1
|
García-Bonilla M, García-Martín ML, Muñoz-Hernández MC, Domínguez-Pinos D, Martínez-León MI, Peñalver A, Castilla L, Alonso FJ, Márquez J, Shumilov K, Hidalgo-Sánchez R, Gutiérrez A, Páez-González P, Jiménez AJ. A Distinct Metabolite Profile Correlates with Neurodegenerative Conditions and the Severity of Congenital Hydrocephalus. J Neuropathol Exp Neurol 2019; 77:1122-1136. [PMID: 30364991 DOI: 10.1093/jnen/nly097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
In congenital hydrocephalus, cerebrospinal fluid accumulation is associated with increased intracranial pressure (ICP), ischemia/hypoxia, metabolic impairment, neuronal damage, and astrocytic reaction. The aim of this study was to identify whether a metabolite profile revealing tissue responses according to the severity of hydrocephalus can be detected. The hyh mutant mouse used for this study exhibits 2 different forms of hydrocephalus, severe and moderate. In a comprehensive investigation into the 2 progressions of hydrocephalus, mice with severe hydrocephalus were found to have higher ICP and astrocytic reaction. Several metabolites from the mouse brain cortex were analyzed with 1H high-resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR) spectroscopy. A differential profile for metabolites including glutamate and glutamine was found to correlate with the severity of hydrocephalus and can be explained due to differential astrocytic reactions, neurodegenerative conditions, and the presence of ischemia. The glutamate transporter EAAT2 and the metabolite taurine were found to be key histopathological markers of affected parenchymata. In conclusion, a differential metabolite profile can be detected according to the severity of hydrocephalus and associated ICP and therefore can be used to monitor the efficacy of experimental therapies.
Collapse
Affiliation(s)
- María García-Bonilla
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain.,BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | | | - M Carmen Muñoz-Hernández
- BIONAND, Andalusian Centre for Nanomedicine & Biotechnology (Junta de Andalucía-Universidad de Málaga), Malaga, Spain
| | | | | | - Ana Peñalver
- Canceromics Laboratory, Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Laura Castilla
- Canceromics Laboratory, Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Francisco J Alonso
- Canceromics Laboratory, Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Javier Márquez
- Canceromics Laboratory, Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Kirill Shumilov
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | | | - Antonia Gutiérrez
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Madrid, Spain
| | - Patricia Páez-González
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| | - Antonio J Jiménez
- Department of Cell Biology, Genetics, and Physiology, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Malaga, Spain
| |
Collapse
|
2
|
Uyanıkgil Y, Turgut M, Baka M. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study. THE CEREBELLUM 2017; 16:142-150. [PMID: 27113349 DOI: 10.1007/s12311-016-0778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.
Collapse
Affiliation(s)
- Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey. .,, Cumhuriyet Mahallesi, Adnan Menderes Bulvarı, Haltur Apartmanı, No: 6 Daire: 7, TR-09020, Aydın, Turkey.
| | - Meral Baka
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Marin-Valencia I, Hooshyar MA, Pichumani K, Sherry AD, Malloy CR. The ratio of acetate-to-glucose oxidation in astrocytes from a single 13C NMR spectrum of cerebral cortex. J Neurochem 2014; 132:99-109. [PMID: 25231025 DOI: 10.1111/jnc.12948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/13/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA; Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
4
|
Naureen I, Waheed KAI, Rathore AW, Victor S, Mallucci C, Goodden JR, Chohan SN, Miyan JA. Fingerprint changes in CSF composition associated with different aetiologies in human neonatal hydrocephalus: glial proteins associated with cell damage and loss. Fluids Barriers CNS 2013; 10:34. [PMID: 24351234 PMCID: PMC3878340 DOI: 10.1186/2045-8118-10-34] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/14/2013] [Indexed: 01/20/2023] Open
Abstract
Background In hydrocephalus an imbalance between production and absorption of cerebrospinal fluid (CSF) results in fluid accumulation, compression and stretching of the brain parenchyma. In addition, changes in CSF composition have a profound influence on the development and function of the brain and together, these can result in severe life-long neurological deficits. Brain damage or degenerative conditions can result in release of proteins expressed predominantly in neurons, astroglia, or oligodendroglia into the brain interstitial fluid, CSF and blood. Determination of such products in the CSF might be of value in diagnosing cause, aetiology and/or assessing the severity of the neurological damage in patients with hydrocephalus. We therefore analysed CSF from human neonates with hydrocephalus for these proteins to provide an insight into the pathophysiology associated with different aetiologies. Methods CSF was collected during routine lumbar puncture or ventricular tap. Samples were categorized according to age of onset of hydrocephalus and presumed cause (fetal-onset, late-onset, post-haemorrhagic or spina bifida with hydrocephalus). Glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), vimentin and 2′ , 3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) were analysed through Western blotting of hydrocephalic CSF samples (n = 17) and compared with data from CSF of normal infants without neurological deficits (n = 8). Results GFAP was significantly raised only in CSF from post-haemorrhagic hydrocephalus while MBP was significantly raised in post-haemorrhagic and in spina bifida with hydrocephalus infants. Vimentin protein was only detected in some CSF samples from infants with late-onset hydrocephalus but not from other conditions. Surprisingly, CNPase was found in all neonatal CSF samples, including normal and hydrocephalic groups, although it was reduced in infants with late onset hydrocephalus compared with normal and other hydrocephalic groups. Conclusions Apart from CNPase, which is an enzyme, the markers investigated are intracellular intermediate filaments and would be present in CSF only if the cells are compromised and the proteins released. Raised GFAP observed in post-haemorrhagic hydrocephalus must reflect damage to astrocytes and ependyma. Raised MBP in post-haemorrhagic and spina bifida with hydrocephalus indicates damage to oligodendrocytes and myelin. Vimentin protein detected in some of the late-onset hydrocephalic samples indicates damage to glial and other progenitors and suggests this condition affects periventricular regions. The presence of CNPase in all CSF samples was unexpected and indicates a possible novel role for this enzyme in brain development/myelination. Less CNPase in some cases of late-onset hydrocephalus could therefore indicate changes in myelination in these infants. This study demonstrates differential glial damage and loss in the developing human neonatal hydrocephalic brain associated with different aetiologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jaleel A Miyan
- Faculty of Life Sciences, The University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
5
|
Updated physiology and pathophysiology of CSF circulation--the pulsatile vector theory. Childs Nerv Syst 2013; 29:1811-25. [PMID: 23832074 DOI: 10.1007/s00381-013-2219-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Hydrocephalus is still a not well-understood diagnostic and a therapeutic dilemma because of the lack of sufficient and comprehensive model of cerebrospinal fluid circulation and pathological alterations. CONCLUSIONS Based on current studies, reviews, and knowledge of cerebrospinal fluid dynamics, brain water dynamics, intracranial pressure, and cerebral perfusion physiology, a new concept is deducted that can describe normal and pathological changes of cerebrospinal fluid circulation and pathophysiology of idiopathic intracranial hypertension.
Collapse
|
6
|
Melø TM, Håberg AK, Risa Ø, Kondziella D, Henry PG, Sonnewald U. Tricarboxylic acid cycle activity measured by 13C magnetic resonance spectroscopy in rats subjected to the kaolin model of obstructed hydrocephalus. Neurochem Res 2011; 36:1801-8. [PMID: 21603937 PMCID: PMC3161187 DOI: 10.1007/s11064-011-0497-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2011] [Indexed: 11/26/2022]
Abstract
Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and 13C label incorporation into neurotransmitter amino acids and other compounds 2 weeks after rats were subjected to kaolin-induced progressive hydrocephalus. In vivo and ex vivo magnetic resonance spectroscopy (MRS), combined with the infusion of [1,6-13C]glucose, was used to monitor the time courses of 13C label incorporation into the different carbon positions of glutamate in the forebrains of rats with hydrocephalus as well as in those of controls. Metabolic rates were determined by fitting the measured data into a one-compartment metabolic model. The TCA cycle rate was 1.3 ± 0.2 μmoles/gram/minute in the controls and 0.8 ± 0.4 μmoles/gram/minute in the acute hydrocephalus group, the exchange rate between α-ketoglutarate and glutamate was 4.1 ± 2.5 μmoles/gram/minute in the controls and 2.7 ± 2.6 μmoles/gram/minute in the hydrocephalus group calculated from in vivo MRS. There were no statistically significant differences between these rates. Hydrocephalus caused a decrease in the amounts of glutamate, alanine and taurine. In addition, the concentration of the neuronal marker N-acetyl aspartate was decreased. 13C Labelling of most amino acids derived from [1,6-13C]glucose was unchanged 2 weeks after hydrocephalus induction. The only indication of astrocyte impairment was the decreased 13C enrichment in glutamine C-2. This study shows that hydrocephalus causes subtle but significant alterations in neuronal metabolism already early in the course of the disease. These sub-lethal changes, however, if maintained and if ongoing might explain the delayed and programmed neuronal damage as seen in chronic hydrocephalus.
Collapse
Affiliation(s)
- Torun M. Melø
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Olav Kyrresgt. 3, 7489 Trondheim, Norway
| | - Asta K. Håberg
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Olav Kyrresgt. 3, 7489 Trondheim, Norway
| | - Øystein Risa
- Department of Circulation and Medical Imaging, NTNU, 7489 Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pierre-Gilles Henry
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Ursula Sonnewald
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Olav Kyrresgt. 3, 7489 Trondheim, Norway
| |
Collapse
|
7
|
Kondziella D, Eyjolfsson EM, Saether O, Sonnewald U, Risa O. Gray matter metabolism in acute and chronic hydrocephalus. Neuroscience 2009; 159:570-7. [PMID: 19171182 DOI: 10.1016/j.neuroscience.2009.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
Abstract
Although hydrocephalus is usually considered a disorder of periventricular white matter, disturbance of gray matter is probably also involved. However, so far gray matter metabolism has not been studied in experimental hydrocephalus using high resolution in vivo magnetic resonance spectroscopy (MRS). Therefore 15 rats were made hydrocephalic by injection of 0.1 ml kaolin into the cisterna magna, whereas 10 sham-operated rats served as controls. (1)H MRS and magnetic resonance imaging were performed longitudinally in acute hydrocephalus 2 and 4 weeks after kaolin treatment and in chronic hydrocephalus after 6 weeks. Volumes of interest included the gray matter regions cortex, thalamus and hippocampus. In hydrocephalic animals, (1)H MRS revealed decreased glutamate levels in all examined areas at all time points. Moreover, in acute hydrocephalus disturbances were noted in the hippocampus with decreased concentrations of N-acetyl aspartate, creatine, inositol and taurine, and in the cortex with decreased taurine levels. A clear lactate peak was detected in CSF spectra from hydrocephalic rats. In addition, T2-weighted images showed increase of free water in the hippocampus. It can be concluded that glutamate metabolism is deranged in gray matter in acute and chronic hydrocephalus in rats. If confirmed in humans, early detection of glutamatergic disturbances and lactate accumulation using in vivo(1)H MRS might serve as an indication for surgical treatment of hydrocephalus before irreversible neuronal damage develops.
Collapse
Affiliation(s)
- D Kondziella
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
8
|
Elevated pressure induced astrocyte damage in the optic nerve. Brain Res 2008; 1244:142-54. [DOI: 10.1016/j.brainres.2008.09.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
|
9
|
Kondziella D, Sonnewald U, Tullberg M, Wikkelso C. Brain metabolism in adult chronic hydrocephalus. J Neurochem 2008; 106:1515-24. [PMID: 18419769 DOI: 10.1111/j.1471-4159.2008.05422.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal pressure hydrocephalus (NPH) is the most frequent form of chronic hydrocephalus in adults. NPH remains underdiagnosed although between 5% and 10% of all demented patients may suffer from this disorder. As dementia is an increasing demographic problem, treatable forms such as in NPH have become a central issue in neurology. Despite the traditional perception of hydrocephalus being a disorder of disturbed CSF dynamics, in NPH metabolic impairment seems at least as important. So far, the only valid animal model of NPH is chronic adult kaolin hydrocephalus. In this model, opening of alternative CSF outflow pathways leads to normal or near-normal intracranial pressure and CSF outflow resistance. Yet, various metabolic disturbances cause ongoing ventricular enlargement and characteristic symptoms including cognitive decline and gait ataxia. Delayed hippocampal neuronal death, accumulation of beta-amyloid and disturbed cholinergic neurotransmission may contribute to memory dysfunction. Compromised periventricular blood flow, decreased dopamine levels in the substantia nigra and damaged striatal GABAergic interneurons may reflect basal ganglia symptoms. At least in human hydrocephalus cerebrovascular co-morbidity of the white matter plays an important role as well. It seems that in hydrocephalus from a certain 'point of no return' metabolic impairment becomes decoupled from CSF dynamics and, at least partly, self-sustained. This is probably the reason why despite restored CSF circulation by shunting many patients with chronic hydrocephalus still suffer from severe neurological deficits. The present paper offers a comprehensive review of the experimental and clinical data suggesting metabolic disturbances in chronic hydrocephalus.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neurology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | |
Collapse
|
10
|
Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD. Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 2007; 27:2309-17. [PMID: 17329428 PMCID: PMC6673489 DOI: 10.1523/jneurosci.4565-06.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a transgenic mouse line that expresses the G(i)-coupled RASSL (receptor activated solely by synthetic ligand) Ro1 in astrocytes to study astrocyte-neuronal communication. Surprisingly, we found that all transgenics expressing Ro1 developed hydrocephalus. We analyzed these mice in an effort to develop a new model of hydrocephalus that will further our understanding of the pathophysiology of the disease. Expression of Ro1 was restricted to astrocytes by crossing the transgenic hGFAP-tTA (tet transactivator behind the human glial fibrillary acidic protein promoter) mouse line with the transgenic tetO-Ro1/tetO-LacZ mouse line. This cross produced double-transgenic mice that expressed Ro1 in astrocytes. All double transgenics developed hydrocephalus by postnatal day 15, whereas single-transgenic littermate controls appeared normal. Hydrocephalic Ro1 mice displayed enlarged ventricles, partial denudation of the ependymal cell layer, altered subcommissural organ morphology, and obliteration of the cerebral aqueduct. Severely hydrocephalic mice also had increased levels of phospho-Erk and GFAP expression. Administration of doxycycline to breeding pairs suppressed Ro1 expression and the onset of hydrocephalus in double-transgenic offspring. Ro1 animals maintained on dox did not develop hydrocephalus; however, if taken off doxycycline at weaning, double-transgenic mice developed enlarged ventricles within 7 weeks, indicating that Ro1 expression also induces hydrocephalus in adults. This study discovered a new model of hydrocephalus in which the rate of pathogenesis can be controlled enabling the study of the pathogenesis of both juvenile and adult onset hydrocephalus.
Collapse
Affiliation(s)
- Elizabeth J. Sweger
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Kristen B. Casper
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Kimberly Scearce-Levie
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Bruce R. Conklin
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94158
| | - Ken D. McCarthy
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and
| |
Collapse
|
11
|
Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 2006; 3:11. [PMID: 17020616 PMCID: PMC1617118 DOI: 10.1186/1743-8454-3-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/04/2006] [Indexed: 11/10/2022] Open
Abstract
Awareness of the importance of chronic adult hydrocephalus has been raised again with the recent emergence of epidemiological studies. It is estimated that between 5 and 10% of patients suffering from dementia might, in fact, have chronic hydrocephalus. Although, surgical diversion of the cerebrospinal fluid (CSF) represents the only known procedure able to treat the symptoms of this condition, the selection of surgical patients has always been problematic. In the last 40 years, we have become wiser in using appropriate diagnostic tests for the selection of these patients; however, the area of biological markers has so far been overlooked in this condition, in contrast to that for other neurodegenerative disorders and dementias. Biomarkers are biological substances that may be used to indicate either the onset or the presence, and the progression of a clinical condition, being closely linked to its pathophysiology. In such a setting they might assist in the more appropriate selection of patients for shunt surgery. In this article, we have reviewed research carried out in the last 25 years regarding the identification of serum and CSF biomarkers for chronic hydrocephalus, discussed the potential for each one, and finally discussed the limitations for use, as well as future directions and possibilities in this field. It is concluded that tumour-necrosis factor, tau protein, lactate, sulfatide and neurofilament triple protein are the most promising CSF markers for chronic hydrocephalus. At present however, none of these meet the criteria required to justify a change clinical practice. In the future, collaborative multi-centre projects will be needed to obtain more substantial data that overcome the problems that arise from small individual and uncoordinated studies.
Collapse
Affiliation(s)
- Andrew Tarnaris
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laurence D Watkins
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Neil D Kitchen
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
12
|
Abstract
Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human hydrocephalus. This review summarizes the recent findings on this issue among human and animal models, especially with reference to the molecular genetics, pathological, physiological and cellular studies, and identifies future research directions.
Collapse
Affiliation(s)
- Jun Zhang
- Dept. of Neurosurgery, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 100, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
13
|
Abstract
Taurine, a sulfur-containing amino acid present in high concentrations in mammals, plays an important role in several essential biological processes. Taurine is not incorporated into protein and is the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. The ideal biomarker or biological measure should be reliable, reproducible, noninvasive, simple to perform, and inexpensive. Samples for biological measures should be easily obtained from physiological fluids such as blood or urine. Taurine levels in physiologic fluids have been useful for both diagnosing pathology and establishing a disease modifying therapy. In the specific case of taurine, it is important that patient information include nutritional supplementation as well as information on disease status and medications. Taurine has been measured in biological fluids due to the importance of this simple amino acid and its relative ease of determination. Taurine has been measured in animal models of disease as well as a variety of human conditions. However, it remains unclear how taurine should be used as a biomarker and in which situations this measurement would be a good prognostic or diagnostic indicator.
Collapse
Affiliation(s)
- Georgia Schuller-Levis
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | - Eunkyue Park
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| |
Collapse
|
14
|
Agren-Wilsson A, Eklund A, Koskinen LOD, Bergenheim AT, Malm J. Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 2005; 76:1088-93. [PMID: 16024885 PMCID: PMC1739732 DOI: 10.1136/jnnp.2004.042838] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The symptoms in idiopathic adult hydrocephalus syndrome (IAHS) are consistent with pathology involving the periventricular white matter, presumably reflecting ischaemia and CSF hydrodynamic disturbance. OBJECTIVE To investigate whether a change in intracranial pressure (ICP) can affect energy metabolism in deep white matter. METHODS A microdialysis catheter, a brain tissue oxygen tension probe, and an ICP transducer were inserted into the periventricular white matter 0-7 mm from the right frontal horn in 10 patients with IAHS. ICP and intracerebral Ptio2 were recorded continuously during lumbar CSF constant pressure infusion test. ICP was raised to pressure levels of 35 and 45 mm Hg for 10 minutes each, after which CSF drainage was undertaken. Microdialysis samples were collected every three minutes and analysed for glucose, lactate, pyruvate, and glutamate. RESULTS When raising the ICP, a reversible drop in the extracellular concentrations of glucose, lactate, and pyruvate was found. Comparing the values during baseline to values at the highest pressure level, the fall in glucose, lactate, and pyruvate was significant (p < 0.05, Wilcoxon sign rank). There was no change in glutamate or the lactate to pyruvate ratio during ICP elevation. Ptio2 did not decrease during ICP elevation, but was significantly increased following CSF drainage. CONCLUSIONS Raising intracranial pressure induces an immediate and reversible change in energy metabolism in periventricular white matter, without any sign of ischaemia. Theoretically, frequent ICP peaks (B waves) over a long period could eventually cause persisting axonal disturbance and subsequently the symptoms noted in IAHS.
Collapse
Affiliation(s)
- A Agren-Wilsson
- Department of Clinical Neuroscience, Umeå University, S-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|