
|
Högstedt A, Ghafouri B, Tesselaar E, Farnebo S. Sampling insulin in different tissue compartments using microdialysis: methodological aspects. Sci Rep 2020; 10:21948. [PMID: 33319790 PMCID: PMC7738523 DOI: 10.1038/s41598-020-78728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 01/25/2023] Open
Abstract
Sampling the concentration of insulin in human skin using microdialysis is challenging because of low intracutaneous concentrations and low recovery, presumably due to adsorption of insulin to the microdialysis system. In this study, we aimed to (1) measure how the concentration of insulin varies in three different tissue compartments (intracutaneous, subcutaneous and intravenous) and (2) to study how much insulin is adsorbed to the microdialysis catheter membranes and tubing during a typical microdialysis experiment, both in vivo and in vitro. We hypothesized that (1) the concentration of insulin decreases from the intravenous compartment to the intracutaneous and subcutaneous tissue, and that (2) adsorption of insulin to the microdialysis membrane and tubing impairs the recovery of insulin from the tissue. In this experimental study, microdialysis catheters were inserted intracutaneously, subcutaneously and intravenously in 11 healthy subjects. Systemic endogenous hyperinsulinemia was induced by intake of an oral glucose load. Insulin concentration was measured in the dialysate and in the extracted samples from the catheter membrane and tubings. In vitro microdialysis was performed to investigate the temporal resolution of the adsorption. After an oral glucose load insulin concentration increased intravenously, but not in the intracutaneous or subcutaneous compartments, while glucose, lactate and pyruvate concentrations increased in all compartments. The adsorption of insulin to the microdialysis membrane in vivo was highest in the intravenous compartment (p = 0.01), compared to the intracutaneous and subcutaneous compartments. In vitro, the adsorption to the microdialysis membrane was highest one hour after sampling, then the concentration gradually decreased after three and five hours of sampling. The concentration of insulin in peripheral tissues is low, probably due to decreasing tissue vascularity. Adsorption of insulin to the microdialysis membrane is modest but time-dependent. This finding highlights the importance of a stabilization time for the microdialysis system before sampling tissue analytes.
Collapse
Affiliation(s)
- Alexandra Högstedt
- Department of Surgery in Linköping, and Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, 58185, Linköping, Sweden.
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Erik Tesselaar
- Department of Medical Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Simon Farnebo
- Department of Hand Surgery, Plastic Surgery and Burns, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Hammarlund-Udenaes M. Microdialysis as an Important Technique in Systems Pharmacology—a Historical and Methodological Review. AAPS JOURNAL 2017; 19:1294-1303. [DOI: 10.1208/s12248-017-0108-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 01/03/2023]
|
7
|
Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Vet Scand 2014; 56:72. [PMID: 25391249 PMCID: PMC4234838 DOI: 10.1186/s13028-014-0072-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Hypoxia results in an imbalance between oxygen supply and oxygen consumption. This study utilized microdialysis to monitor changes in the energy-related metabolites lactate, pyruvate and glucose in rat muscle before, during and after 30 minutes of transient global hypoxia. Hypoxia was induced in anaesthetised rats by reducing inspired oxygen to 6% O2 in nitrogen. Results Basal values for lactate, the lactate/pyruvate ratio and glucose were 0.72 ± 0.04 mmol/l, 10.03 ± 1.16 and 3.55 ± 0.19 mmol/l (n = 10), respectively. Significant increases in lactate and the lactate/pyruvate ratio were found in the muscle after the induction of hypoxia. Maximum values of 2.26 ± 0.37 mmol/l for lactate were reached during early reperfusion, while the lactate/pyruvate ratio reached maximum values of 35.84 ± 7.81 at the end of hypoxia. Following recovery to ventilation with air, extracellular lactate levels and the lactate/pyruvate ratio returned to control levels within 30–40 minutes. Extracellular glucose levels showed no significant difference between hypoxia and control experiments. Conclusions In our study, the complete post-hypoxic recovery of metabolite levels suggests that metabolic enzymes of the skeletal muscle and their related cellular components may be able to tolerate severe hypoxic periods without prolonged damage. The consumption of glucose in the muscle in relation to its delivery seems to be unaffected.
Collapse
|
8
|
Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BWY, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H. AAPS-FDA Workshop White Paper: Microdialysis Principles, Application, and Regulatory Perspectives. J Clin Pharmacol 2013; 47:589-603. [PMID: 17442685 DOI: 10.1177/0091270006299091] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chandra S Chaurasia
- Division of Bioequivalence, Office of Generic Drugs, Food and Drug Administration, Room 1360/HFD-650, 7520 Standish Place, Rockville, MD 20855, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Tarakanov AO, Garriga P, Narváez JA, Ciruela F, Guescini M, Agnati LF. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 2012; 3:136. [PMID: 22675301 PMCID: PMC3366473 DOI: 10.3389/fphys.2012.00136] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/23/2012] [Indexed: 12/20/2022] Open
Abstract
Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| | | | | | - Zaida Diaz-Cabiale
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of MálagaMálaga, Spain
| | - Luca Ferraro
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of FerraraFerrara, Italy
| | - Sergio Tanganelli
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of FerraraFerrara, Italy
| | - Alexander O. Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and AutomationSaint Petersburg, Russia
| | - Pere Garriga
- Departament d’Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de CatalunyaBarcelona, Spain
| | - José Angel Narváez
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Universitat de BarcelonaBarcelona, Spain
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino “CarloBo”Urbino, Italy
| | | |
Collapse
|
10
|
Levintova Y, Plakogiannis FM, Bellantone RA. An improved in vitro method for measuring skin permeability that controls excess hydration of skin using modified Franz diffusion cells. Int J Pharm 2011; 419:96-106. [PMID: 21803138 DOI: 10.1016/j.ijpharm.2011.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/08/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022]
Abstract
When liquid donors/receivers are used for in vitro skin permeation studies, excess hydration can change skin properties compared to in vivo conditions. A novel in vitro method of determining the permeability of drugs through skin was developed that avoids exposing the membrane to dilute donor/receiver solutions. The drug is dissolved in an unstirred donor gel, and diffuses through a membrane into an unstirred gel receiver that can potentially be adjusted to mimic physiological conditions. Pulsatile microdialysis (PMD) was used to sample local concentrations in the receiver medium, and a model was developed to allow the determination of permeability. For Doxepin HCl, permeabilities through artificial membranes and human cadaver skin were determined using the new and previously reported methods. For artificial membranes that minimally hydrate, the new method gave consistent but slightly lower permeability values. For human cadaver skin, the permeability determined using the new method was 1/6 that of the fully hydrated skin. Limitations of the model, their relations to experimental design and data analysis were evaluated. It was concluded that this method can be applied to characterize membrane permeabilities using experiments that may avoid membrane breakdown and more closely mimic physiological conditions.
Collapse
Affiliation(s)
- Yuliya Levintova
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, USA
| | | | | |
Collapse
|
11
|
Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 2011; 6:109-127. [PMID: 21532928 PMCID: PMC3083031 DOI: 10.1517/17460441.2011.547189] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION: Microdialysis is an important in vivo sampling technique, useful in the assay of extracellular tissue fluid. The technique has both pre-clinical and clinical applications but is most widely used in neuroscience. The in vivo microdialysis technique allows measurement of neurotransmitters such as acetycholine (ACh), the biogenic amines including dopamine (DA), norepinephrine (NE) and serotonin (5-HT), amino acids such as glutamate (Glu) and gamma aminobutyric acid (GABA), as well as the metabolites of the aforementioned neurotransmitters, and neuropeptides in neuronal extracellular fluid in discrete brain regions of laboratory animals such as rodents and non-human primates. AREAS COVERED: In this review we present a brief overview of the principles and procedures related to in vivo microdialysis and detail the use of this technique in the pre-clinical measurement of drugs designed to be used in the treatment of chemical addiction, neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and as well as psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. This review offers insight into the tremendous utility and versatility of this technique in pursuing neuropharmacological investigations as well its significant potential in rational drug discovery. EXPERT OPINION: In vivo microdialysis is an extremely versatile technique, routinely used in the neuropharmacological investigation of drugs used for the treatment of neurological disorders. This technique has been a boon in the elucidation of the neurochemical profile and mechanism of action of several classes of drugs especially their effects on neurotransmitter systems. The exploitation and development of this technique for drug discovery in the near future will enable investigational new drug candidates to be rapidly moved into the clinical trial stages and to market thus providing new successful therapies for neurological diseases that are currently in demand.
Collapse
Affiliation(s)
- Altaf S. Darvesh
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Psychiatry, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Richard T. Carroll
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Werner J. Geldenhuys
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Gary A. Gudelsky
- Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jochen Klein
- Chemistry, Biochemistry, Pharmacy, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, D-60438, Germany
| | - Charles K. Meshul
- Behavioral Neuroscience, Pathology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Portland Veterans Affairs Research Center, Portland, OR 97239, USA
| | - Cornelis J. Van der Schyf
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| |
Collapse
|
12
|
Bungay PM, Sumbria RK, Bickel U. Unifying the mathematical modeling of in vivo and in vitro microdialysis. J Pharm Biomed Anal 2011; 55:54-63. [PMID: 21310575 DOI: 10.1016/j.jpba.2011.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/05/2011] [Accepted: 01/11/2011] [Indexed: 11/27/2022]
Abstract
A unifying approach is presented for developing mathematical models of microdialysis that are applicable to both in vitro and in vivo situations. Previous models for cylindrical probes have been limited by accommodating analyte diffusion through the surrounding medium in the radial direction only, i.e., perpendicular to the probe axis, or by incomplete incorporation of diffusion in the axial direction. Both radial and axial diffusion are included in the present work by employing two-dimensional finite element analysis. As in previous models, the nondimensional clearance modulus (Θ) represents the degree to which analyte clearance from the external medium influences diffusion through the medium for systems exhibiting analyte concentration linearity. Incorporating axial diffusion introduces a second dimensionless group, which is the length-to-radius aspect ratio of the membrane. These two parameter groups uniquely determine the external medium permeability, which is time dependent under transient conditions. At steady-state, the dependence of this permeability on the two groups can be approximated by an algebraic formula for much of the parameter ranges. Explicit steady-state expressions derived for the membrane and fluid permeabilities provide good approximations under transient conditions (quasi-steady-state assumption). The predictive ability of the unifying approach is illustrated for microdialysis of sucrose in vivo (brain) and inert media in vitro, under both well-stirred and quiescent conditions.
Collapse
Affiliation(s)
- Peter M Bungay
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
13
|
De Los Rios J, Sahuquillo J, Merino M, Poca M, Expósito L. Microdiálisis de alta resolución. Aspectos metodológicos y aplicación al estudio de la respuesta inflamatoria cerebral. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70140-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Guy Y, Sandberg M, Weber SG. Determination of zeta-potential in rat organotypic hippocampal cultures. Biophys J 2008; 94:4561-9. [PMID: 18263658 PMCID: PMC2480665 DOI: 10.1529/biophysj.107.112722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 12/27/2007] [Indexed: 11/18/2022] Open
Abstract
zeta-potentials of entities such as cells and synaptosomes have been determined, but zeta of brain tissue has never been measured. Electroosmotic flow, and the resulting transport of neuroactive substances, would result from naturally occurring and experimentally or clinically induced electric fields if zeta is significant. We have developed a simple method for determining zeta in tissue. An electric field applied across a rat organotypic hippocampal slice culture (OHSC) drives fluorescent molecules through the tissue by both electroosmotic flow and electrophoresis. Fluorescence microscopy is used to determine each molecule's velocity. Independently, capillary electrophoresis is used to measure the molecules' electrophoretic mobilities. The experiment yields zeta-potential and average tissue tortuosity. The zeta-potential of OHSCs is -22 +/- 2 mV, and the average tortuosity is 1.83 +/- 0.06. In a refined experiment, zeta-potential is measured in various subregions. The zeta-potentials of the CA1 stratum pyramidale, CA3 stratum pyramidal, and dentate gyrus are -25.1 +/- 1.6 mV, -20.3 +/- 1.7 mV, and -25.4 +/- 1.0 mV, respectively. Simple dimensional arguments show that electroosmotic flow is potentially as important as diffusion in molecular transport.
Collapse
Affiliation(s)
- Yifat Guy
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
15
|
Zoremba N, Schnoor J, Berens M, Kuhlen R, Rossaint R. Brain metabolism during a decrease in cerebral perfusion pressure caused by an elevated intracranial pressure in the porcine neocortex. Anesth Analg 2007; 105:744-50. [PMID: 17717234 DOI: 10.1213/01.ane.0000278160.66389.1c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cranial hypertension coincides with a reduction in cerebral blood flow as well as in oxygen delivery and influences outcome. In this study, we monitored changes in energy-related metabolites in the porcine cortex during an increase of intracranial pressure (ICP) and to determine the level at which damage occurs. METHODS Male domestic pigs (32-40 kg) were anesthetized, mechanically ventilated, and randomly assigned to either the experimental (n = 6) or control groups (n = 5). A microdialysis probe (CMA 70) was inserted into the cortex to measure extracellular dialysate concentrations of lactate, pyruvate, glucose, glutamate, and glycerol. Every hour an increase of 10 mm Hg in ICP was preformed in the experimental group by infusion of artificial cerebrospinal fluid into the ventricular system of the brain until a maximum ICP of 50 mm Hg was reached. RESULTS We demonstrated a significant increase of lactate and glycerol compared with control at ICP values > or =30 mm Hg and cerebral perfusion pressure (CPP) below 50 mm Hg. The increase of ICP to > or =40 mm Hg in conjunction with a reduction in CPP below 40 mm Hg led to a significant increase in the lactate/pyruvate-ratio and glutamate, as well as a decrease of glucose in relation to control. CONCLUSIONS Our data strongly suggest that, during a defined ICP increase, lower CPP values may be tolerable until severe damage occurs. Borderline ICP and CPP values of 30 and 40 mm Hg, respectively, could be advised.
Collapse
Affiliation(s)
- Norbert Zoremba
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany.
| | | | | | | | | |
Collapse
|
16
|
Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BWY, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives. Pharm Res 2007; 24:1014-25. [PMID: 17458685 DOI: 10.1007/s11095-006-9206-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/04/2006] [Indexed: 12/16/2022]
Abstract
Many decisions in drug development and medical practice are based on measuring blood concentrations of endogenous and exogenous molecules. Yet most biochemical and pharmacological events take place in the tissues. Also, most drugs with few notable exceptions exert their effects not within the bloodstream, but in defined target tissues into which drugs have to distribute from the central compartment. Assessing tissue drug chemistry has, thus, for long been viewed as a more rational way to provide clinically meaningful data rather than gaining information from blood samples. More specifically, it is often the extracellular (interstitial) tissue space that is most closely related to the site of action (biophase) of the drug. Currently microdialysis (microD) is the only tool available that explicitly provides data on the extracellular space. Although microD as a preclinical and clinical tool has been available for two decades, there is still uncertainty about the use of microD in drug research and development, both from a methodological and a regulatory point of view. In an attempt to reduce this uncertainty and to provide an overview of the principles and applications of microD in preclinical and clinical settings, an AAPS-FDA workshop took place in November 2005 in Nashville, TN, USA. Stakeholders from academia, industry and regulatory agencies presented their views on microD as a tool in drug research and development.
Collapse
Affiliation(s)
- Chandra S Chaurasia
- Division of Bioequivalence, Office of Generic Drugs, Food and Drug Administration, Rockville, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BWY, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H. AAPS-FDA workshop white paper: Microdialysis principles, application, and regulatory perspectives report from the Joint AAPS-FDA Workshop, November 4–5, 2005, Nashville, TN. AAPS JOURNAL 2007. [DOI: 10.1208/aapsj0901006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zoremba N, Homola A, Rossaint R, Syková E. Brain metabolism and extracellular space diffusion parameters during and after transient global hypoxia in the rat cortex. Exp Neurol 2006; 203:34-41. [PMID: 16956608 DOI: 10.1016/j.expneurol.2006.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
Hypoxia results in both reversible and irreversible changes in the brain extracellular space (ECS). This study utilized microdialysis to monitor changes in the energy-related metabolites lactate, pyruvate, glucose and glutamate in the rat cortex before, during and after 30-min transient global hypoxia, induced in anesthetized rats by reducing inspired oxygen to 6% O(2) in nitrogen. Changes in metabolite levels were compared with ECS diffusion parameters calculated from diffusion curves of tetramethylammonium applied by iontophoresis. Significant increases in lactate concentration and the lactate/pyruvate ratio, as well as decreased glucose levels, were found in the cortex immediately after the induction of hypoxia. Following recovery to ventilation with air, extracellular lactate and glucose levels and the lactate/pyruvate ratio returned to control levels within 40, 20 and 30 min, respectively. Glutamate levels started to increase 20-30 min after the onset of hypoxia and returned to prehypoxic values within 30-40 min of reoxygenation. The ECS volume fraction alpha decreased by about 5% from 0.18+/-0.01 during the first 20-25 min of hypoxia; after 25 min alpha dropped a further 22% to 0.14+/-0.01. Within 10 min of reoxygenation, alpha returned to control values, then increased to 0.20+/-0.01 and remained at this level until the end of the experiment. The observed 22% decrease in alpha markedly influences dialysate levels measured during hypoxia. In our study, the complete posthypoxic recovery of cortical metabolite levels and ECS diffusion properties suggests that metabolic enzymes and related cellular components (e.g., mitochondria) may tolerate prolonged hypoxic periods and recover to prehypoxic values.
Collapse
Affiliation(s)
- Norbert Zoremba
- Department of Anaesthesiology, University Hospital RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
19
|
Homola A, Zoremba N, Slais K, Kuhlen R, Syková E. Changes in diffusion parameters, energy-related metabolites and glutamate in the rat cortex after transient hypoxia/ischemia. Neurosci Lett 2006; 404:137-42. [PMID: 16759801 DOI: 10.1016/j.neulet.2006.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 05/14/2006] [Indexed: 11/29/2022]
Abstract
It has been shown that global anoxia leads to dramatic changes in the diffusion properties of the extracellular space (ECS). In this study, we investigated how changes in ECS volume and geometry in the rat somatosensory cortex during and after transient hypoxia/ischemia correlate with extracellular concentrations of energy-related metabolites and glutamate. Adult male Wistar rats (n = 12) were anesthetized and subjected to hypoxia/ischemia for 30 min (ventilation with 10% oxygen and unilateral carotid artery occlusion). The ECS diffusion parameters, volume fraction and tortuosity, were determined from concentration-time profiles of tetramethylammonium applied by iontophoresis. Concentrations of lactate, glucose, pyruvate and glutamate in the extracellular fluid (ECF) were monitored by microdialysis (n = 9). During hypoxia/ischemia, the ECS volume fraction decreased from initial values of 0.19 +/- 0.03 (mean +/- S.E.M.) to 0.07 +/- 0.01 and tortuosity increased from 1.57 +/- 0.01 to 1.88 +/- 0.03. During reperfusion the volume fraction returned to control values within 20 min and then increased to 0.23 +/- 0.01, while tortuosity only returned to original values (1.53 +/- 0.06). The concentrations of lactate and glutamate, and the lactate/pyruvate ratio, substantially increased during hypoxia/ischemia, followed by continuous recovery during reperfusion. The glucose concentration decreased rapidly during hypoxia/ischemia with a subsequent return to control values within 20 min of reperfusion. We conclude that transient hypoxia/ischemia causes similar changes in ECS diffusion parameters as does global anoxia and that the time course of the reduction in ECS volume fraction correlates with the increase of extracellular concentration of glutamate. The decrease in the ECS volume fraction can therefore contribute to an increased accumulation of toxic metabolites, which may aggravate functional deficits and lead to damage of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ales Homola
- Department of Neuroscience and Centre for Cell Therapy and Tissue Repair, 2nd Medical Faculty, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
20
|
Chapter 2.2 Principles of quantitative microdialysis. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1569-7339(06)16008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|
21
|
Chen KC. Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J Theor Biol 2005; 238:863-81. [PMID: 16129452 DOI: 10.1016/j.jtbi.2005.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 02/01/2023]
Abstract
Microdialysis has been used for studying neurochemistry in brain regions that respond to afferent inputs or administered drugs. As the knowledge derived from and concerning microdialysis grows, so do the concerns over its invasiveness and, hence, the credibility of resulting data. Recent experimental and theoretical studies impugned the validity of the microdialysis zero-net-flux (ZNF) method in measuring brain extracellular neurotransmitters, suggesting that the tissue trauma resulting from probe implantation seriously compromises its worth. This paper developed a theoretical model to study the influences of two categories of tissue trauma on microdialysis ZNF operation: (1) morphological alterations in tissue extracellular structure and (2) physiological impairment of neurotransmitter release and uptake processes. Model results show that alterations of tissue extracellular structure negligibly affect the accuracy of the ZNF method in determining the basal level of extracellular neurotransmitter but do affect the fundamental characteristics of microdialysis: the extraction efficiency and relative recovery. An inhibited or damaged neurotransmitter uptake process always decreases the efficiency of microdialysis extraction, but rise of the relative recovery of neurotransmitters with the same uptake inhibition/damage occurs only when there is far more damage to the neurotransmitter release than to the uptake process in the tissue. A criterion for this rising trend of microdialysis relative recovery is discussed in terms of trauma parameters and neurotransmitter uptake inhibition.
Collapse
Affiliation(s)
- Kevin C Chen
- Department of Chemical and Biomedical Engineering, Joint College of Engineering for Florida A&M University, Florida State University, 2525 Pottsdamer Street, Tallahassee, 32310, USA.
| |
Collapse
|
22
|
Plock N, Kloft C. Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 2005; 25:1-24. [PMID: 15854796 DOI: 10.1016/j.ejps.2005.01.017] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/20/2005] [Accepted: 01/21/2005] [Indexed: 11/26/2022]
Abstract
In the past decade microdialysis has become a method of choice in the study of unbound tissue concentrations of both endogenous and exogenous substances. Microdialysis has been shown to offer information about substances directly at the site of action while being well tolerable and safe. The large variety of its field of application has been demonstrated. However, a few challenges have to be met to make this method generally applicable in routine applications. This review will provide an overview over theoretical aspects that have to be considered during the implementation of microdialysis. Moreover, a comparison between microdialysis and other tissue sampling techniques will demonstrate advantages and limitations of the methods mentioned. Subsequently, it will present a critical synopsis of a variety of scientific/biomedical applications of this method with emphasis on the most recent literature, focussing on target tissues while giving examples of substances examined. It is concluded that microdialysis will be of great value in future investigations of pharmacokinetics, pharmacodynamics and in monitoring of disease status and progression.
Collapse
Affiliation(s)
- Nele Plock
- Department of Clinical Pharmacy, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, D-12169 Berlin, Germany
| | | |
Collapse
|
23
|
Chen KC. Preferentially impaired neurotransmitter release sites not their discreteness compromise the validity of microdialysis zero-net-flux method. J Neurochem 2005; 92:29-45. [PMID: 15606894 DOI: 10.1111/j.1471-4159.2004.02847.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intracerebral microdialysis is a popular technique for studying neurochemistry and neural circuits in various brain regions. Recent studies called into question the validity of the microdialysis zero-net-flux (ZNF) method by suggesting that this method significantly underestimates the basal level of extracellular dopamine as a result of the discreteness of dopamine release sites as well as the preferential damage to dopamine release over uptake. To identify which factor is most important in undermining the microdialysis ZNF measurements and the extent of underestimation, two mathematical models were developed to explore the influences of the discrete nature and the probe-induced impairment in the neurotransmitter release. The two models differ in their characterizations of the transmitter release as spatially discrete and homogeneous, respectively. Simulations using physiologically reasonable parameters for striatal dopamine systems indicate that the preferential release site damage surrounding the implanted probe is the most important determinant to the underestimation of the microdialysis ZNF concentration. Under normal physiological conditions, the discreteness of neurotransmitter release sites is of minor importance, except when neuronal degeneration occurs. It is concluded that homogeneous models can adequately describe microdialysis operating processes as long as the corresponding tissue damage parameters in such models are appropriately incorporated.
Collapse
Affiliation(s)
- Kevin C Chen
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA.
| |
Collapse
|
24
|
Ederoth P, Tunblad K, Bouw R, Lundberg CJF, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M. Blood-brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 2004; 57:427-35. [PMID: 15025740 PMCID: PMC1884477 DOI: 10.1046/j.1365-2125.2003.02032.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS In experimental studies, morphine pharmacokinetics is different in the brain compared with other tissues due to the properties of the blood-brain barrier, including action of efflux pumps. It was hypothesized in this clinical study that active efflux of morphine occurs also in human brain, and that brain injury would alter cerebral morphine pharmacokinetics. METHODS Patients with traumatic brain injury, equipped with one to three microdialysis catheters in the brain and one in abdominal subcutaneous fat for metabolic monitoring, were studied. The cerebral catheter locations were classified as 'better' and 'worse' brain tissue, referring to the degree of injury. Morphine (10 mg) was infused intravenously over a 10-min period in seven patients in the intensive care setting. Tissue and plasma morphine concentrations were obtained during the subsequent 3-h period with microdialysis and regular blood sampling. RESULTS The area under the concentration-time curve (AUC) ratio of unbound morphine in brain tissue to plasma was 0.64 (95% confidence interval 0.40, 0.87) in 'better' brain tissue (P < 0.05 vs. the subcutaneous fat/plasma ratio), 0.78 (0.49, 1.07) in 'worse' brain tissue and 1.00 (0.86, 1.13) in subcutaneous fat. The terminal half-life and T(max) were longer in the brain vs. plasma and fat, respectively. The relative recovery for morphine was higher in 'better' than in 'worse' brain tissue. The T(max) value tended to be shorter in 'worse' brain tissue. CONCLUSIONS The unbound AUC ratio below unity in the 'better' human brain tissue demonstrates an active efflux of morphine across the blood-brain barrier. The 'worse' brain tissue shows a decrease in relative recovery for morphine and in some cases also an increase in permeability for morphine over the blood-brain barrier.
Collapse
Affiliation(s)
- Per Ederoth
- Department of Anaesthesiology and Intensive Care, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bungay PM, Newton-Vinson P, Isele W, Garris PA, Justice JB. Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 2003; 86:932-46. [PMID: 12887691 PMCID: PMC2386091 DOI: 10.1046/j.1471-4159.2003.01904.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.
Collapse
Affiliation(s)
- Peter M Bungay
- Division of Bioengineering & Physical Science, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
26
|
Chen KC. Insensitivity of the microdialysis zero-net-flux method to nonlinear uptake and release processes. Neurosci Res 2003; 46:251-6. [PMID: 12767488 DOI: 10.1016/s0168-0102(03)00091-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the microdialysis zero-net-flux (ZNF) method the extraction efficiency is conventionally obtained by linear regression. The linear analysis may become invalid for certain analytes that have nonlinear uptake/release processes in the tissue. To examine this hypothesis, a nonlinear model was used to numerically investigate the nonlinearity of the ZNF plot caused by nonlinear uptake and release processes. Three findings from this analysis are: (i) the ZNF method is markedly insensitive to the nonlinear active processes; (ii) a slow infusion rate or a long probe membrane can suppress the nonlinearity; (iii) the release under autoreceptor control does not affect the slope and linearity of the concentration difference plot. It is concluded that in the nM infusion range, the ZNF method is unable to distinguish whether or not the tissue clearance process is nonlinear. During electrical stimulation, neurotransmitter overflow may cause the microdialysis ZNF method to exhibit nonlinearity.
Collapse
Affiliation(s)
- Kevin C Chen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive MSC 4264, Building 37, Room 5120, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
27
|
Chen KC, Höistad M, Kehr J, Fuxe K, Nicholson C. Quantitative dual-probe microdialysis: mathematical model and analysis. J Neurochem 2002; 81:94-107. [PMID: 12067242 DOI: 10.1046/j.1471-4159.2002.00792.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.
Collapse
Affiliation(s)
- Kevin C Chen
- Department of Physiology and Neuroscience, New York University Medical School, New York 10016, USA
| | | | | | | | | |
Collapse
|