1
|
Beyer AS, von Einem B, Schwanzar D, Keller IE, Hellrung A, Thal DR, Ingelsson M, Makarova A, Deng M, Chhabra ES, Pröpper C, Böckers TM, Hyman BT, von Arnim CA. Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-β precursor protein. Neurobiol Aging 2012; 33:732-43. [DOI: 10.1016/j.neurobiolaging.2010.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 01/22/2023]
|
2
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Kwon OY, Hwang K, Kim JA, Kim K, Kwon IC, Song HK, Jeon H. Dab1 binds to Fe65 and diminishes the effect of Fe65 or LRP1 on APP processing. J Cell Biochem 2010; 111:508-19. [DOI: 10.1002/jcb.22738] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Abstract
The FE65s (FE65, FE65L1, and FE65L2) are a family of multidomain adaptor proteins that form multiprotein complexes with a range of functions. FE65 is brain-enriched, whereas FE65L1 and FE65L2 are more widely expressed. All three members contain a WW domain and two PTB domains. Through the PTB2 domain, they all interact with the Alzheimer's disease amyloid precursor protein (APP) intracellular domain (AICD) and can alter APP processing. After sequential proteolytic processing of membrane-bound APP and release of AICD to the cytoplasm, FE65 can translocate to the nucleus to participate in gene transcription events. This role is further mediated by interactions of FE65 PTB1 with the transcription factors CP2/LSF/LBP1 and Tip60 and the WW domain with the nucleosome assembly factor SET. However, FE65 target genes have not yet been confirmed. The FE65 PTB1 domain also interacts with two cell surface lipoproteins receptors, the low-density lipoprotein receptor-related protein (LRP) and ApoEr2, forming trimeric complexes with APP. The FE55 WW domain also binds to mena, through which it functions in regulation of the actin cytoskeleton, cell motility, and neuronal growth cone formation. While single knockout mice appear normal, double FE65(-/-)/FE65L1(-/-) mice have substantial neurodevelopmental defects. These include heterotopic neurons and axonal pathfinding defects, findings similar to findings in both Mena and triple APP:APLP1:APLP2 knockout mice and also lissencephalopathies in humans. Thus APPs, FE65s, and mena may act together in a developmental signalling pathway. This article reviews the known functions of the FE65 family and their role in APP function and Alzheimer's disease.
Collapse
Affiliation(s)
- Declan M McLoughlin
- Section of Old Age Psychiatry, Institute of Psychiatry, King's College London, MRC Centre for Neurodegeneration Research, London, United Kingdom.
| | | |
Collapse
|
5
|
Abstract
The beta-amyloid precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, but its normal functions in the brain are poorly understood. A number of APP-interacting proteins have been identified: intracellularly, APP interacts with adaptor proteins through its conserved NPXY domain; extracellularly, APP interacts with a component of the extracellular matrix, F-spondin. Interestingly, many of these APP-interacting proteins also interact with the family of receptors for apolipoprotein E (apoE), the Alzheimer's disease risk factor. apoE receptors also share with APP the fact that they are cleaved by the same secretase activities. apoE receptors are shed from the cell surface, a cleavage that is regulated by receptor-ligand interactions, and C-terminal fragments of apoE receptors are cleaved by gamma-secretase. Functionally, both APP and apoE receptors affect neuronal migration and synapse formation in the brain. This review summarizes these numerous interactions between APP and apoE receptors, which provide clues about the normal functions of APP.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University, Washington, District of Columbia 20007, USA
| | | |
Collapse
|
6
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
7
|
Regulated proteolysis of APP and ApoE receptors. Mol Neurobiol 2008; 37:64-72. [PMID: 18415033 DOI: 10.1007/s12035-008-8017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
The beta-amyloid precursor protein (APP) shares intracellular and extracellular-binding partners with the family of receptors for apolipoprotein E (apoE). Binding of APP and apoE receptors to specific extracellular matrix proteins (F-spondin and Reelin) promotes their presence on the cell surface and influences whether they will interact with specific cytoplasmic adaptor proteins. Cleavage of APP and apoE receptors at the cell surface occurs by alpha-secretase activities; thus, the processing of these proteins can be regulated by their trafficking either to or from the cell surface. Their cleavages can also be regulated by tissue inhibitor of metalloproteinase-3 (TIMP-3), a metalloprotease inhibitor in the extracellular matrix. ApoE receptors have functions in neuronal migration during development and in proper synaptic function in the adult. Thus, the functions of apoE receptors and by analogy of APP will be modified by the various extracellular and intracellular interactions reviewed in this paper.
Collapse
|
8
|
Pawluczyk IZA, Patel SR, Harris KPG. Perindoprilat modulates the activity of lipoprotein receptor-related protein in human mesangial cells. J Biol Chem 2008; 283:4588-94. [PMID: 18156630 DOI: 10.1074/jbc.m709001200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic receptor implicated in the modulation of a number of cellular processes, including the turnover of proteases and the degradation of extracellular matrix proteins. As such, it can play a key role in the control of fibrosis. The aim of this investigation was to ascertain whether the anti-fibrotic effects exerted by the angiotensin-converting enzyme inhibitor (ACE-I) perindoprilat on macrophage-conditioned medium (MPCM)-injured human mesangial cells can be modulated by this receptor. Addition of receptor-associated protein to MPCM-injured mesangial cells with and without ACE-I increased the amount of tissue plasminogen activator protein detected in mesangial cell culture supernatants without affecting the protein levels of plasminogen activator inhibitor-1. The ability of ACE-I to reduce fibronectin was diminished in the presence of receptor-associated protein. ACE-I induced an increase in mesangial cell MMP9 mRNA, but reduced the MMP9 enzyme activity detected in mesangial cell supernatants. Mesangial cell lysates from ACE-I-treated cells were able to bind immobilized fibronectin at higher dilutions than cell lysates from untreated cells. Flow cytometry showed that MPCM induced an increase in LRP surface expression in mesangial cells over that in control cells and that this expression was further increased by ACE-I treatment. The increase in LRP expression in response to ACE-I was also observed by Western blotting. Northern blot analysis of RNA extracted from cells following a 24-h exposure to MPCM with and without ACE-I demonstrated that there was no change in LRP mRNA expression upon ACE-I treatment. In conclusion, we show that ACE-I treatment is able to modulate mesangial cell-surface expression of LRP, providing an additional mechanism whereby ACE-Is can mediate anti-fibrotic actions independent of their hemodynamic actions.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- John Walls Renal Unit, Leicester General Hospital, and Department of Infection, Immunity, and Inflammation, University of Leicester, UK.
| | | | | |
Collapse
|
9
|
Gavín R, Ureña J, Rangel A, Pastrana MA, Requena JR, Soriano E, Aguzzi A, Del Río JA. Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Neurobiol Dis 2008; 30:243-54. [PMID: 18374587 DOI: 10.1016/j.nbd.2008.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 01/30/2008] [Accepted: 02/01/2008] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease and prion diseases (e.g., Creutzfeldt-Jakob disease) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. However, the intracellular events in prion diseases and their relation with the processing of the amyloid precursor protein (APP) and beta-amyloid generation are unknown. The adaptor protein Dab1 may regulate intracellular trafficking and secretase-mediated proteolysis in APP processing. However, a putative relationship between prion diseases and Dab1/APP interactions is lacking. Thus, we examined, in inoculated animals, whether Dab1 and APP processing are targets of the intracellular events triggered by extracellular exposure to PrP(106-126) peptide. Our in vitro results indicate that PrP(106-126) peptide induces tyrosine phosphorylation of Dab1 by activated members of the Src family of tyrosine kinases (SFK), which implies further Dab1 degradation. We also corroborate these results in Dab1 protein levels in prion-inoculated hamsters. Finally, we show that fibrillar prion peptides have a dual effect on APP processing and beta-amyloid production. First, they block APP trafficking at the cell membrane, thus decreasing beta-amyloid production. In parallel, they reduce Dab1 levels, which also alter APP processing. Lastly, neuronal cultures from Dab1-deficient mice showed severe impairment of APP processing with reduced sAPP secretion and A beta production after prion peptide incubation. Taken together, these data indicate a link between intracellular events induced by exposure to extracellular fibrillar peptide or PrP(res), and APP processing and implicate Dab1 in this link.
Collapse
Affiliation(s)
- Rosalina Gavín
- Cellular and Molecular Basis of Neurodegeneration and Neurorepair, Department of Cell Biology, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 2008; 27:14459-69. [PMID: 18160654 DOI: 10.1523/jneurosci.4701-07.2007] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Physiological processing of the beta-amyloid precursor protein (APP) generates amyloid beta-protein, which can assemble into oligomers that mediate synaptic failure in Alzheimer's disease. Two decades of research have led to human trials of compounds that chronically target this processing, and yet the normal function of APP in vivo remains unclear. We used the method of in utero electroporation of shRNA constructs into the developing cortex to acutely knock down APP in rodents. This approach revealed that neuronal precursor cells in embryonic cortex require APP to migrate correctly into the nascent cortical plate. cDNAs encoding human APP or its homologues, amyloid precursor-like protein 1 (APLP1) or APLP2, fully rescued the shRNA-mediated migration defect. Analysis of an array of mutations and deletions in APP revealed that both the extracellular and cytoplasmic domains of APP are required for efficient rescue. Whereas knock-down of APP inhibited cortical plate entry, overexpression of APP caused accelerated migration of cells past the cortical plate boundary, confirming that normal APP levels are required for correct neuronal migration. In addition, we found that Disabled-1 (Dab1), an adaptor protein with a well established role in cortical cell migration, acts downstream of APP for this function in cortical plate entry. We conclude that full-length APP functions as an important factor for proper migration of neuronal precursors into the cortical plate during the development of the mammalian brain.
Collapse
|
11
|
Ho A, Morishita W, Atasoy D, Liu X, Tabuchi K, Hammer RE, Malenka RC, Südhof TC. Genetic analysis of Mint/X11 proteins: essential presynaptic functions of a neuronal adaptor protein family. J Neurosci 2007; 26:13089-101. [PMID: 17167098 PMCID: PMC6674967 DOI: 10.1523/jneurosci.2855-06.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mints/X11s are adaptor proteins composed of three isoforms: neuron-specific Mints 1 and 2, and the ubiquitously expressed Mint 3. We have now analyzed constitutive and conditional knock-out mice for all three Mints/X11s. We found that approximately 80% of mice lacking both neuron-specific Mint isoforms (Mints 1 and 2) die at birth, whereas mice lacking any other combination of Mint isoforms survive normally. The approximately 20% surviving Mint 1/2 double knock-out mice exhibit a decrease in weight and deficits in motor behaviors. Hippocampal slice electrophysiology uncovered a decline in spontaneous neurotransmitter release, lowered synaptic strength, and enhanced paired-pulse facilitation in Mint-deficient mice, suggesting a decreased presynaptic release probability. Acute ablation of Mint expression in cultured neurons from conditional Mint 1/2/3 triple knock-in mice also revealed a decline in spontaneous release, confirming that deletion of Mints impair presynaptic function. Quantitation of synaptic proteins showed that acute deletion of Mints caused a selective increase in Munc18-1 and Fe65 proteins, and overexpression of Munc18-1 in wild-type neurons also produced a decrease in spontaneous release, suggesting that the interaction of Mints with Munc18-1 may contribute to the presynaptic phenotype observed in Mint-deficient mice. Our studies thus indicate that Mints are important regulators of presynaptic neurotransmitter release that are essential for mouse survival.
Collapse
Affiliation(s)
| | - Wade Morishita
- Department of Psychiatry and Behavioral Sciences, Nancy Friend Pritzker Laboratory, Stanford University School of Medicine, Stanford, California 94304
| | | | | | | | - Robert E. Hammer
- Biochemistry, and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, and
| | - Robert C. Malenka
- Department of Psychiatry and Behavioral Sciences, Nancy Friend Pritzker Laboratory, Stanford University School of Medicine, Stanford, California 94304
| | - Thomas C. Südhof
- Center for Basic Neuroscience
- Departments of Molecular Genetics and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111, and
| |
Collapse
|
12
|
Carter CJ. Convergence of genes implicated in Alzheimer's disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int 2006; 50:12-38. [PMID: 16973241 DOI: 10.1016/j.neuint.2006.07.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Polymorphic genes associated with Alzheimer's disease (see ) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. GSK3B is known to phosphorylate the microtubule protein tau (MAPT). Dysfunction of this cascade, carved out by genes implicated in Alzheimer's disease, may play a major role in its pathology. Many other genes associated with Alzheimer's disease affect cholesterol or lipoprotein function and/or have also been implicated in atherosclerosis, a feature of Alzheimer's disease, and this duality may well explain the close links between vascular and cerebral pathology in Alzheimer's disease. The definition of many of these genes as risk factors is highly contested. However, when polymorphic susceptibility genes belong to the same signaling pathway, the risk associated with multigenic disease is better related to the integrated effects of multiple polymorphisms of genes within the same pathway than to variants in any single gene [Wu, X., Gu, J., Grossman, H.B., Amos, C.I., Etzel, C., Huang, M., Zhang, Q., Millikan, R.E., Lerner, S., Dinney, C.P., Spitz, M.R., 2006. Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am. J. Hum. Genet. 78, 464-479.]. Thus, the fact that Alzheimer's disease susceptibility genes converge on a clearly defined signaling network has important implications for genetic association studies.
Collapse
|
13
|
Hoe HS, Tran TS, Matsuoka Y, Howell BW, Rebeck GW. DAB1 and Reelin effects on amyloid precursor protein and ApoE receptor 2 trafficking and processing. J Biol Chem 2006; 281:35176-85. [PMID: 16951405 DOI: 10.1074/jbc.m602162200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous cytoplasmic adaptor proteins, including JIP1, FE65, and X11alpha, affect amyloid precursor protein (APP) processing and Abeta production. Dab1 is another adaptor protein that interacts with APP as well as with members of the apoE receptor family. We examined the effect of Dab1 on APP and apoEr2 processing in transfected cells and primary neurons. Dab1 interacted with APP and apoEr2 and increased levels of their secreted extracellular domains and their cytoplasmic C-terminal fragments. These effects depended on the NPXY domains of APP and apoEr2 and on the phosphotyrosine binding domain of Dab1 but did not depend on phosphorylation of Dab1. Dab1 decreased the levels of APP beta-C-terminal fragment and secreted Abeta. Full-length Dab1 or its phosphotyrosine binding domain alone increased surface levels of APP, as determined by surface protein biotinylation and live cell staining. A ligand for apoEr2, the extracellular matrix protein Reelin, significantly increased the interaction of apoEr2 with Dab1. Surprisingly, we also found that Reelin treatment significantly increased the interaction of APP and Dab1. Moreover, Reelin treatment increased cleavage of APP and apoEr2 and decreased production of the beta-C-terminal fragment of APP and Abeta. Together, these data suggest that Dab1 alters trafficking and processing of APP and apoEr2, and this effect is influenced by extracellular ligands.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | |
Collapse
|
14
|
Hoe HS, Magill LA, Guenette S, Fu Z, Vicini S, Rebeck GW. FE65 Interaction with the ApoE Receptor ApoEr2. J Biol Chem 2006; 281:24521-30. [PMID: 16638748 DOI: 10.1074/jbc.m600728200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein FE65 interacts with the beta-amyloid precursor protein (APP) via its C-terminal phosphotyrosine binding (PTB) domain and affects APP processing and Abeta production. Our previous data demonstrate that the apoE receptor ApoEr2 co-precipitated with APP and suggest that there are extracellular and intracellular interactions between these two transmembrane proteins. We hypothesized that FE65 acts as an intracellular link between ApoEr2 and APP. Co-immunoprecipitation experiments in COS7 cells demonstrated an interaction between ApoEr2 and FE65 that depended on the N-terminal PTB domain of FE65. Full-length FE65 increased co-immunoprecipitation of ApoEr2 and APP. Full-length FE65 also increased surface expression of ApoEr2, as determined by surface protein biotinylation and live cell surface staining. Constructs containing both the C- and N-terminal PTB domains of FE65 increased secreted APP, secreted ApoEr2, APP C-terminal fragment, and ApoEr2 C-terminal fragment, but constructs containing only single PTB domains did not affect APP or ApoEr2 processing. In addition, full-length FE65 decreased Abeta to a significantly greater extent than individual FE65 domains. These data suggest that FE65 can bind APP and ApoEr2 at the same time and affect the processing of each.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20057-1464, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW. F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol 2005; 25:9259-68. [PMID: 16227578 PMCID: PMC1265841 DOI: 10.1128/mcb.25.21.9259-9268.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A recent study showed that F-spondin, a protein associated with the extracellular matrix, interacted with amyloid precursor protein (APP) and inhibited beta-secretase cleavage. F-spondin contains a thrombospondin domain that we hypothesized could interact with the family of receptors for apolipoprotein E (apoE). Through coimmunoprecipitation experiments, we demonstrated that F-spondin interacts with an apoE receptor (apoE receptor 2 [ApoEr2]) through the thrombospondin domain of F-spondin and the ligand binding domain of ApoEr2. Full-length F-spondin increased coimmunoprecipitation of ApoEr2 and APP in transfected cells and primary neurons and increased surface expression of APP and ApoEr2. Full-length F-spondin, but none of the individual F-spondin domains, increased cleavage of APP and ApoEr2, resulting in more secreted forms of APP and ApoEr2 and more C-terminal fragments (CTF) of these proteins. In addition, full-length F-spondin, but not the individual domains, decreased production of the beta-CTF of APP and Abeta in transfected cells and primary neurons. The reduction in APP beta-CTF was blocked by receptor-associated protein (RAP), an inhibitor of lipoprotein receptors, implicating ApoEr2 in the altered proteolysis of APP. ApoEr2 coprecipitated with APP alpha- and beta-CTF, and F-spondin reduced the levels of APP intracellular domain signaling, suggesting that there are also intracellular interactions between APP and ApoEr2, perhaps involving adaptor proteins. These studies suggest that the extracellular matrix molecule F-spondin can cluster APP and ApoEr2 together on the cell surface and affect the processing of each, resulting in decreased production of Abeta.
Collapse
Affiliation(s)
- Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057-1464, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pietrzik CU, Yoon IS, Jaeger S, Busse T, Weggen S, Koo EH. FE65 constitutes the functional link between the low-density lipoprotein receptor-related protein and the amyloid precursor protein. J Neurosci 2004; 24:4259-65. [PMID: 15115822 PMCID: PMC6729272 DOI: 10.1523/jneurosci.5451-03.2004] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence has implicated the low density lipoprotein receptor-related protein (LRP) and the adaptor protein FE65 in Alzheimer's disease pathogenesis. We have shown previously that LRP mediates beta-amyloid precursor protein (APP) processing and affects amyloid beta-protein and APP secretion and APP-c-terminal fragment generation. Furthermore, LRP mediates APP processing through its intracellular domain. Here, we set out to examine whether this interaction is of direct or indirect nature. Specifically, we asked whether adaptor proteins such as FE65 influence the LRP-mediated effect on APP processing by forming a protein complex. In coimmunoprecipitation experiments, we confirmed the postulated APP-FE65 and the LRP-FE65 interaction. However, we also showed an LRP-FE65-APP trimeric complex using pull-down techniques. Because FE65 alters APP processing, we investigated whether this effect is LRP dependent. Indeed, FE65 was only able to increase APP secretion in the presence of LRP. In the absence of LRP, APP secretion was unchanged compared with the LRP knock-out phenotype. Using RNA short interference techniques against FE65, we demonstrated that a reduction in FE65 protein mimics the LRP knock-out phenotype on APP processing. These results clearly demonstrate that FE65 acts as a functional linker between APP and LRP.
Collapse
Affiliation(s)
- Claus U Pietrzik
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV. LRP/Amyloid β-Peptide Interaction Mediates Differential Brain Efflux of Aβ Isoforms. Neuron 2004; 43:333-44. [PMID: 15294142 DOI: 10.1016/j.neuron.2004.07.017] [Citation(s) in RCA: 621] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 04/23/2004] [Accepted: 07/14/2004] [Indexed: 11/20/2022]
Abstract
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations > 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.
Collapse
Affiliation(s)
- Rashid Deane
- Frank P. Smith Laboratories for Neuroscience and Neurosurgical Research, Department of Neurosurgery, Arthur Kornberg Medical Research Building, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
King GD, Scott Turner R. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp Neurol 2004; 185:208-19. [PMID: 14736502 DOI: 10.1016/j.expneurol.2003.10.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cytoplasmic C-terminus of APP plays critical roles in its cellular trafficking and delivery to proteases. Adaptor proteins with phosphotyrosine-binding (PTB) domains, including those in the X11, Fe65, and c-Jun N-terminal kinase (JNK)-interacting protein (JIP) families, bind specifically to the absolutely conserved -YENPTY- motif in the APP C-terminus to regulate its trafficking and processing. Compounds that modulate APP-adaptor protein interactions may inhibit Abeta generation by specifically targeting the substrate (APP) instead of the enzyme (beta- or gamma-secretase). Genetic polymorphisms in (or near) adaptor proteins may influence risk of sporadic AD by interacting with APP in vivo to modulate its trafficking and processing to Abeta.
Collapse
Affiliation(s)
- Gwendalyn D King
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
19
|
Kinoshita A, Shah T, Tangredi MM, Strickland DK, Hyman BT. The intracellular domain of the low density lipoprotein receptor-related protein modulates transactivation mediated by amyloid precursor protein and Fe65. J Biol Chem 2003; 278:41182-8. [PMID: 12888553 DOI: 10.1074/jbc.m306403200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein-related protein (LRP) is a transmembrane receptor, localized mainly in hepatocytes, fibroblasts, and neurons. It is implicated in diverse biological processes both as an endocytic receptor and as a signaling molecule. Recent reports show that LRP undergoes sequential proteolytic cleavage in the ectodomain and transmembrane domain. The latter cleavage, mediated by the Alzheimer-related gamma-secretase activity that also cleaves amyloid precursor protein (APP) and Notch, results in the release of the LRP cytoplasmic domain (LRPICD) fragment. This relatively small cytoplasmic fragment has several motifs by which LRP interacts with various intracellular adaptor and scaffold proteins. However, the function of this fragment is largely unknown. Here we show that the LRPICD is translocated to the nucleus, where it colocalizes in the nucleus with a transcription modulator, Tip60, which is known to interact with Fe65 and with the APP-derived intracellular domain. LRPICD dramatically inhibits APP-derived intracellular domain/Fe65 transactivation mediated by Tip60. LRPICD has a close interaction with Tip60 in the nucleus, as shown by a fluorescence resonance energy transfer assay. These observations suggest that LRPICD has a novel signaling function, negatively impacting transcriptional activity of the APP, Fe65, and Tip60 complex in the nucleus, and shed new light on the function of LRP in transcriptional modulation.
Collapse
Affiliation(s)
- Ayae Kinoshita
- Alzheimer Disease Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
20
|
Chang Y, Tesco G, Jeong WJ, Lindsley L, Eckman EA, Eckman CB, Tanzi RE, Guénette SY. Generation of the beta-amyloid peptide and the amyloid precursor protein C-terminal fragment gamma are potentiated by FE65L1. J Biol Chem 2003; 278:51100-7. [PMID: 14527950 DOI: 10.1074/jbc.m309561200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the FE65 family of adaptor proteins, FE65, FE65L1, and FE65L2, bind the C-terminal region of the amyloid precursor protein (APP). Overexpression of FE65 and FE65L1 was previously reported to increase the levels of alpha-secretase-derived APP (APPs alpha). Increased beta-amyloid (A beta) generation was also observed in cells showing the FE65-dependent increase in APPs alpha. To understand the mechanism for the observed increase in both A beta and APPs alpha given that alpha-secretase cleavage of a single APP molecule precludes A beta generation, we examined the effects of FE65L1 overexpression on APP C-terminal fragments (APP CTFs). Our data show that FE65L1 potentiates gamma-secretase processing of APP CTFs, including the amyloidogenic CTF C99, accounting for the ability of FE65L1 to increase generation of APP C-terminal domain and A beta 40. The FE65L1 modulation of these processing events requires binding of FE65L1 to APP and APP CTFs and is not because of a direct effect on gamma-secretase activity, because Notch intracellular domain generation is not altered by FE65L1. Furthermore, enhanced APP CTF processing can be detected in early endosome vesicles but not in endoplasmic reticulum or Golgi membranes, suggesting that the effects of FE65L1 occur at or near the plasma membrane. Finally, although FE65L1 increases APP C-terminal domain production, it does not mediate the APP-dependent transcriptional activation observed with FE65.
Collapse
Affiliation(s)
- Yang Chang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129-4404, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rouvinski A, Gahali-Sass I, Stav I, Metzer E, Atlan H, Taraboulos A. Both raft- and non-raft proteins associate with CHAPS-insoluble complexes: some APP in large complexes. Biochem Biophys Res Commun 2003; 308:750-8. [PMID: 12927782 DOI: 10.1016/s0006-291x(03)01470-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Components of caveolae and lipid rafts are characterized by their buoyancy after detergent extraction. Using flotations in density gradients, we now show that non-raft membrane molecules are also associated with detergent-insoluble, buoyant assemblies. When Triton X-100 cellular extracts were spun to equilibrium in Nycodenz, only components of classical rafts floated. In contrast, with the zwitterionic detergent CHAPS, non-raft residents such as calnexin and APP also buoyed. When CHAPS extracts were spun in non-equilibrium (velocity) conditions, some raft components rapidly exited the input fractions while other raft markers and non-raft molecules remained relatively immobile. This pointed to size heterogeneities of CHAPS-insoluble complexes. Combined velocity/equilibrium gradients broadly divided CHAPS-insoluble membrane complexes into three size categories, which all contained cholesterol and the glycosphingolipid GM1. Large complexes were enriched in caveolin and ESA. Medium size complexes were enriched in PrP, whereas small complexes contained non-raft proteins, PrP, and some ESA. While Alzheimer's APP was primarily confined to small assemblies, a portion of its glycosylated form did buoy with large complexes. Large CHAPS-insoluble complexes resemble, but are not equal to, classical rafts. These findings extend considerably the range of detergent-insoluble membranal domains.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|