1
|
Lall R, Mohammed R, Ojha U. What are the links between hypoxia and Alzheimer's disease? Neuropsychiatr Dis Treat 2019; 15:1343-1354. [PMID: 31190838 PMCID: PMC6535079 DOI: 10.2147/ndt.s203103] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Histological characterization of amyloid plaques and neurofibrillary tangles in the brains of AD patients, alongside genetic studies in individuals suffering the familial form of the disease, has fueled the accumulation of the amyloid-β protein as the initial pathological trigger of disease. Association studies have recently showed that cerebral hypoxia, via both genetic and epigenetic mechanisms, increase amyloid-β deposition by altering expression levels of enzymes involved in the production/degradation of the protein. Furthermore, hypoxia has also been linked to neuronal and glial-cell calcium dysregulation through formation of calcium-permeable pores, dysregulated glutamate signaling, and intracellular calcium-store dysfunction. Hypoxia has also been strongly linked to neuroinflammation; however, this relationship to AD has not been thoroughly discussed in the literature. Here, we highlight and organize critical research evidence showing that in both hypoxic and AD brains, there are similarities in terms of 1) the substances mediating/modulating the neuroinflammatory environment and 2) the immune cells that drive the formation of these substances.
Collapse
Affiliation(s)
- Rahul Lall
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Utkarsh Ojha
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
2
|
Riches K, Hettiarachchi N, Porter K, Peers C. Hypoxic remodelling of Ca2+ stores does not alter human cardiac myofibroblast invasion. Biochem Biophys Res Commun 2010; 403:468-72. [DOI: 10.1016/j.bbrc.2010.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
|
3
|
To MS, Aromataris EC, Castro J, Roberts ML, Barritt GJ, Rychkov GY. Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca2+ current in liver cells. Arch Biochem Biophys 2010; 495:152-8. [DOI: 10.1016/j.abb.2010.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/27/2022]
|
4
|
Dare AJ, Phillips ARJ, Hickey AJR, Mittal A, Loveday B, Thompson N, Windsor JA. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med 2009; 47:1517-25. [PMID: 19715753 DOI: 10.1016/j.freeradbiomed.2009.08.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 01/11/2023]
Abstract
Sepsis and multiple organ dysfunction syndrome (MODS) are major causes of morbidity and mortality in the intensive care unit. Recently mitochondrial dysfunction has been proposed as a key early cellular event in critical illness. A growing body of experimental evidence suggests that mitochondrial therapies are effective in sepsis and MODS. The aim of this article is to undertake a systematic review of the current experimental evidence for the use of therapies for mitochondrial dysfunction during sepsis and MODS and to classify these mitochondrial therapies. A search of the MEDLINE and PubMed databases (1950 to July 2009) and a manual review of reference lists were conducted to find experimental studies containing data on the efficacy of mitochondrial therapies in sepsis and sepsis-related MODS. Fifty-one studies were included in this review. Five categories of mitochondrial therapies were defined-substrate provision, cofactor provision, mitochondrial antioxidants, mitochondrial reactive oxygen species scavengers, and membrane stabilizers. Administration of mitochondrial therapies during sepsis was associated with improvements in mitochondrial electron transport system function, oxidative phosphorylation, and ATP production and a reduction in cellular markers of oxidative stress. Amelioration of proinflammatory cytokines, caspase activation, and prevention of the membrane permeability transition were reported. Restoration of mitochondrial bioenergetics was associated with improvements in hemodynamic parameters, organ function, and overall survival. A substantial body of evidence from experimental studies at both the cellular and the organ level suggests a beneficial role for the administration of mitochondrial therapies in sepsis and MODS. We expect that mitochondrial therapies will have an increasingly important role in the management of sepsis and MODS. Clinical trials are now required.
Collapse
Affiliation(s)
- Anna J Dare
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
5
|
Peers C, Dallas ML, Boycott HE, Scragg JL, Pearson HA, Boyle JP. Hypoxia and Neurodegeneration. Ann N Y Acad Sci 2009; 1177:169-77. [DOI: 10.1111/j.1749-6632.2009.05026.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Milligan CJ, Li J, Sukumar P, Majeed Y, Dallas ML, English A, Emery P, Porter KE, Smith AM, McFadzean I, Beccano-Kelly D, Bahnasi Y, Cheong A, Naylor J, Zeng F, Liu X, Gamper N, Jiang LH, Pearson HA, Peers C, Robertson B, Beech DJ. Robotic multiwell planar patch-clamp for native and primary mammalian cells. Nat Protoc 2009; 4:244-55. [PMID: 19197268 PMCID: PMC2645065 DOI: 10.1038/nprot.2008.230] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Robotic multiwell planar patch-clamp has become common in drug development and safety programs because it enables efficient and systematic testing of compounds against ion channels during voltage-clamp. It has not, however, been adopted significantly in other important areas of ion channel research, where conventional patch-clamp remains the favored method. Here, we show the wider potential of the multiwell approach with the ability for efficient intracellular solution exchange, describing protocols and success rates for recording from a range of native and primary mammalian cells derived from blood vessels, arthritic joints and the immune and central nervous systems. The protocol involves preparing a suspension of single cells to be dispensed robotically into 4-8 microfluidic chambers each containing a glass chip with a small aperture. Under automated control, giga-seals and whole-cell access are achieved followed by preprogrammed routines of voltage paradigms and fast extracellular or intracellular solution exchange. Recording from 48 chambers usually takes 1-6 h depending on the experimental design and yields 16-33 cell recordings.
Collapse
Affiliation(s)
- Carol J Milligan
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing Li
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Piruthivi Sukumar
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasser Majeed
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark L Dallas
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Anne English
- Academic Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, School of Medicine, Univeristy of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA
| | - Paul Emery
- Academic Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, School of Medicine, Univeristy of Leeds, Chapel Allerton Hospital, Chapeltown Road, Leeds LS7 4SA
| | - Karen E Porter
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew M Smith
- Department of Molecular Medicine, Rayne Institute, University College London, London, WC1E 6JJ
| | - Ian McFadzean
- Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Sciences Research Division, School of Biomedical & Health Sciences, King’s College London, London SE1 1UL, UK
| | - Dayne Beccano-Kelly
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yahya Bahnasi
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Clinical Physiology Department, Faculty of Medicine, Menoufiya University, Egypt
| | - Alex Cheong
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jacqueline Naylor
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Fanning Zeng
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Xing Liu
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikita Gamper
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lin-Hua Jiang
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hugh A Pearson
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Division of Cardiovascular and Neuronal Remodeling, Faculty of Medicine & Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Brian Robertson
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Beech
- Institute of Membrane & Systems Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
The role of mitochondrial potential in control of calcium signals involved in cell proliferation. Cell Calcium 2008; 44:259-69. [DOI: 10.1016/j.ceca.2007.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/18/2022]
|
8
|
Fletcher EL, Downie LE, Ly A, Ward MM, Batcha AH, Puthussery T, Yee P, Hatzopoulos KM. A review of the role of glial cells in understanding retinal disease. Clin Exp Optom 2008; 91:67-77. [PMID: 18045252 DOI: 10.1111/j.1444-0938.2007.00204.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retinal vascular diseases such as diabetic retinopathy and retinopathy of prematurity are major causes of visual loss. Although the focus of a great deal of research has been on the aetiology of vascular growth, it is now emerging that anomalies in other retinal cell types, especially glial cells, occur very early in the course of the disease. Glial cells have major roles in every stage of disease, from the earliest subtle variations in neural function, to the development of epi-retinal membranes and tractional detachment. Therefore, having a firm understanding of the function of retinal glia is important in our understanding of retinal disease and is crucial for the development of new treatment strategies.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Numerous cardiorespiratory disorders result in persistent systemic hypoxia, or at worst (as a consequence of stroke) deprive the brain of oxygen completely for a period of time. Patients suffering from such conditions are much more susceptible to the development of dementias such as AD (Alzheimer's disease). Until recently, the cellular and molecular basis for the predisposition to AD by systemic hypoxia has been completely unknown. However, emerging evidence suggests that pathological cellular remodelling caused by chronic hypoxia shows striking similarities to those observed in the central nervous system as a consequence of AD. Furthermore, prolonged hypoxia can induce formation of Abetas (amyloid beta peptides), the primary neurotoxic elements of AD, which accumulate over years to form the extracellular plaques that are the hallmark feature of the disease. Hypoxia can lead to paradoxical increases in mitochondrial ROS (reactive oxygen species) generation upstream of Abeta formation. The downstream consequences of prolonged hypoxia include remodelling of functional expression of voltage-gated calcium channels and disturbance of intracellular calcium homoeostasis via disrupted calcium buffering and inhibition of calcium extrusion mechanisms. These effects can be mimicked by application of exogenous Abeta and, crucially, appear to depend on Abeta formation. Current knowledge supports the concept that prevention of the deleterious effects of hypoxia may prove beneficial in slowing or preventing the onset of AD.
Collapse
Affiliation(s)
- Chris Peers
- Faculty of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
10
|
Dallas M, Boycott HE, Atkinson L, Miller A, Boyle JP, Pearson HA, Peers C. Hypoxia suppresses glutamate transport in astrocytes. J Neurosci 2007; 27:3946-55. [PMID: 17428968 PMCID: PMC6672540 DOI: 10.1523/jneurosci.5030-06.2007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glutamate uptake by astrocytes is fundamentally important in the regulation of CNS function. Disruption of uptake can lead to excitotoxicity and is implicated in various neurodegenerative processes as well as a consequence of hypoxic/ischemic events. Here, we investigate the effect of hypoxia on activity and expression of the key glutamate transporters excitatory amino acid transporter 1 (EAAT1) [GLAST (glutamate-aspartate transporter)] and EAAT2 [GLT-1 (glutamate transporter 1)]. Electrogenic, Na+-dependent glutamate uptake was monitored via whole-cell patch-clamp recordings from cortical astrocytes. Under hypoxic conditions (2.5 and 1% O2 exposure for 24 h), glutamate uptake was significantly reduced, and pharmacological separation of uptake transporter subtypes suggested that the EAAT2 subtype was preferentially reduced relative to the EAAT1. This suppression was confirmed at the level of EAAT protein expression (via Western blots) and mRNA levels (via real-time PCR). These effects of hypoxia to inhibit glutamate uptake current and EAAT protein levels were not replicated by desferrioxamine, cobalt, FG0041, or FG4496, agents known to mimic effects of hypoxia mediated via the transcriptional regulator, hypoxia-inducible factor (HIF). Furthermore, the effects of hypoxia were not prevented by topotecan, which prevents HIF accumulation. In stark contrast, inhibition of nuclear factor-kappaB (NF-kappaB) with SN50 fully prevented the effects of hypoxia on glutamate uptake and EAAT expression. Our results indicate that prolonged hypoxia can suppress glutamate uptake in astrocytes and that this effect requires activation of NF-kappaB but not of HIF. Suppression of glutamate uptake via this mechanism may be an important contributory factor in hypoxic/ischemic triggered glutamate excitotoxicity.
Collapse
Affiliation(s)
| | | | - Lucy Atkinson
- Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | - Hugh A. Pearson
- Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
11
|
Floyd CL, Lyeth BG. Astroglia: important mediators of traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:61-79. [PMID: 17618970 DOI: 10.1016/s0079-6123(06)61005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) research to date has focused almost exclusively on the pathophysiology of injured neurons with very little attention paid to non-neuronal cells. However in the past decade, exciting discoveries have challenged this century-old view of passive glial cells and have led to a reinterpretation of the role of glial cells in central nervous system (CNS) biology and pathology. In this chapter we review several lines of evidence, indicating that glial cells, particularly astrocytes, are active partners to neurons in the brain, and summarize recent findings that detail the significance of astrocyte pathology in traumatic brain injury.
Collapse
Affiliation(s)
- Candace L Floyd
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, 547 Spain Rehabilitation Center, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | |
Collapse
|
12
|
Abstract
Alzheimer's disease is recognized post mortem by the presence of extracellular senile plaques, made primarily of aggregation of amyloid beta peptide (Abeta). This peptide has consequently been regarded as the principal toxic factor in the neurodegeneration of Alzheimer's disease. As such, intense research effort has been directed at determining its source, activity and fate, primarily with a view to preventing its formation or its biological activity, or promoting its degradation. Clearly, much progress has been made concerning its formation by proteolytic processing of the amyloid precursor protein, and its degradation by enzymes such as neprilysin and insulin degrading enzyme. The activities of Abeta, however, are numerous and yet to be fully elucidated. What is currently emerging from such studies is a diffuse but steadily growing body of data that suggests Abeta has important physiological functions and, further, that it should only be regarded as toxic when its production and degradation are imbalanced. Here, we review these data and suggest that physiological levels of Abeta have important physiological roles, and may even be crucial for neuronal cell survival. Thus, the view of Abeta being a purely toxic peptide requires re-evaluation.
Collapse
Affiliation(s)
- Hugh A Pearson
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
13
|
Atkinson L, Boyle JP, Pearson HA, Peers C. Chronic hypoxia inhibits Na+/Ca2+ exchanger expression in cortical astrocytes. Neuroreport 2006; 17:649-52. [PMID: 16603928 DOI: 10.1097/00001756-200604240-00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ca signalling is central to many diverse functions of astrocytes. Of the numerous proteins involved in Ca homeostasis, the Na(+)/Ca(2+) exchanger is of particular importance in signalling regulation. We have shown that Ca signaling is dramatically remodelled in astrocytes by periods of chronic hypoxia, in part by inhibition of Na(+)/Ca(2+) exchanger. Here, we demonstrate that bepridil-sensitive Ca extrusion (indicative of Na(+)/Ca(2+) exchanger activity) is suppressed following 24 h hypoxia (2.5 or 1% O2) owing to a loss of Na(+)/Ca(2+) exchanger expression, as determined using immunocytochemistry and Western blots. Hypoxic Na(+)/Ca(2+) exchanger 1 inhibition occurs at the level of transcription, as mRNA for Na(+)/Ca(2+) exchanger 1 was significantly suppressed by hypoxia. Our results show hypoxia perturbs Ca homeostasis in astrocytes via the suppression of Na(+)/Ca(2+) exchanger 1 expression.
Collapse
Affiliation(s)
- Lucy Atkinson
- Faculties of Medicine and Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
14
|
Aley PK, Murray HJ, Boyle JP, Pearson HA, Peers C. Hypoxia stimulates Ca2+ release from intracellular stores in astrocytes via cyclic ADP ribose-mediated activation of ryanodine receptors. Cell Calcium 2005; 39:95-100. [PMID: 16256194 DOI: 10.1016/j.ceca.2005.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/15/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
The ability of O(2) levels to regulate Ca(2+) signalling in non-excitable cells is poorly understood, yet crucial to our understanding of Ca(2+)-dependent cell functions in physiological and pathological situations. Here, we demonstrate that hypoxia mobilizes Ca(2+) from an intracellular pool in primary cultures of cortical astrocytes. This pool can also be mobilized by bradykinin, which acts via phospholipase C and inositol trisphosphate production. By contrast, hypoxic Ca(2+) mobilization utilizes ryanodine receptors, which appear to be either present on the same intracellular pool, or on a separate but functionally coupled pool. Hypoxic activation of ryanodine receptors requires formation of cyclic ADP ribose, since hypoxic Ca(2+) mobilization was fully prevented by nicotinamide (which inhibits ADP ribosyl cyclase) or by 8-Br-cADP ribose, an antagonist of cyclic ADP ribose. Our results demonstrate for the first time the involvement of cyclic ADP ribose in hypoxic modulation of Ca(2+) signalling in the central nervous system, and suggest that this modulator of ryanodine receptors may play a key role in the function of astrocytes under conditions of fluctuating O(2) levels.
Collapse
Affiliation(s)
- Parvinder K Aley
- School of Medicine, Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
15
|
Smith IF, Boyle JP, Kang P, Rome S, Pearson HA, Peers C. Hypoxic regulation of Ca2+ signaling in cultured rat astrocytes. Glia 2005; 49:153-7. [PMID: 15390111 DOI: 10.1002/glia.20083] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute hypoxia modulates various cell processes, such as cell excitability, through the regulation of ion channel activity. Given the central role of Ca2+ signaling in the physiological functioning of astrocytes, we have investigated how acute hypoxia regulates such signaling, and compared results with those evoked by bradykinin (BK), an agonist whose ability to liberate Ca2+ from intracellular stores is well documented. In Ca2+-free perfusate, BK evoked rises of [Ca2+]i in all cells examined. Hypoxia produced smaller rises of [Ca2+]i in most cells, but always suppressed subsequent rises of [Ca2+]i induced by BK. Thapsigargin pre-treatment of cells prevented any rise of [Ca2+]i evoked by either BK or hypoxia. Restoration of Ca2+ to the perfusate following a period of acute hypoxia always evoked capacitative Ca2+ entry. During mitochondrial inhibition (due to exposure to carbonyl cyanide p-trifluromethoxyphenyl hydrazone (FCCP) and oligomycin), rises in [Ca2+]i (observed in Ca2+-free perfusate) evoked by hypoxia or by BK, were significantly enhanced, and hypoxia always evoked responses. Our data indicate that hypoxia triggers Ca2+ release from endoplasmic reticulum stores, efficiently buffered by mitochondria. Such liberation of Ca2+ is sufficient to trigger capacitative Ca2+ entry. These findings indicate that the local O2 level is a key determinant of astrocyte Ca2+ signaling, likely modulating Ca2+-dependent astrocyte functions in the central nervous system.
Collapse
Affiliation(s)
- I F Smith
- Institute for Cardiovascular Research, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | |
Collapse
|
16
|
Matute C, Domercq M, Sánchez-Gómez MV. Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 2005; 53:212-24. [PMID: 16206168 DOI: 10.1002/glia.20275] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Primary and/or secondary glial cell death can cause and/or aggravate human diseases of the central nervous system (CNS). Like neurons, glial cells are vulnerable to glutamate insults. Astrocytes, microglia, and oligodendrocytes express a wide variety of glutamate receptors and transporters that mediate many of the deleterious effects of glutamate. Astrocytes are responsible for most glutamate uptake in synaptic and nonsynaptic areas and consequently, are the major regulators of glutamate homeostasis. Microglia in turn may secrete cytokines, which can impair glutamate uptake and reduce the expression of glutamate transporters. Finally, oligodendrocytes, the myelinating cells of the CNS, are very sensitive to excessive glutamate signaling, which can lead to the apoptosis or necrosis of these cells. This review aims at summarizing the mechanisms leading to glial cell death as a consequence of alterations in glutamate signaling, and their clinical relevance. A thorough understanding of these events will undoubtedly lead to better therapeutic strategies to treat CNS diseases affecting glia and in particular, those that involve damage to white matter tracts.
Collapse
Affiliation(s)
- Carlos Matute
- Departamento de Neurociencias, Universidad del País Vasco, Leioa, Vizcaya, Spain.
| | | | | |
Collapse
|
17
|
Abstract
Melatonin, or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinson's, Alzheimer's, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen-based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.
Collapse
Affiliation(s)
- Josefa León
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Peers C, Smith IF, Boyle JP, Pearson HA. Remodelling of Ca2+ homeostasis in type I cortical astrocytes by hypoxia: evidence for association with Alzheimer's disease. Biol Chem 2004; 385:285-9. [PMID: 15134342 DOI: 10.1515/bc.2004.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sustained central hypoxia predisposes individuals to dementias such as Alzheimer's disease, in which cells are destroyed in part by disruption of Ca2+ homeostasis. Here, we show that exposure of astrocytes to hypoxia in vitro causes inhibition of plasmalemmal Na+/Ca2+ exchange and excessive mitochondrial Ca2+ loading. Both factors disrupt normal agonist-evoked Ca2+ signalling. Moreover, hypoxia increases the levels of presenilin-1, a major component of a key enzyme involved in Alzheimer's disease. Inhibition of this enzyme partially reverses the effects of hypoxia on Ca2+ signalling. These findings provide an initial cellular basis for understanding the clinical association of hypoxia with Alzheimer's disease.
Collapse
Affiliation(s)
- Chris Peers
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
19
|
Uyemura SA, Luo S, Vieira M, Moreno SNJ, Docampo R. Oxidative Phosphorylation and Rotenone-insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium yoelii yoelii Mitochondria in Situ. J Biol Chem 2004; 279:385-93. [PMID: 14561763 DOI: 10.1074/jbc.m307264200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Respiration, membrane potential, and oxidative phosphorylation of mitochondria of Plasmodium yoelii yoelii trophozoites were assayed in situ after permeabilization with digitonin. ADP induced an oligomycin-sensitive transition from resting to phosphorylating respiration in the presence of oxidizable substrates. A functional respiratory chain was demonstrated. In addition, the ability of the parasite to oxidize exogenous NADH, as well as the insensitivity of respiration to rotenone and its sensitivity to flavone, suggested the presence of an alternative NADH-quinone (NADH-Q) oxidoreductase. Rotenone-insensitive respiration and membrane potential generation in the presence of malate suggested the presence of a malate-quinone oxidoreductase. These results are in agreement with the presence of genes in P. yoelii encoding for proteins with homology to NADH-Q oxidoreductases of bacteria, plant, fungi, and protozoa and malate-quinone oxidoreductases of bacteria. The complete inhibition of respiration by antimycin A and cyanide excluded the presence of an alternative oxidase as described in other parasites. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin and GTP but was unaffected by carboxyatractyloside. These results provide the first biochemical evidence of the presence of an alternative NADH-Q oxidoreductase and a malate-quinone oxidoreductase and confirm the operation of oxidative phosphorylation in malaria parasites.
Collapse
Affiliation(s)
- Sergio A Uyemura
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|