1
|
Atkinson RAK, Collins JM, Sreedharan J, King AE, Fernandez-Martos CM. Alterations to metabolic hormones in amyotrophic lateral sclerosis and frontotemporal dementia postmortem human tissue. J Neuropathol Exp Neurol 2024; 83:907-916. [PMID: 38917432 PMCID: PMC11487092 DOI: 10.1093/jnen/nlae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Metabolic changes are observed in patients with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although regulation of metabolic processes in the CNS is predominantly carried out within the hypothalamus, extra-hypothalamic CNS areas contain metabolic hormone receptors, including those for leptin (LEPR), insulin (INSR), and neuropeptide Y (NPY), indicating that they may play a role in biological processes underlying pathogenic disease processes. The status of these hormones within regions vulnerable in ALS/FTD is not well described. This study sought to determine whether the expression of these hormones and their receptors is altered in pathology-rich regions in cases of human FTD (superior frontal gyrus and insular cortex) and ALS (primary motor cortex and lumbar spinal cord) with TDP-43 pathology compared to matched healthy controls. LEPR mRNA was increased within the superior frontal gyrus of FTD cases and within primary motor cortex and lumbar spinal cord of ALS cases; INSR mRNA was increased in superior frontal gyrus and insular cortex of FTD cases. NPY protein was decreased in primary motor cortex and lumbar spinal cord of ALS cases. Our results demonstrate that metabolic hormones undergo complex alterations in ALS and FTD and suggest that these hormones could play critical roles in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jemeen Sreedharan
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Carmen M Fernandez-Martos
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| |
Collapse
|
2
|
Jezernik G, Glavač D, Skok P, Krušič M, Potočnik U, Gorenjak M. Discovery of Novel Biomarkers with Extended Non-Coding RNA Interactor Networks from Genetic and Protein Biomarkers. Int J Mol Sci 2024; 25:10210. [PMID: 39337694 PMCID: PMC11432684 DOI: 10.3390/ijms251810210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Curated online interaction databases and gene ontology tools have streamlined the analysis of highly complex gene/protein networks. However, understanding of disease pathogenesis has gradually shifted from a protein-based core to complex interactive networks where non-coding RNA (ncRNA) is thought to play an essential role. As current gene ontology is based predominantly on protein-level information, there is a growing need to analyze networks with ncRNA. In this study, we propose a gene ontology workflow integrating ncRNA using the NPInter V5.0 database. To validate the proposed workflow, we analyzed our previously published curated biomarker datasets for hidden disease susceptibility processes and pharmacogenomics. Our results show a novel involvement of melanogenesis in psoriasis response to biological drugs in general. Hyperpigmentation has been previously observed in psoriasis following treatment with currently indicated biological drugs, thus calling attention to melanogenesis research as a response biomarker in psoriasis. Moreover, our proposed workflow highlights the need to critically evaluate computed ncRNA interactions within databases and a demand for gene ontology analysis of large miRNA blocks.
Collapse
Affiliation(s)
- Gregor Jezernik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- National-Level Institute for Sustainable Environmental Solutions, Jadranska cesta 28, 2000 Maribor, Slovenia
| | - Damjan Glavač
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Pavel Skok
- Department of Gastroenterology, Internal Medicine Clinic, University Medical Centre Maribor, Ljubljanska ulica 8, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Martina Krušič
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
| | - Uroš Potočnik
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 8, 2000 Maribor, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (D.G.); (M.K.); (U.P.); (M.G.)
| |
Collapse
|
3
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
4
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
5
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
6
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Saikia BJ, Bhardwaj J, Paul S, Sharma S, Neog A, Paul SR, Binukumar BK. Understanding the Roles and Regulation of Mitochondrial microRNAs (MitomiRs) in Neurodegenerative Diseases: Current Status and Advances. Mech Ageing Dev 2023:111838. [PMID: 37329989 DOI: 10.1016/j.mad.2023.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21 - 22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.
Collapse
Affiliation(s)
- Bhaskar Jyoti Saikia
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Srishti Sharma
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anindita Neog
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - Swaraj Ranjan Paul
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mall Road, New Delhi - 110007; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
8
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
9
|
The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY 687 motif. Comput Struct Biotechnol J 2023; 21:923-930. [PMID: 36698966 PMCID: PMC9860402 DOI: 10.1016/j.csbj.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive decline of neuronal function in several brain areas, and are always associated with cognitive, psychiatric, or motor deficits due to the atrophy of certain neuronal populations. Most neurodegenerative diseases share common pathological mechanisms, such as neurotoxic protein misfolding, oxidative stress, and impairment of autophagy machinery. Amyotrophic lateral sclerosis (ALS) is one of the most common adult-onset motor neuron disorders worldwide. It is clinically characterized by the selective and progressive loss of motor neurons in the motor cortex, brain stem, and spinal cord, ultimately leading to muscle atrophy and rapidly progressive paralysis. Multiple recent studies have indicated that the amyloid precursor protein (APP) and its proteolytic fragments are not only drivers of Alzheimer's disease (AD) but also one of the earliest signatures in ALS, preceding or anticipating neuromuscular junction instability and denervation. Indeed, altered levels of APP peptides have been found in the brain, muscles, skin, and cerebrospinal fluid of ALS patients. In this short review, we discuss the nature and extent of research evidence on the role of APP peptides in ALS, focusing on the intracellular C-terminal peptide and its regulatory motif 682YENPTY687, with the overall aim of providing new frameworks and perspectives for intervention and identifying key questions for future investigations.
Collapse
|
10
|
Amalyan S, Tamboli S, Lazarevich I, Topolnik D, Bouman LH, Topolnik L. Enhanced motor cortex output and disinhibition in asymptomatic female mice with C9orf72 genetic expansion. Cell Rep 2022; 40:111043. [PMID: 35793625 DOI: 10.1016/j.celrep.2022.111043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/29/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
Information and action coding by cortical circuits relies on a balanced dialogue between excitation and inhibition. Circuit hyperexcitability is considered a potential pathophysiological mechanism in various brain disorders, but the underlying deficits, especially at early disease stages, remain largely unknown. We report that asymptomatic female mice carrying the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which represents a high-prevalence genetic abnormality for human amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) spectrum disorder, exhibit abnormal motor cortex output. The number of primary motor cortex (M1) layer 5 pyramidal neurons is reduced in asymptomatic mice, with the surviving neurons receiving a decreased inhibitory drive that results in a higher M1 output, specifically during high-speed animal locomotion. Importantly, using deep-learning algorithms revealed that speed-dependent M1 output predicts the likelihood of C9orf72 genetic expansion. Our data link early circuit abnormalities with a gene mutation in asymptomatic ALS/FTLD carriers.
Collapse
Affiliation(s)
- Sona Amalyan
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Ivan Lazarevich
- École Normale Supérieure, Laboratoire de Neurosciences Cognitives, Group for Neural Theory, Paris, France
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Leandra Harriet Bouman
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada.
| |
Collapse
|
11
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
12
|
Immune Signaling Kinases in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2021; 22:ijms222413280. [PMID: 34948077 PMCID: PMC8707599 DOI: 10.3390/ijms222413280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3-5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.
Collapse
|
13
|
Peggion C, Massimino ML, Bonadio RS, Lia F, Lopreiato R, Cagnin S, Calì T, Bertoli A. Regulation of Endoplasmic Reticulum-Mitochondria Tethering and Ca 2+ Fluxes by TDP-43 via GSK3β. Int J Mol Sci 2021; 22:11853. [PMID: 34769284 PMCID: PMC8584823 DOI: 10.3390/ijms222111853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria-ER contacts (MERCs), tightly regulated by numerous tethering proteins that act as molecular and functional connections between the two organelles, are essential to maintain a variety of cellular functions. Such contacts are often compromised in the early stages of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). TDP-43, a nuclear protein mainly involved in RNA metabolism, has been repeatedly associated with ALS pathogenesis and other neurodegenerative diseases. Although TDP-43 neuropathological mechanisms are still unclear, the accumulation of the protein in cytoplasmic inclusions may underlie a protein loss-of-function effect. Accordingly, we investigated the impact of siRNA-mediated TDP-43 silencing on MERCs and the related cellular parameters in HeLa cells using GFP-based probes for MERCs quantification and aequorin-based probes for local Ca2+ measurements, combined with targeted protein and mRNA profiling. Our results demonstrated that TDP-43 down-regulation decreases MERCs density, thereby remarkably reducing mitochondria Ca2+ uptake after ER Ca2+ release. Thorough mRNA and protein analyses did not highlight altered expression of proteins involved in MERCs assembly or Ca2+-mediated ER-mitochondria cross-talk, nor alterations of mitochondrial density and morphology were observed by confocal microscopy. Further mechanistic inspections, however, suggested that the observed cellular alterations are correlated to increased expression/activity of GSK3β, previously associated with MERCs disruption.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | | | - Raphael Severino Bonadio
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Federica Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
| | - Stefano Cagnin
- Department of Biology, CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.L.); (R.L.); (T.C.)
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|
14
|
Choi HJ, Lee JY, Cha SJ, Han YJ, Yoon JH, Kim HJ, Kim K. FUS-induced neurotoxicity is prevented by inhibiting GSK-3β in a drosophila model of amyotrophic lateral sclerosis. Hum Mol Genet 2021; 31:850-862. [PMID: 34605896 DOI: 10.1093/hmg/ddab290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS)-linked mutations in fused in sarcoma (FUS) lead to the formation of cytoplasmic aggregates in neurons. They are believed play a critical role in the pathogenesis of FUS-associated ALS. Therefore, the clearance and degradation of cytoplasmic FUS aggregates in neurons may be considered a therapeutic strategy for ALS. However, the molecular pathogenic mechanisms behind FUS-associated ALS remain poorly understood. Here, we report GSK-3β as a potential modulator of FUS-induced toxicity. We demonstrated that RNAi-mediated knockdown of Drosophila ortholog Shaggy in FUS-expressing flies suppresses defective phenotypes, including retinal degeneration, motor defects, motor neuron degeneration, and mitochondrial dysfunction. Furthermore, we found that cytoplasmic FUS aggregates were significantly reduced by Shaggy knockdown. In addition, we found that the levels of FUS proteins were significantly reduced by co-overexpression of Slimb, a F-box protein, in FUS-expressing flies, indicating that Slimb is critical for the suppressive effect of Shaggy/GSK-3β inhibition on FUS-induced toxicity in Drosophila. These findings revealed a novel mechanism of neuronal protective effect through SCFSlimb-mediated FUS degradation via GSK-3β inhibition, and provided in vivo evidence of the potential for modulating FUS-induced ALS progression using GSK-3β inhibitors.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea.,Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sun Joo Cha
- Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Yeo Jeong Han
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.,Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Ja Hoon Yoon
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea.,Department of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
15
|
Therapeutics-how to treat phase separation-associated diseases. Emerg Top Life Sci 2021; 4:307-318. [PMID: 32364240 PMCID: PMC7733670 DOI: 10.1042/etls20190176] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Liquid-liquid phase separation has drawn attention as many neurodegeneration or cancer-associated proteins are able to form liquid membraneless compartments (condensates) by liquid-liquid phase separation. Furthermore, there is rapidly growing evidence that disease-associated mutation or post-translational modification of these proteins causes aberrant location, composition or physical properties of the condensates. It is ambiguous whether aberrant condensates are always causative in disease mechanisms, however they are likely promising potential targets for therapeutics. The conceptual framework of liquid-liquid phase separation provides opportunities for novel therapeutic approaches. This review summarises how the extensive recent advances in understanding control of nucleation, growth and composition of condensates by protein post-translational modification has revealed many possibilities for intervention by conventional small molecule enzyme inhibitors. This includes the first proof-of-concept examples. However, understanding membraneless organelle formation as a physical chemistry process also highlights possible physicochemical mechanisms of intervention. There is huge demand for innovation in drug development, especially for challenging diseases of old age including neurodegeneration and cancer. The conceptual framework of liquid-liquid phase separation provides a new paradigm for thinking about modulating protein function and is very different from enzyme lock-and-key or structured binding site concepts and presents new opportunities for innovation.
Collapse
|
16
|
Martínez-González L, Gonzalo-Consuegra C, Gómez-Almería M, Porras G, de Lago E, Martín-Requero Á, Martínez A. Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22168975. [PMID: 34445680 PMCID: PMC8396476 DOI: 10.3390/ijms22168975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common degenerative motor neuron disease in adults. About 97% of ALS patients present TDP-43 aggregates with post-translational modifications, such as hyperphosphorylation, in the cytoplasm of affected cells. GSK-3β is one of the protein kinases involved in TDP-43 phosphorylation. Up-regulation of its expression and activity is reported on spinal cord and cortex tissues of ALS patients. Here, we propose the repurposing of Tideglusib, an in-house non-ATP competitive GSK-3β inhibitor that is currently in clinical trials for autism and myotonic dystrophy, as a promising therapeutic strategy for ALS. With this aim we have evaluated the efficacy of Tideglusib in different experimental ALS models both in vitro and in vivo. Moreover, we observed that GSK-3β activity is increased in lymphoblasts from sporadic ALS patients, with a simultaneous increase in TDP-43 phosphorylation and cytosolic TDP-43 accumulation. Treatment with Tideglusib decreased not only phospho-TDP-43 levels but also recovered its nuclear localization in ALS lymphoblasts and in a human TDP-43 neuroblastoma model. Additionally, we found that chronic oral treatment with Tideglusib is able to reduce the increased TDP-43 phosphorylation in the spinal cord of Prp-hTDP-43A315T mouse model. Therefore, we consider Tideglusib as a promising drug candidate for ALS, being proposed to start a clinical trial phase II by the end of the year.
Collapse
Affiliation(s)
- Loreto Martínez-González
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
| | - Claudia Gonzalo-Consuegra
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
| | - Marta Gómez-Almería
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
| | - Gracia Porras
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
| | - Eva de Lago
- Instituto de Investigación en Neuroquίmica, Departamento de Bioquίmica y Biologίa Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.G.-C.); (M.G.-A.); (E.d.L.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Ángeles Martín-Requero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (Á.M.-R.); (A.M.); Tel.: +34-918-37-12 (ext. 4222) (Á.M.-R.); +34-918-37-31-12 (ext. 4437) (A.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Calle Ramiro Maétzu 9, 28040 Madrid, Spain; (L.M.-G.); (G.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (Á.M.-R.); (A.M.); Tel.: +34-918-37-12 (ext. 4222) (Á.M.-R.); +34-918-37-31-12 (ext. 4437) (A.M.)
| |
Collapse
|
17
|
Ramírez-Nuñez O, Jové M, Torres P, Sol J, Fontdevila L, Romero-Guevara R, Andrés-Benito P, Ayala V, Rossi C, Boada J, Povedano M, Ferrer I, Pamplona R, Portero-Otin M. Nuclear lipidome is altered in amyotrophic lateral sclerosis: A pilot study. J Neurochem 2021; 158:482-499. [PMID: 33905537 DOI: 10.1111/jnc.15373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C βI (PLCβI) and protein kinase CβII (PKCβII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar Ramírez-Nuñez
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain.,Institut Català de la Salut, Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Laia Fontdevila
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | | | - Pol Andrés-Benito
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Chiara Rossi
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Jordi Boada
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mònica Povedano
- Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Isidro Ferrer
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| |
Collapse
|
18
|
Ge S, Duo L, Wang J, Yang J, Li Z, Tu Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113877. [PMID: 33515685 DOI: 10.1016/j.jep.2021.113877] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate, Punica granatum L., has been used in traditional medicine in China and several regions of the world including Ayurveda, Islamic, and Persian for the treatment of atherosclerosis, diabetes, hypertension, hyperlipidemia, and several types of cancer, as well as for peptic ulcer and oral diseases for hundreds of years. Presently, pomegranate is treated as both a "medicine food homology" herbal medicine and a healthy food supplemental product. AIM OF THE STUDY The aim of this work is to develop an overview of pomegranate in the context of the status of its traditional medicine theories, the spread along the Silk Road, ethnopharmacological uses, chemical compositions, pharmacological activities, toxicology, and the involved pathways. MATERIALS AND METHODS Information on P. granatum L. was acquired from published materials, including monographs on medicinal plants, ancient and modern recorded classical texts; and pharmacopoeias and electronic databases (PubMed, Science Direct, Web of Science, Google Scholar, CNKI, and Wanfang Data). RESULTS Pomegranate has been used in many traditional medical systems throughout history. It is widely cultivated in Central Asia and spread throughout China along the Silk Road. Many phytochemicals, such as tannins, organic acids, flavonoids, alkaloids, and volatile oils have been identified from different parts of pomegranate, these compounds have a wide range of activities, including antioxidant, antimicrobial, and anti-oncogenic properties, as well as conferring resistance to cerebrovascular disease. Furthermore, A summary of the four promising pharmacological pathways is provided. CONCLUSIONS The traditional uses, chemical compositions, pharmacological activities, and signaling pathways of pomegranate are summarized comprehensively in the review. It can be treated as a guidance for the future clinical and basic research. The information provided in this review will be very useful for further studies to develop novel therapeutic directions for application of pomegranate.
Collapse
Affiliation(s)
- Shasha Ge
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China
| | - Lan Duo
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Junqi Wang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, China.
| | - Ya Tu
- Medical Research Center, China Academy of Chinese Medical Science, Beijing, China; Development Research Center of TCM, China Academy of Chinese Medical Science, Beijing, China.
| |
Collapse
|
19
|
Guo W, Vandoorne T, Steyaert J, Staats KA, Van Den Bosch L. The multifaceted role of kinases in amyotrophic lateral sclerosis: genetic, pathological and therapeutic implications. Brain 2021; 143:1651-1673. [PMID: 32206784 PMCID: PMC7296858 DOI: 10.1093/brain/awaa022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is the most common degenerative disorder of motor neurons in adults. As there is no cure, thousands of individuals who are alive at present will succumb to the disease. In recent years, numerous causative genes and risk factors for amyotrophic lateral sclerosis have been identified. Several of the recently identified genes encode kinases. In addition, the hypothesis that (de)phosphorylation processes drive the disease process resulting in selective motor neuron degeneration in different disease variants has been postulated. We re-evaluate the evidence for this hypothesis based on recent findings and discuss the multiple roles of kinases in amyotrophic lateral sclerosis pathogenesis. We propose that kinases could represent promising therapeutic targets. Mainly due to the comprehensive regulation of kinases, however, a better understanding of the disturbances in the kinome network in amyotrophic lateral sclerosis is needed to properly target specific kinases in the clinic.
Collapse
Affiliation(s)
- Wenting Guo
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,KU Leuven-Stem Cell Institute (SCIL), Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jolien Steyaert
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, USA
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
20
|
Lachén-Montes M, Mendizuri N, Ausin K, Andrés-Benito P, Ferrer I, Fernández-Irigoyen J, Santamaría E. Amyotrophic Lateral Sclerosis Is Accompanied by Protein Derangements in the Olfactory Bulb-Tract Axis. Int J Mol Sci 2020; 21:ijms21218311. [PMID: 33167591 PMCID: PMC7664257 DOI: 10.3390/ijms21218311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive muscle paralysis due to the degeneration of upper and lower motor neurons. Recent studies point out an involvement of the non-motor axis during disease progression. Despite smell impairment being considered a potential non-motor finding in ALS, the pathobiochemistry at the olfactory level remains unknown. Here, we applied an olfactory quantitative proteotyping approach to analyze the magnitude of the olfactory bulb (OB) proteostatic imbalance in ALS subjects (n = 12) with respect to controls (n = 8). Around 3% of the quantified OB proteome was differentially expressed, pinpointing aberrant protein expression involved in vesicle-mediated transport, macroautophagy, axon development and gliogenesis in ALS subjects. The overproduction of olfactory marker protein (OMP) points out an imbalance in the olfactory signal transduction in ALS. Accompanying the specific overexpression of glial fibrillary acidic protein (GFAP) and Bcl-xL in the olfactory tract (OT), a tangled disruption of signaling routes was evidenced across the OB–OT axis in ALS. In particular, the OB survival signaling dynamics clearly differ between ALS and frontotemporal lobar degeneration (FTLD), two faces of TDP-43 proteinopathy. To the best of our knowledge, this is the first report on high-throughput molecular characterization of the olfactory proteostasis in ALS.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Naroa Mendizuri
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Karina Ausin
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Pol Andrés-Benito
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (P.A.-B.); (I.F.)
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28031 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Isidro Ferrer
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain; (P.A.-B.); (I.F.)
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 28031 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007 Hospitalet de Llobregat, Spain
- Institute of Neurosciences, University of Barcelona, 08007 Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (J.F.I.); (E.S.); Tel.: +34-848-425-740 (E.S.); Fax: +34-848-422-200 (E.S.)
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain; (M.L.-M.); (N.M.)
- Proteored-ISCIII, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (J.F.I.); (E.S.); Tel.: +34-848-425-740 (E.S.); Fax: +34-848-422-200 (E.S.)
| |
Collapse
|
21
|
Choi HJ, Joo Cha S, Do HA, Kim HJ, Lee JW, Kim K. SCF-Slimb is critical for Glycogen synthase kinase-3β-mediated suppression of TAF15-induced neurotoxicity in Drosophila. J Neurochem 2020; 157:2119-2127. [PMID: 32915460 DOI: 10.1111/jnc.15182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterized pathologically by motor neuron degeneration and associated with aggregation of RNA-binding proteins. TATA-binding protein-associated factor 15 (TAF15) accumulates as cytoplasmic aggregates in neuronal cells, and clearance of these aggregates is considered a potential therapeutic strategy for ALS. However, the exact pathogenic mechanism of TAF15-induced neurotoxicity remains to be elucidated. Glycogen synthase kinase-3 (GSK-3) plays a critical role in the protection of ALS pathology. In the present study, we use a transgenic fly model over-expressing human TAF15 to study the protective effects of Shaggy/GSK3β on TAF15-induced neuronal toxicity in Drosophila brain. Transgenic flies were examined for locomotor activity and lithium treatment. The expression level and solubility of TAF15 were assessed with western blotting, whereas immunohistochemistry was used to assess TAF15 aggregation in Drosophila brain. We have revealed that Shaggy/GSK3β was abnormally activated in neurons of TAF15-expressing flies and its inhibition can suppress the defective phenotypes, thereby preventing retinal degeneration and locomotive activity caused by TAF15. We have also found that Shaggy/GSK3β inhibition in neuronal cells leads to a reduction in TAF15 levels. Indeed, the F-box proteins Slimb and archipelago genetically interact with TAF15 and control TAF15 protein level in Drosophila. Importantly, SCFslimb is a critical regulator for Shaggy/GSK3β-mediated suppression of TAF15-induced toxicity in Drosophila. The present study has provided an in vivo evidence supporting the molecular mechanism of GSK3β inhibition for protection against TAF15-linked proteinopathies.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Sun Joo Cha
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
| | - Hyeon-Ah Do
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| | - Hyung-Jun Kim
- Dimentia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| | - Jang-Won Lee
- Department of Integrated Bio-industry, Sejong University, Seoul, Korea
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| |
Collapse
|
22
|
Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2020; 10:brainsci10100675. [PMID: 32993098 PMCID: PMC7600609 DOI: 10.3390/brainsci10100675] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease characterized by progressive motor neuron degeneration. Although several studies on genes involved in ALS have substantially expanded and improved our understanding of ALS pathogenesis, the exact molecular mechanisms underlying this disease remain poorly understood. Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine-protein kinase that plays a critical role in the regulation of various cellular signaling pathways. Dysregulation of GSK3β activity in neuronal cells has been implicated in the pathogenesis of neurodegenerative diseases. Previous research indicates that GSK3β inactivation plays a neuroprotective role in ALS pathogenesis. GSK3β activity shows an increase in various ALS models and patients. Furthermore, GSK3β inhibition can suppress the defective phenotypes caused by SOD, TDP-43, and FUS expression in various models. This review focuses on the most recent studies related to the therapeutic effect of GSK3β in ALS and provides an overview of how the dysfunction of GSK3β activity contributes to ALS pathogenesis.
Collapse
|
23
|
Palomo V, Nozal V, Rojas-Prats E, Gil C, Martinez A. Protein kinase inhibitors for amyotrophic lateral sclerosis therapy. Br J Pharmacol 2020; 178:1316-1335. [PMID: 32737989 DOI: 10.1111/bph.15221] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Excessive Homeostatic Gain in Spinal Motoneurons in a Mouse Model of Amyotrophic Lateral Sclerosis. Sci Rep 2020; 10:9049. [PMID: 32493926 PMCID: PMC7271238 DOI: 10.1038/s41598-020-65685-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
In the mSOD1 model of ALS, the excitability of motoneurons is poorly controlled, oscillating between hyperexcitable and hypoexcitable states during disease progression. The hyperexcitability is mediated by excessive activity of voltage-gated Na+ and Ca2+ channels that is initially counteracted by aberrant increases in cell size and conductance. The balance between these opposing actions collapses, however, at the time that the denervation of muscle fibers begins at about P50, resulting in a state of hypo-excitability and cell death. We propose that this process of neurodegeneration ensues from homeostatic dysregulation of excitability and have tested this hypothesis by perturbing a signal transduction pathway that plays a major role in controlling biogenesis and cell size. Our 『homeostatic dysregulation hypothesis' predicted that neonatal mSOD1 motoneurons would be much more sensitive to such perturbations than wild type controls and our results strongly support this hypothesis. Our results have important implications for therapeutic approaches to ALS.
Collapse
|
25
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
26
|
Maurel C, Chami AA, Thépault RA, Marouillat S, Blasco H, Corcia P, Andres CR, Vourc'h P. A role for SUMOylation in the Formation and Cellular Localization of TDP-43 Aggregates in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 57:1361-1373. [PMID: 31728929 DOI: 10.1007/s12035-019-01810-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
In amyotrophic lateral sclerosis, motor neurons undergoing degeneration are characterized by the presence of cytoplasmic aggregates containing TDP-43 protein. SUMOylation, a posttranslational modification of proteins, has been previously implicated in the formation of aggregates positives for SOD1, another protein enriched in a subset of ALS patients. We show in this study that TDP-43 is also a target of SUMOylation. The inhibition of the first step of the SUMOylation process by anacardic acid significantly reduces the presence of TDP-43 aggregates and improves neuritogenesis and cell viability in vitro. Interestingly, the mutation of the unique SUMOylation site on TDP-43, using site-directed mutagenesis, modifies the intracellular localization of TDP-43 aggregates. Instead of being cytoplasmic where they are associated with toxic effects, they are located inside the nucleus. This change of localization results in improvement in cell viability and in global cellular functions. Our results implicate the SUMOylation site of TDP-43 in the formation of cytoplasmic TDP-43 aggregates, a hallmark of ALS, and thus identifies this region as a new target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Cindy Maurel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Anna A Chami
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Hélène Blasco
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - Christian R Andres
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Patrick Vourc'h
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| |
Collapse
|
27
|
Burnett SB, Vaughn LS, Strom JM, Francois A, Patel RC. A truncated PACT protein resulting from a frameshift mutation reported in movement disorder DYT16 triggers caspase activation and apoptosis. J Cell Biochem 2019; 120:19004-19018. [PMID: 31246344 DOI: 10.1002/jcb.29223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/04/2019] [Indexed: 01/21/2023]
Abstract
Protein Activator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions.
Collapse
Affiliation(s)
- Samuel B Burnett
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Lauren S Vaughn
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Joelle M Strom
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Ashley Francois
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| | - Rekha C Patel
- Department of Biological Sciences University of South Carolina, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
28
|
TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiol Dis 2019; 132:104514. [PMID: 31229690 DOI: 10.1016/j.nbd.2019.104514] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) is a multifunctional RNA binding protein directly implicated in the etiology of amyotrophic lateral sclerosis (ALS). Previous studies have demonstrated that loss of TDP-43 function leads to intracellular accumulation of non-coding repetitive element transcripts and double-stranded RNA (dsRNA). These events could cause immune activation and contribute to the neuroinflammation observed in ALS, but this possibility has not been investigated. Here, we knock down TDP-43 in primary rat astrocytes via siRNA, and we use RNA-seq, immunofluorescence, and immunoblotting to show that this results in: 1) accumulation of repetitive element transcripts and dsRNA; and 2) pro-inflammatory gene and protein expression consistent with innate immune signaling and astrocyte activation. We also show that both chemical inhibition and siRNA knockdown of protein kinase R (PKR), a dsRNA-activated kinase implicated in the innate immune response, block the expression of all activation markers assayed. Based on these findings, we suggest that intracellular accumulation of endogenous dsRNA may be a novel and important mechanism underlying the pathogenesis of ALS (and perhaps other neurodegenerative diseases), and that PKR inhibitors may have the potential to prevent reactive astrocytosis in ALS.
Collapse
|
29
|
Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S. O-GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2209-2221. [PMID: 30985105 DOI: 10.1021/acschemneuro.9b00143] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins are becoming the focus of intense research due to their implications in a broad spectrum of neurodegenerative diseases. Various PTMs have been identified to alter the toxic profiles of proteins which play critical roles in disease etiology. In Alzheimer's disease (AD), dysregulated phosphorylation is reported to promote pathogenic processing of the microtubule-associated tau protein. Among the PTMs, the enzymatic addition of N-acetyl-d-glucosamine (GlcNAc) residues to Ser/Thr residues is reported to deliver protective effects against the pathogenic processing of both amyloid precursor protein (APP) and tau. Modification of tau with as few as one single O-GlcNAc residue inhibits its toxic self-assembly. This modification also has the same effect on the assembly of the Parkinson's disease (PD) associated α-synuclein (ASyn) protein. In fact, O-GlcNAcylation ( O-linked GlcNAc modification) affects the processing of numerous proteins implicated in AD, PD, amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) in a similar manner. As such, manipulation of a protein's O-GlcNAcylation status has been proposed to offer therapeutic routes toward addressing multiple neurodegenerative pathologies. Here we review the various effects that O-GlcNAc modification, and its modulated expression, have on pathogenically significant proteins involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Andrew K. Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | | | - George D. Mellick
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Just-Borràs L, Hurtado E, Cilleros-Mañé V, Biondi O, Charbonnier F, Tomàs M, Garcia N, Lanuza MA, Tomàs J. Overview of Impaired BDNF Signaling, Their Coupled Downstream Serine-Threonine Kinases and SNARE/SM Complex in the Neuromuscular Junction of the Amyotrophic Lateral Sclerosis Model SOD1-G93A Mice. Mol Neurobiol 2019; 56:6856-6872. [PMID: 30929165 DOI: 10.1007/s12035-019-1550-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive motor weakness. It is accepted that it is caused by motoneuron degeneration leading to a decrease in muscle stimulation. However, ALS is being redefined as a distal axonopathy, in that neuromuscular junction dysfunction precedes and may even influence motoneuron loss. In this synapse, several metabotropic receptor-mediated signaling pathways converge on effector kinases that phosphorylate targets that are crucial for synaptic stability and neurotransmission quality. We have previously shown that, in physiological conditions, nerve-induced muscle contraction regulates the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signaling to retrogradely modulate presynaptic protein kinases PKC and PKA, which are directly involved in the modulation of acetylcholine release. In ALS patients, the alteration of this signaling may significantly contribute to a motor impairment. Here, we investigate whether BDNF/TrkB signaling, the downstream PKC (cPKCβI, cPKCα, and nPKCε isoforms), and PKA (regulatory and catalytic subunits) and some SNARE/SM exocytotic machinery proteins (Munc18-1 and SNAP-25) are altered in the skeletal muscle of pre- and symptomatic SOD1-G93A mice. We found that this pathway is strongly affected in symptomatic ALS mice muscles including an unbalance between (I) BDNF and TrkB isoforms, (II) PKC isoforms and PKA subunits, and (III) Munc18-1 and SNAP-25 phosphorylation ratios. Changes in TrkB.T1 and cPKCβI are precociously observed in presymptomatic mice. Altogether, several of these molecular alterations can be partly associated with the known fast-to-slow motor unit transition during the disease process but others can be related with the initial disease pathogenesis.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Olivier Biondi
- INSERM UMRS 1124 and Université Paris Descartes, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Frédéric Charbonnier
- INSERM UMRS 1124 and Université Paris Descartes, 45 rue des Saints-Pères, 75270, Paris Cedex 06, France
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| |
Collapse
|
31
|
Tadić V, Adam A, Goldhammer N, Lautenschlaeger J, Oberstadt M, Malci A, Le TT, Sengupta S, Stubendorff B, Keiner S, Witte OW, Grosskreutz J. Investigation of mitochondrial calcium uniporter role in embryonic and adult motor neurons from G93A hSOD1 mice. Neurobiol Aging 2018; 75:209-222. [PMID: 30597405 DOI: 10.1016/j.neurobiolaging.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis is characterized by progressive death of motor neurons (MNs) with glutamate excitotoxicity and mitochondrial Ca2+ overload as critical mechanisms in disease pathophysiology. We used MNs from G93AhSOD1 and nontransgenic embryonic cultures and adult mice to analyze the expression of the main mitochondrial calcium uniporter (MCU). MCU was overexpressed in cultured embryonic G93AhSOD1 MNs compared to nontransgenic MNs but downregulated in MNs from adult G93AhSOD1 mice. Furthermore, cultured embryonic G93AhSOD1 were rescued from kainate-induced excitotoxicity by the Ca2+/calmodulin-dependent protein kinase type II inhibitor; KN-62, which reduced MCU expression in G93AhSOD1 MNs. MCU activation via kaempferol neither altered MCU expression nor influenced MN survival. However, its acute application served as a fine tool to study spontaneous Ca2+ activity in cultured neurons which was significantly altered by the mutated hSOD1. Pharmacological manipulation of MCU expression might open new possibilities to fight excitotoxic damage in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Adam Adam
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nadine Goldhammer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Janin Lautenschlaeger
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Moritz Oberstadt
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Ayse Malci
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thanh Tu Le
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
32
|
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, Rakus D, McCubrey JA, Gizak A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets 2018; 22:833-848. [PMID: 30244615 DOI: 10.1080/14728222.2018.1526925] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycogen synthase kinase 3 (GSK3) is at the center of cellular signaling and controls various aspects of brain functions, including development of the nervous system, neuronal plasticity and onset of neurodegenerative disorders. Areas covered: In this review, recent efforts in elucidating the roles of GSK3 in neuronal plasticity and development of brain pathologies; Alzheimer's and Parkinson's disease, schizophrenia, and age-related neurodegeneration are described. The effect of microglia and astrocytes on development of the pathological states is also discussed. Expert opinion: GSK3β and its signaling pathway partners hold great promise as therapeutic target(s) for a multitude of neurological disorders. Activity of the kinase is often elevated in brain disorders. However, due to the wide range of GSK3 cellular targets, global inhibition of the kinase leads to severe side-effects and GSK3 inhibitors rarely reach Phase-2 clinical trials. Thus, a selective modulation of a specific cellular pool of GSK3 or specific down- or upstream partners of the kinase might provide more efficient anti-neurodegenerative therapies.
Collapse
Affiliation(s)
- Przemysław Duda
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Janusz Wiśniewski
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Tomasz Wójtowicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Olga Wójcicka
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Michał Jaśkiewicz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dominika Drulis-Fajdasz
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - Dariusz Rakus
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| | - James A McCubrey
- b Department of Microbiology and Immunology , Brody School of Medicine at East Carolina University , Greenville , NC , USA
| | - Agnieszka Gizak
- a Department of Molecular Physiology and Neurobiology , University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
33
|
Varidaki A, Hong Y, Coffey ET. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front Cell Neurosci 2018; 12:226. [PMID: 30135644 PMCID: PMC6092511 DOI: 10.3389/fncel.2018.00226] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule stabilizing agents are among the most clinically useful chemotherapeutic drugs. Mostly, they act to stabilize microtubules and inhibit cell division. While not without side effects, new generations of these compounds display improved pharmacokinetic properties and brain penetrance. Neurological disorders are intrinsically associated with microtubule defects, and efforts to reposition microtubule-targeting chemotherapeutic agents for treatment of neurodegenerative and psychiatric illnesses are underway. Here we catalog microtubule regulators that are associated with Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and mood disorders. We outline the classes of microtubule stabilizing agents used for cancer treatment, their brain penetrance properties and neuropathy side effects, and describe efforts to apply these agents for treatment of brain disorders. Finally, we summarize the current state of clinical trials for microtubule stabilizing agents under evaluation for central nervous system disorders.
Collapse
Affiliation(s)
- Artemis Varidaki
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Ye Hong
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| |
Collapse
|
34
|
Posa D, Martínez-González L, Bartolomé F, Nagaraj S, Porras G, Martínez A, Martín-Requero Á. Recapitulation of Pathological TDP-43 Features in Immortalized Lymphocytes from Sporadic ALS Patients. Mol Neurobiol 2018; 56:2424-2432. [PMID: 30030753 DOI: 10.1007/s12035-018-1249-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2018] [Indexed: 11/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder of still unknown etiology that results in loss of motoneurons, paralysis, and death, usually between 2 and 4 years from onset. There are no currently available ALS biomarkers to support early diagnosis and to facilitate the assessment of the efficacy of new treatments. Since ALS is considered a multisystemic disease, here we have investigated the usefulness of immortalized lymphocytes from sporadic ALS patients to study TDP-43 homeostasis as well as to provide a convenient platform to evaluate TDP-43 phosphorylation as a novel therapeutic approach for ALS. We report here that lymphoblasts from ALS patients recapitulate the hallmarks of TDP-43 processing in affected motoneurons, such as increased phosphorylation, truncation, and mislocalization of TDP-43. Moreover, modulation of TDP-43 by an in-house designed protein casein kinase-1δ (CK-1δ) inhibitor, IGS3.27, reduced phosphorylation of TDP-43, and normalized the nucleo-cytosol translocation of TDP-43 in ALS lymphoblasts. Therefore, we conclude that lymphoblasts, easily accessible cells, from ALS patients could be a useful model to study pathological features of ALS disease and a suitable platform to test the effects of potential disease-modifying drugs even in a personalized manner.
Collapse
Affiliation(s)
- Diana Posa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Loreto Martínez-González
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Fernando Bartolomé
- Neurodegenerative Disorders Group, Instituto de Investigacion Hospital 12 de Octubre, Madrid, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Siranjeevi Nagaraj
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur 3 St, 02-093, Warsaw, Poland
| | - Gracia Porras
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
35
|
Durães F, Pinto M, Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11020044. [PMID: 29751602 PMCID: PMC6027455 DOI: 10.3390/ph11020044] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are increasing in number, given that the general global population is becoming older. They manifest themselves through mechanisms that are not fully understood, in many cases, and impair memory, cognition and movement. Currently, no neurodegenerative disease is curable, and the treatments available only manage the symptoms or halt the progression of the disease. Therefore, there is an urgent need for new treatments for this kind of disease, since the World Health Organization has predicted that neurodegenerative diseases affecting motor function will become the second-most prevalent cause of death in the next 20 years. New therapies can come from three main sources: synthesis, natural products, and existing drugs. This last source is known as drug repurposing, which is the most advantageous, since the drug’s pharmacokinetic and pharmacodynamic profiles are already established, and the investment put into this strategy is not as significant as for the classic development of new drugs. There have been several studies on the potential of old drugs for the most relevant neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
36
|
Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci 2018; 193:110-123. [DOI: 10.1016/j.lfs.2017.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
37
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Extrinsic Apoptosis Pathway Altered by Glycogen Synthase Kinase-3 β Inhibitor Influences the Net Drug Effect on NSC-34 Motor Neuron-Like Cell Survival. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4163839. [PMID: 29082245 PMCID: PMC5610847 DOI: 10.1155/2017/4163839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) inhibitors have been suggested as a core regulator of apoptosis and have been investigated as therapeutic agents for neurodegenerative diseases, including amyotrophic lateral sclerosis. However, GSK-3β has an interesting paradoxical effect of being proapoptotic during mitochondrial-mediated intrinsic apoptosis but antiapoptotic during death receptor-mediated extrinsic apoptosis. We assessed the effect of low to high doses of a GSK-3β inhibitor on survival and apoptosis of the NSC-34 motor neuron-like cell line after serum withdrawal. Then, we identified changes in extrinsic apoptosis markers, including Fas, Fas ligand, cleaved caspase-8, p38α, and the Fas-Daxx interaction. The GSK-3β inhibitor had an antiapoptotic effect at the low dose but was proapoptotic at the high dose. Proapoptotic effect at the high dose can be explained by increased signals in cleaved caspase-8 and the motor neuron-specific p38α and Fas-Daxx interaction. Our results suggest that GSK-3β inhibitor dose may determine the summation effect of the intrinsic and extrinsic apoptosis pathways. The extrinsic apoptosis pathway might be another therapeutic target for developing a potential GSK-3β inhibitor.
Collapse
|
39
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
40
|
De Vos KJ, Hafezparast M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol Dis 2017; 105:283-299. [PMID: 28235672 PMCID: PMC5536153 DOI: 10.1016/j.nbd.2017.02.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Kurt J De Vos
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Majid Hafezparast
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
41
|
Martinez A, Palomo Ruiz MDV, Perez DI, Gil C. Drugs in clinical development for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2017; 26:403-414. [PMID: 28277881 DOI: 10.1080/13543784.2017.1302426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal motor neuron progressive disorder for which no treatment exists to date. However, there are other investigational drugs and therapies currently under clinical development may offer hope in the near future. Areas covered: We have reviewed all the ALS ongoing clinical trials (until November 2016) and collected in Clinicaltrials.gov or EudraCT. We have described them in a comprehensive way and have grouped them in the following sections: biomarkers, biological therapies, cell therapy, drug repurposing and new drugs. Expert opinion: Despite multiple obstacles that explain the absence of effective drugs for the treatment of ALS, joint efforts among patient's associations, public and private sectors have fueled innovative research in this field, resulting in several compounds that are in the late stages of clinical trials. Drug repositioning is also playing an important role, having achieved the approval of some orphan drug applications, in late phases of clinical development. Endaravone has been recently approved in Japan and is pending in USA.
Collapse
Affiliation(s)
- Ana Martinez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | | | - Daniel I Perez
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| | - Carmen Gil
- a IPSBB Unit , Centro de Investigaciones Biologicas-CSIC , Madrid , Spain
| |
Collapse
|
42
|
Lu H, Le WD, Xie YY, Wang XP. Current Therapy of Drugs in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2016; 14:314-21. [PMID: 26786249 PMCID: PMC4876587 DOI: 10.2174/1570159x14666160120152423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly termed as motor neuron disease (MND) in UK, is a chronically lethal disorder among the neurodegenerative diseases, meanwhile. ALS is basically irreversible and progressive deterioration of upper and lower motor neurons in the motor cortex, brain stem and medulla spinalis. Riluzole, used for the treatment of ALS, was demonstrated to slightly delay the initiation of respiratory dysfunction and extend the median survival of patients by a few months. In this study, the key biochemical defects were discussed, such as: mutant Cu/Zn superoxide dismutase, mitochondrial protectants, and anti-excitotoxic/ anti-oxidative / anti-inflammatory/ anti-apoptotic agents, so the related drug candidates that have been studied in ALS models would possibly be further used in ALS patients.
Collapse
Affiliation(s)
| | | | | | - Xiao-Ping Wang
- Department of Neurology, Shanghai First People's Hospital , Shanghai Jiao-Tong University, China, 200080.
| |
Collapse
|
43
|
Mathis S, Couratier P, Julian A, Vallat JM, Corcia P, Le Masson G. Management and therapeutic perspectives in amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 17:263-276. [DOI: 10.1080/14737175.2016.1227705] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| | - Philippe Couratier
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Limoges, Limoges, France
| | - Adrien Julian
- Department of Neurology, CHU Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Department and Laboratory of Neurology, Centre de Référence ‘neuropathies périphériques rares’, University Hospital of Limoges, Limoges, France
| | - Philippe Corcia
- Department of Neurology, ALS center, Centre de compétence SLA-fédération Tours-Limoges, CHU de Tours, Tours, France
| | - Gwendal Le Masson
- Department of Neurology, Neuro-Muscular Unit and ALS Center, CHU de Bordeaux, groupe hospitalier Pellegrin, Bordeaux, France
| |
Collapse
|
44
|
de Munck E, Palomo V, Muñoz-Sáez E, Perez DI, Gómez-Miguel B, Solas MT, Gil C, Martínez A, Arahuetes RM. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy. PLoS One 2016; 11:e0162723. [PMID: 27631495 PMCID: PMC5025054 DOI: 10.1371/journal.pone.0162723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.
Collapse
Affiliation(s)
- Estefanía de Munck
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Valle Palomo
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Emma Muñoz-Sáez
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Daniel I. Perez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Begoña Gómez-Miguel
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - M. Teresa Solas
- Departamento de Biología Celular, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maetzu 9, Madrid, Spain
- * E-mail: (AM); (RMA)
| | - Rosa M. Arahuetes
- Departamento de Biología Animal II, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- * E-mail: (AM); (RMA)
| |
Collapse
|
45
|
Bonifacino T, Musazzi L, Milanese M, Seguini M, Marte A, Gallia E, Cattaneo L, Onofri F, Popoli M, Bonanno G. Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease. Neurobiol Dis 2016; 95:122-33. [PMID: 27425885 DOI: 10.1016/j.nbd.2016.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/29/2023] Open
Abstract
Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy.
| | - Laura Musazzi
- Department of Pharmacological and Biomolecular Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy.
| | - Mara Seguini
- Department of Pharmacological and Biomolecular Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy.
| | - Antonella Marte
- Department of Experimental Medicine, Unit of Human Physiology, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Elena Gallia
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy.
| | - Luca Cattaneo
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy.
| | - Franco Onofri
- Department of Experimental Medicine, Unit of Human Physiology, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy.
| | - Maurizio Popoli
- Department of Pharmacological and Biomolecular Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy.
| |
Collapse
|
46
|
Chang Q, Martin LJ. Voltage-gated calcium channels are abnormal in cultured spinal motoneurons in the G93A-SOD1 transgenic mouse model of ALS. Neurobiol Dis 2016; 93:78-95. [PMID: 27151771 DOI: 10.1016/j.nbd.2016.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 04/01/2016] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motoneurons. Hyperexcitability and excitotoxicity have been implicated in the early pathogenesis of ALS. Studies addressing excitotoxic motoneuron death and intracellular Ca(2+) overload have mostly focused on Ca(2+) influx through AMPA glutamate receptors. However, intrinsic excitability of motoneurons through voltage-gated ion channels may also have a role in the neurodegeneration. In this study we examined the function and localization of voltage-gated Ca(2+) channels in cultured spinal cord motoneurons from mice expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). Using whole-cell patch-clamp recordings, we showed that high voltage activated (HVA) Ca(2+) currents are increased in G93A-SOD1 motoneurons, but low voltage activated Ca(2+) currents are not affected. G93A-SOD1 motoneurons also have altered persistent Ca(2+) current mediated by L-type Ca(2+) channels. Quantitative single-cell RT-PCR revealed higher levels of Ca1a, Ca1b, Ca1c, and Ca1e subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the increase of HVA Ca(2+) currents may result from upregulation of Ca(2+) channel mRNA expression in motoneurons. The localizations of the Ca1B N-type and Ca1D L-type Ca(2+) channels in motoneurons were examined by immunocytochemistry and confocal microscopy. G93A-SOD1 motoneurons had increased Ca1B channels on the plasma membrane of soma and dendrites. Ca1D channels are similar on the plasma membrane of soma and lower on the plasma membrane of dendrites of G93A-SOD1 motoneurons. Our study demonstrates that voltage-gated Ca(2+) channels have aberrant functions and localizations in ALS mouse motoneurons. The increased HVA Ca(2+) currents and PCCa current could contribute to early pathogenesis of ALS.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States.
| | - Lee J Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, MD 21205, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
47
|
Krieger C, Wang SJH, Yoo SH, Harden N. Adducin at the Neuromuscular Junction in Amyotrophic Lateral Sclerosis: Hanging on for Dear Life. Front Cell Neurosci 2016; 10:11. [PMID: 26858605 PMCID: PMC4731495 DOI: 10.3389/fncel.2016.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
The neurological dysfunction in amyotrophic lateral sclerosis (ALS)/motor neurone disease (MND) is associated with defective nerve-muscle contacts early in the disease suggesting that perturbations of cell adhesion molecules (CAMs) linking the pre- and post-synaptic components of the neuromuscular junction (NMJ) are involved. To search for candidate proteins implicated in this degenerative process, researchers have studied the Drosophila larval NMJ and find that the cytoskeleton-associated protein, adducin, is ideally placed to regulate synaptic contacts. By controlling the levels of synaptic proteins, adducin can de-stabilize synaptic contacts. Interestingly, elevated levels of phosphorylated adducin have been reported in ALS patients and in a mouse model of the disease. Adducin is regulated by phosphorylation through protein kinase C (PKC), some isoforms of which exhibit Ca2+-dependence, raising the possibility that changes in intracellular Ca2+ might alter PKC activation and secondarily influence adducin phosphorylation. Furthermore, adducin has interactions with the alpha subunit of the Na+/K+-ATPase. Thus, the phosphorylation of adducin may secondarily influence synaptic stability at the NMJ and so influence pre- and post-synaptic integrity at the NMJ in ALS.
Collapse
Affiliation(s)
- Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | - Simon Ji Hau Wang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Soo Hyun Yoo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser UniversityBurnaby, BC, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC, Canada
| |
Collapse
|
48
|
de Pedro N, Cantizani J, Ortiz-López FJ, González-Menéndez V, Cautain B, Rodríguez L, Bills GF, Reyes F, Genilloud O, Vicente F. Protective effects of isolecanoric acid on neurodegenerative in vitro models. Neuropharmacology 2015; 101:538-48. [PMID: 26455662 DOI: 10.1016/j.neuropharm.2015.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS), are neurodegenerative disorders characterized by loss of dopaminergic or motor neurons, respectively. Although understanding of the PD and ALS pathogenesis remains incomplete, increasing evidence from human and animal studies has suggested that aberrant GSK3β, oxidative stress and mitochondrial damage are involved in their pathogenesis. Using two different molecular models, treatment with L-BMAA for ALS and rotenone for PD the effect of isolecanoric acid, a natural product isolated from a fungal culture, was evaluated. Pre-treatment with this molecule caused inhibition of GSK3β and CK1, and a decrease in oxidative stress, mitochondrial damage, apoptosis and cell death. Taken together, these results indicated that isolecanoric acid might have a protective effect against the development of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain.
| | - Juan Cantizani
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | | | - Victor González-Menéndez
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | - Lorena Rodríguez
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | - Gerald F Bills
- Texas Therapeutics Institute, University of Texas Health Science Center at Houston, United States
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avda. Conocimiento 34, 18016 Granada, Spain
| |
Collapse
|
49
|
Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Mol Cell Neurosci 2015; 68:303-13. [PMID: 26320681 DOI: 10.1016/j.mcn.2015.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/16/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.
Collapse
|
50
|
Paquet C, Dumurgier J, Hugon J. Pro-Apoptotic Kinase Levels in Cerebrospinal Fluid as Potential Future Biomarkers in Alzheimer's Disease. Front Neurol 2015; 6:168. [PMID: 26300842 PMCID: PMC4523792 DOI: 10.3389/fneur.2015.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the accumulation of Aβ peptides, hyperphosphorylated tau proteins, and neuronal loss in the brain of affected patients. The causes of neurodegeneration in AD are not clear, but apoptosis could be one of the cell death mechanisms. According to the amyloid hypothesis, abnormal aggregation of Aβ leads to altered kinase activities inducing tau phosphorylation and neuronal degeneration. Several studies have shown that pro-apoptotic kinases could be a link between Aβ and tau anomalies. Here, we present recent evidences from AD experimental models and human studies that three pro-apoptotic kinases (double-stranded RNA kinase (PKR), glycogen synthase kinase-3β, and C-Jun terminal kinase (JNK) could be implicated in AD physiopathology. These kinases are detectable in human fluids and the analysis of their levels could be used as potential surrogate markers to evaluate cell death and clinical prognosis. In addition to current biomarkers (Aβ1–42, tau, and phosphorylated tau), these new evaluations could bring about valuable information on potential innovative therapeutic targets to alter the clinical evolution.
Collapse
Affiliation(s)
- Claire Paquet
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Julien Dumurgier
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| | - Jacques Hugon
- INSERM UMR-S942, Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile de France, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, AP-HP, Université Paris Diderot , Paris , France
| |
Collapse
|