1
|
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 2019; 138:221-236. [PMID: 30982098 PMCID: PMC6660578 DOI: 10.1007/s00401-019-02004-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.
Collapse
Affiliation(s)
- Pierre Dourlen
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Devrim Kilinc
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Nicolas Malmanche
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Julien Chapuis
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Jean-Charles Lambert
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France.
| |
Collapse
|
2
|
Keenan S, Lewis PA, Wetherill SJ, Dunning CJR, Evans GJO. The N2-Src neuronal splice variant of C-Src has altered SH3 domain ligand specificity and a higher constitutive activity than N1-Src. FEBS Lett 2015; 589:1995-2000. [PMID: 26026271 PMCID: PMC4509517 DOI: 10.1016/j.febslet.2015.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 10/25/2022]
Abstract
N2-Src is a poorly understood neuronal splice variant of the ubiquitous C-Src tyrosine kinase, containing a 17 amino acid insert in its Src homology 3 (SH3) domain. To characterise the properties of N2-Src we directly compared its SH3 domain specificity and kinase activity with C- and N1-Src in vitro. N2- and N1-Src had a similar low affinity for the phosphorylation of substrates containing canonical C-Src SH3 ligands and synaptophysin, an established neuronal substrate for C-Src. N2-Src also had a higher basal kinase activity than N1- and C-Src in vitro and in cells, which could be explained by weakened intramolecular interactions. Therefore, N2-Src is a highly active kinase that is likely to phosphorylate alternative substrates to C-Src in the brain.
Collapse
Affiliation(s)
- Sarah Keenan
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Philip A Lewis
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sarah J Wetherill
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Christopher J R Dunning
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology and Hull York Medical School, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
3
|
Carrim N, Walsh TG, Consonni A, Torti M, Berndt MC, Metharom P. Role of focal adhesion tyrosine kinases in GPVI-dependent platelet activation and reactive oxygen species formation. PLoS One 2014; 9:e113679. [PMID: 25415317 PMCID: PMC4240642 DOI: 10.1371/journal.pone.0113679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/29/2014] [Indexed: 01/22/2023] Open
Abstract
Background We have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI. Aims To evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway. Methods and Results Human and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, α-granule secretion (P-selectin (CD62P) surface expression) and integrin αIIbβ3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLCγ2, Ca2+ release, PKC, Hic-5, NOX1 and αIIbβ3 activation. Conclusion Overall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway.
Collapse
Affiliation(s)
- Naadiya Carrim
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tony G. Walsh
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alessandra Consonni
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Mauro Torti
- Laboratories of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michael C. Berndt
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Pat Metharom
- Department of Experimental Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail:
| |
Collapse
|
4
|
Amphiphysin 2 (BIN1) in physiology and diseases. J Mol Med (Berl) 2014; 92:453-63. [DOI: 10.1007/s00109-014-1138-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022]
|
5
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
6
|
Fan H, Zhao X, Sun S, Luo M, Guan JL. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial-mesenchymal transition and mammary cancer stem cell activities in vivo. J Biol Chem 2012; 288:3322-33. [PMID: 23255596 DOI: 10.1074/jbc.m112.420497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinases have been shown to play critical roles in cancer development and progression, and their inhibitors hold the potential as effective targeted therapies for breast and other cancers. However, some of these kinases like focal adhesion kinase (FAK) also possess scaffolding functions in intracellular signaling, but such kinase-independent functions of FAK or other kinases have not been examined in cancer directly in vivo. Here, we report that disruption of the function of FAK scaffolding through its Pro-878/881 motif suppressed mammary tumor growth and metastasis in a well characterized murine model of human breast cancer. P878A/P881A mutation in the endogenous FAK gene decreased the expression of markers for epithelial-mesenchymal transition (EMT) and mammary cancer stem cell (MaCSC) activities in tumors derived from mutant mice. This mutation disrupted the function of FAK scaffolding to mediate endophilin A2 phosphorylation at Tyr-315 by Src, leading to the decreased surface expression of MT1-MMP, as observed previously in transformed fibroblasts in vitro. Inhibition of the downstream components of this FAK scaffolding function by Y315F endophilin A2 mutant or MT1-MMP knockdown reduced markers for EMT and MaCSC activities. Conversely, bypass of the scaffolding function using the phosphorylation mimic mutant Y315E endophilin A2 or endophilin A2 knockdown rescued the decreased markers for EMT and MaCSCs as well as surface expression of MT1-MMP in tumor cells harboring the P878A/P881A mutation. Together, these results identify a novel role of FAK scaffolding function in breast cancer, which could serve as a new target in combination with kinase inhibition for more effective treatment strategies.
Collapse
Affiliation(s)
- Huaping Fan
- Division of Molecular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
7
|
Kinsey WH. Intersecting roles of protein tyrosine kinase and calcium signaling during fertilization. Cell Calcium 2012. [PMID: 23201334 DOI: 10.1016/j.ceca.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The oocyte is a highly specialized cell that must respond to fertilization with a preprogrammed series of signal transduction events that establish a block to polyspermy, trigger resumption of the cell cycle and execution of a developmental program. The fertilization-induced calcium transient is a key signal that initiates the process of oocyte activation and studies over the last several years have examined the signaling pathways that act upstream and downstream of this calcium transient. Protein tyrosine kinase signaling was found to be an important component of the upstream pathways that stimulated calcium release at fertilization in oocytes from animals that fertilize externally, but a similar pathway has not been found in mammals which fertilize internally. The following review will examine the diversity of signaling in oocytes from marine invertebrates, amphibians, fish and mammals in an attempt to understand the basis for the observed differences. In addition to the pathways upstream of the fertilization-induced calcium transient, recent studies are beginning to unravel the role of protein tyrosine kinase signaling downstream of the calcium transient. The PYK2 kinase was found to respond to fertilization in the zebrafish system and seems to represent a novel component of the response of the oocyte to fertilization. The potential impact of impaired PTK signaling in oocyte quality will also be discussed.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
8
|
Asimaki O, Leondaritis G, Lois G, Sakellaridis N, Mangoura D. Cannabinoid 1 receptor-dependent transactivation of fibroblast growth factor receptor 1 emanates from lipid rafts and amplifies extracellular signal-regulated kinase 1/2 activation in embryonic cortical neurons. J Neurochem 2011; 116:866-73. [DOI: 10.1111/j.1471-4159.2010.07030.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Marin V, Groveman BR, Qiao H, Xu J, Ali MK, Fang XQ, Lin SX, Rizkallah R, Hurt MH, Bienkiewicz EA, Yu XM. Characterization of neuronal Src kinase purified from a bacterial expression system. Protein Expr Purif 2010; 74:289-97. [PMID: 20558296 DOI: 10.1016/j.pep.2010.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/17/2022]
Abstract
Neuronal Src (n-Src) is an alternative isoform of Src kinase containing a 6-amino acid insert in the SH3 domain that is highly expressed in neurons of the central nervous system (CNS). To investigate the function of n-Src, wild-type n-Src, constitutively active n-Src in which the C-tail tyrosine 535 was mutated to phenylalanine (n-Src/Y535F) and inactive n-Src in which the lysine 303 was mutated to arginine in addition to the mutation of Y535F (n-Src/K303R/Y535F), were expressed and purified from Escherichia coli BL21(DE3) cells. We found that all three types of n-Src constructs expressed at very high yields (∼500 mg/L) at 37°C, but formed inclusion bodies. In the presence of 8M urea these proteins could be solubilized, purified under denaturing conditions, and subsequently refolded in the presence of arginine (0.5M). These Src proteins were enzymatically active except for the n-Src/K303R/Y535F mutant. n-Src proteins expressed at 18°C were soluble, albeit at lower yields (∼10-20 mg/L). The lowest yields were for n-Src/Y535F (∼10 mg/L) and the highest for n-Src/K303R/Y535F (∼20 mg/L). We characterized the purified n-Src proteins expressed at 18°C. We found that altering n-Src enzyme activity either pharmacologically (e.g., application of ATP or a Src inhibitor) or genetically (mutation of Y535 or K303) was consistently associated with changes in n-Src stability: an increase in n-Src activity was coupled with a decrease in n-Src stability and vice versa. These findings, therefore, indicate that n-Src activity and stability are interdependent. Finally, the successful production of functionally active n-Src in this study indicates that the bacterial expression system may be a useful protein source in future investigations of n-Src regulation and function.
Collapse
Affiliation(s)
- Vedrana Marin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Teutschbein J, Schartl M, Meierjohann S. Interaction of Xiphophorus and murine Fyn with focal adhesion kinase. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:168-74. [PMID: 18930841 DOI: 10.1016/j.cbpc.2008.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022]
Abstract
The Src family kinase/Focal Adhesion Kinase (FAK) complex is a signaling platform playing a crucial role in transformation downstream of oncogenic growth factor receptors. In the case of melanoma in Xiphophorus fish, the oncogenic EGF receptor orthologue Xiphophorus melanoma receptor kinase (Xmrk) effects continuous activation of the Src family kinase Fyn, but not of the other family members Src or Yes. Here, Fyn is strongly involved in promoting many tumorigenic events. Although Fyn is expressed in most mammalian tissues, there are only few reports of its involvement in the development of solid tumors. To find out whether the prominent role of Xiphophorus Fyn is based on an altered binding to its important binding partner FAK when compared to its mammalian Fyn counterparts, we performed yeast-two-hybrid analyses. We compared Xiphophorus and murine Fyn with respect to their binding to full-length and truncated FAK constructs. We found that interaction with FAK occurs similarly for Xiphophorus and mouse Fyn. Both phosphorylated FAK residue Y397 and FAK proline-rich domain are involved in Fyn binding. We also found interaction of FAK and Fyn in human melanoma cell lines. These data suggest a possible, yet unrecognized role of Fyn in the tumorigenesis of human melanoma, too.
Collapse
Affiliation(s)
- Janka Teutschbein
- Physiological Chemistry I, University of Würzburg, Biocenter, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
11
|
Watanabe F, Miyazaki T, Takeuchi T, Fukaya M, Nomura T, Noguchi S, Mori H, Sakimura K, Watanabe M, Mishina M. Effects of FAK ablation on cerebellar foliation, Bergmann glia positioning and climbing fiber territory on Purkinje cells. Eur J Neurosci 2008; 27:836-54. [PMID: 18279360 DOI: 10.1111/j.1460-9568.2008.06069.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is widely expressed in the brain, and plays key roles in various cellular processes in response to both extracellular and intracellular stimuli. Here, we explored the role of FAK in cerebellar development. In the mouse cerebellum, FAK was found to be distributed as tiny cytoplasmic aggregates in various neuronal and glial elements, including Purkinje cells (PCs), Bergmann glia (BG), parallel fiber (PF)-terminals and climbing fiber (CF)-terminals. The neuron/glia-specific ablation of FAK impaired cerebellar foliation, such as variable decreases in foliation sizes and the lack of intercrural and precentral fissures. Some of the BG cells became situated ectopically in the molecular layer. Furthermore, the FAK ablation altered the innervation territories of CFs and PFs on PCs. CF innervation regressed to the basal portion of proximal dendrites and somata, whereas ectopic spines protruded from proximal dendrites and PFs expanded their territory by innervating the ectopic spines. Furthermore, the persistence of surplus CFs innervating PC somata caused multiple innervation. When FAK was selectively ablated in PCs, diminished dendritic innervation and persistent somatic innervation by CFs were observed, whereas cerebellar foliation and cell positioning of BG were normally retained. These results suggest that FAK in various neuronal and glial elements is required for the formation of normal histoarchitecture and cytoarchitecture in the cerebellum, and for the construction of proper innervation territory and synaptic wiring in PCs.
Collapse
Affiliation(s)
- Fumihiro Watanabe
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dahmani S, Rouelle D, Gressens P, Mantz J. The Effects of Lidocaine and Bupivacaine on Protein Expression of Cleaved Caspase 3 and Tyrosine Phosphorylation in the Rat Hippocampal Slice. Anesth Analg 2007; 104:119-23. [PMID: 17179255 DOI: 10.1213/01.ane.0000249048.56863.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Severe neurologic sequelae have been reported with the use of lidocaine after spinal anesthesia. This is considered a consequence of the high concentrations reached in the cerebrospinal fluid. We have previously shown that lidocaine increases the phosphorylation of focal adhesion kinase (FAK, a nonreceptor tyrosine kinase playing a role in neuronal plasticity and cell death). Here, we compared the effects of lidocaine and bupivacaine on FAK phosphorylation and cleaved caspase 3 expression in rat hippocampal slices. Slices were treated with increasing concentrations of lidocaine (4.3 nM to 4.3 mM) or bupivacaine (3.4 nM to 3.4 mM) in the presence or absence of the specific inhibitor of the FAK tyrosine kinase PP2 (10 microM). Caspase 3 expression and FAK phosphorylation were examined by immunoblotting. Lidocaine induced a concentration-related increase in FAK phosphorylation while the bupivacaine effect was biphasic. The maximal effect observed with millimolar lidocaine concentrations was significantly more than with clinically equipotent bupivacaine concentrations (4.3 x 10(-3) M lidocaine: 168% +/- 20%, mean value +/- sd; 10(-3) M bupivacaine: 145% +/- 19% P < 0.001). The expression of cleaved caspase 3 was increased by lidocaine, but not bupivacaine, at millimolar concentrations and was blocked by PP2. Our results indicate that millimolar concentrations of lidocaine, but not bupivacaine, increase cleaved caspase 3 expression. The role of FAK phosphorylation in this effect remains to be clarified.
Collapse
Affiliation(s)
- Souhayl Dahmani
- Department of Anesthesia, Beaujon University Hospital, Assistance Publique des Hôpitaux de Paris and Paris 7 University, Clichy, France.
| | | | | | | |
Collapse
|
13
|
Charlesworth P, Komiyama NH, Grant SGN. Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro. BMC Neurosci 2006; 7:47. [PMID: 16768796 PMCID: PMC1538614 DOI: 10.1186/1471-2202-7-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/12/2006] [Indexed: 01/28/2023] Open
Abstract
Background Genetically manipulated embryonic stem (ES) cell derived neurons (ESNs) provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK), which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice. Results Mouse ES cells carrying homozygous null mutations (FAK-/-) were generated and differentiated in vitro into neurons. FAK-/- ESNs extended axons and dendrites and formed morphologically and electrophysiologically intact synapses. A detailed study of NMDA receptor gated currents and voltage sensitive calcium currents revealed no difference in their magnitude, or modulation by tyrosine kinases. Conclusion FAK does not have an obligatory role in neuronal differentiation, synapse formation or the expression of NMDA receptor or voltage-gated calcium currents under the conditions used in this study. The use of genetically modified ESNs has great potential for rapidly and effectively examining the consequences of neuronal gene manipulation and is complementary to mouse studies.
Collapse
Affiliation(s)
- P Charlesworth
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - NH Komiyama
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - SGN Grant
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
14
|
Meierjohann S, Wende E, Kraiss A, Wellbrock C, Schartl M. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Cancer Res 2006; 66:3145-52. [PMID: 16540665 DOI: 10.1158/0008-5472.can-05-2667] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most prominent features of malignant melanoma is the fast generation of metastasizing cells, resulting in the poor prognosis of patients with this tumor type. For this process, cells must gain the ability to migrate. The oncogenic receptor Xmrk (Xiphophorus melanoma receptor kinase) from the Xiphophorus melanoma system is a mutationally activated version of the epidermal growth factor receptor that induces the malignant transformation of pigment cells. Here, we show that the activation of Xmrk leads to a clear increase of pigment cell motility in a fyn-dependent manner. Stimulation of Xmrk induces its interaction with the focal adhesion kinase (FAK) and the interaction of active, receptor-bound fyn with FAK. This results in changes in FAK activity and induces the modulation of stress fibers and focal adhesions. Overexpression of dominant-negative FAK shows that the activity of innate FAK and a receptor-induced focal adhesion turnover are a prerequisite for pigment cell migration. Our findings show that in our system, Xmrk is sufficient for the induction of pigment cell motility and underlines a role of the src family protein tyrosine kinase fyn in melanoma development and progression.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Wu X, Gan B, Yoo Y, Guan JL. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 2005; 9:185-96. [PMID: 16054026 DOI: 10.1016/j.devcel.2005.06.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 04/14/2005] [Accepted: 06/16/2005] [Indexed: 10/25/2022]
Abstract
Focal adhesion kinase (FAK) is an important mediator of integrin signaling in the regulation of cell proliferation, survival, migration, and invasion. To understand how FAK contributes to cell invasion, we explored the regulation of matrix metalloproteinases (MMPs) by FAK. We found that v-Src-transformed cells activate a FAK-dependent mechanism that attenuates endocytosis of MT1-MMP. This in turn increases cell-surface expression of MT1-MMP and cellular degradation of extracellular matrix. Further, we identified an interaction between FAK's second Pro-rich motif and endophilin A2's SH3 domain. This interaction served as an autophosphorylation-dependent scaffold to allow Src phosphorylation of endophilin A2 at Tyr315. Tyr315 phosphorylation inhibited endophilin/dynamin interactions, and blockade of Tyr315 phosphorylation promoted endocytosis of MT1-MMP. Together, these results suggest a regulatory mechanism of cell invasion whereby FAK promotes cell-surface presentation of MT1-MMP by inhibiting endophilin A2-dependent endocytosis.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
16
|
Tsai WB, Zhang X, Sharma D, Wu W, Kinsey WH. Role of Yes kinase during early zebrafish development. Dev Biol 2005; 277:129-41. [PMID: 15572145 DOI: 10.1016/j.ydbio.2004.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/26/2022]
Abstract
We have identified the Yes kinase in zebrafish eggs and investigated its role in development of the zebrafish embryo. In situ hybridization as well as immunofluorescence techniques demonstrated that Yes kinase is maternally expressed and is localized to the cortical region of the unfertilized egg. Fertilization resulted in concentration of Yes kinase to the blastodisc where it continued to be localized to the blastoderm cells through cleavage, gastrulation, and later development. Yes kinase activity was found to decrease abruptly at fertilization, then increase progressively during epiboly, and was maintained at high levels throughout gastrulation. The role of Yes kinase in development was tested by treating embryos with chemical protein tyrosine kinase (PTK) inhibitors such as 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2) and by injection of antisense morpholinos. Both treatments resulted in the arrest of development at the beginning of the epiboly. Co-immunoprecipitation studies demonstrated that Yes kinase participates in a stable complex with focal adhesion kinase (FAK), which is phosphorylated in vitro. These results demonstrate that Yes kinase plays an important role in epiboly and indicate that Yes kinase participates in signaling by focal adhesion kinase during early development.
Collapse
Affiliation(s)
- Wen-Bin Tsai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
17
|
Pahnke J, Mix E, Knoblich R, Müller J, Zschiesche M, Schubert B, Koczan D, Bauer P, Böttcher T, Thiesen HJ, Lazarov L, Wree A, Rolfs A. Overexpression of glial cell line-derived neurotrophic factor induces genes regulating migration and differentiation of neuronal progenitor cells. Exp Cell Res 2004; 297:484-94. [PMID: 15212950 DOI: 10.1016/j.yexcr.2004.03.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/16/2004] [Indexed: 12/22/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is involved in the development and maintenance of neural tissues. Mutations in components of its signaling pathway lead to severe migration deficits of neuronal crest stem cells, tumor formation, or ablation of the urinary system. In animal models of Parkinson's disease, GDNF has been recognized to be neuroprotective and to improve motor function when delivered into the cerebral ventricles or into the substantia nigra. Here, we characterize the network of 43 genes induced by GDNF overproduction of neuronal progenitor cells (ST14A), which mainly regulate migration and differentiation of neuronal progenitor cells. GDNF down-regulates doublecortin, Paf-ah1b (Lis1), dynamin, and alpha-tubulin, which are involved in neocortical lamination and cytoskeletal reorganization. Axonal guidance depends on cell-surface molecules and extracellular matrix proteins. Laminin, Mpl3, Alcam, Bin1, Id1, Id2, Id3, neuregulin1, the ephrinB2-receptor, neuritin, focal adhesion kinase (FAK), Tc10, Pdpk1, clusterin, GTP-cyclooxygenase1, and follistatin are genes up-regulated by GDNF overexpression. Moreover, we found four key enzymes of the cholesterol-synthesis pathway to be down-regulated leading to decreased farnesyl-pyrophospate production. Many proteins are anchored by farnesyl-derivates at the cell membrane. The identification of these GDNF-regulated genes may open new opportunities for directly influencing differentiation and developmental processes of neurons.
Collapse
Affiliation(s)
- Jens Pahnke
- Department of Pathology, University Hospital Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:77-102. [PMID: 15246681 DOI: 10.1016/j.bbamcr.2004.04.008] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/08/2004] [Indexed: 01/09/2023]
Abstract
Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.
Collapse
Affiliation(s)
- David D Schlaepfer
- Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|