1
|
McLellan LK, Anderson ME, Grossman AD. TnSmu1 is a functional integrative and conjugative element in Streptococcus mutans that when expressed causes growth arrest of host bacteria. Mol Microbiol 2022; 118:652-669. [PMID: 36268794 PMCID: PMC10098952 DOI: 10.1111/mmi.14992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Integrative and conjugative elements (ICEs) are major drivers of horizontal gene transfer in bacteria. They mediate their own transfer from host cells (donors) to recipients and allow bacteria to acquire new phenotypes, including pathogenic and metabolic capabilities and drug resistances. Streptococcus mutans, a major causative agent of dental caries, contains a putative ICE, TnSmu1, integrated at the 3' end of a leucyl tRNA gene. We found that TnSmu1 is a functional ICE, containing all the genes necessary for ICE function. It excised from the chromosome and excision was stimulated by DNA damage. We identified the DNA junctions generated by excision of TnSmu1, defined the ends of the element, and detected the extrachromosomal circle. We found that TnSmu1 can transfer from S. mutans donors to recipients when co-cultured on solid medium. The presence of TnSmu1 in recipients inhibited successful acquisition of another copy and this inhibition was mediated, at least in part, by the likely transcriptional repressor encoded by the element. Using microscopy to track individual cells, we found that activation of TnSmu1 caused an arrest of cell growth. Our results demonstrate that TnSmu1 is a functional ICE that affects the biology of its host cells.
Collapse
Affiliation(s)
- Lisa K McLellan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary E Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Polizzi E, D'orto B, Tomasi S, Tetè G. A micromorphological/microbiological pilot study assessing three methods for the maintenance of the implant patient. Clin Exp Dent Res 2021; 7:156-162. [PMID: 33211411 PMCID: PMC8019768 DOI: 10.1002/cre2.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate and compare the effectiveness of the ultrasonic piezoelectric inserts of EMS Steel Tip A, EMS Peek, and IS-TiP-STS-3E© in reducing peri-implant bacterial load without compromising the surface of implants during professional oral hygiene in the follow-up. MATERIALS AND METHODS Thirteen implants were examined (Winsix, Biosafin, Ancona, Italy). The implants were divided into five groups and analyzed with a SEM microscope and microbiological analysis to evaluate the possible modification of structure and the bacterial load reduction. RESULTS The control and A, B, and C test groups were initially contaminated in vitro with Streptococcus mutans. Subsequently, the A, B, and C test groups were treated by an only expert operator in standard conditions. Test groups A, B, and C were inoculated for 3 hr and, furthermore, microbiologically analyzed. CONCLUSION The gold standard of an implant maintenance is a significant reduction of the bacterial load without becoming aggressive. According to our results, despite the limitations of the study, the authors recommend the least aggressive IS-TiP-STS-3E© , but combined with an antimicrobial agent to reduce the bacterial load, because the IS-TiP-STS-3E© did not show appreciable results versus the EMS Peek in reducing the bacterial load.
Collapse
Affiliation(s)
- Elisabetta Polizzi
- Department of Dentistry, IRCCS San Raffaele HospitalVita Salute UniversityMilanItaly
| | - Bianca D'orto
- Department of Dentistry, IRCCS San Raffaele HospitalVita Salute UniversityMilanItaly
| | | | - Giulia Tetè
- Department of Dentistry, IRCCS San Raffaele HospitalVita Salute UniversityMilanItaly
| |
Collapse
|
3
|
Park SH, Kim OJ, Chung HJ, Kim OS. Effect of a Er, Cr:YSGG laser and a Er:YAG laser treatment on oral biofilm-contaminated titanium. J Appl Oral Sci 2020; 28:e20200528. [PMID: 33263649 PMCID: PMC7714262 DOI: 10.1590/1678-7757-2020-0528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Implant surface decontamination is a challenging procedure for therapy of peri-implant disease. This study aimed to compare the effectiveness of decontamination on oral biofilm-contaminated titanium surfaces in Er:YAG laser, Er, Cr:YSGG laser, and plastic curette. METHODOLOGY For oral biofilms formation, six participants wore an acrylic splint with eight titanium discs in the maxillary arch for 72 hours. A total of 48 contaminated discs were distributed among four groups: untreated control; decontamination with plastic curettes; Er, Cr:YSGG laser; and Er:YAG laser irradiation. Complete plaque removal was estimated using naked-eye and the time taken was recorded; the residual plaque area was measured and the morphological alteration of the specimen surface was observed by scanning electron microscopy. The total bacterial load and the viability of adherent bacteria were quantified by live or dead cell labeling with fluorescence microscopy. RESULTS The mean treatment time significantly decreased based on the treatment used in the following order: Er:YAG, Er, Cr:YSGG laser, and plastic curettes (234.9±25.4 sec, 156.1±12.7 sec, and 126.4±18.6 sec, P=0.000). The mean RPA in the Er, Cr:YSGG laser group (7.0±2.5%) was lower than Er:YAG and plastic curettes groups (10.3±2.4%, 12.3±3.6%, p=0.023). The viable bacteria on the titanium surface after Er, Cr:YSGG laser irradiation was significantly lower compared to the decontamination with plastic curette (P=0.05) but it was not significantly different from the Er:YAG laser irradiation. CONCLUSION We found that Er:YAG laser and Er, Cr:YSGG laser irradiation were effective methods for decontaminations without surface alterations.
Collapse
Affiliation(s)
- So-Hyun Park
- Chonnam National University, School of Dentistry, Dental Science Research Institute, Department of Periodontology, Gwangju, Republic of Korea
| | - Ok-Joon Kim
- Department of Oral Pathology, National University, School of Dentistry Chonnam, Gwangju, Republic of Korea
| | - Hyun-Ju Chung
- Chonnam National University, School of Dentistry, Dental Science Research Institute, Department of Periodontology, Gwangju, Republic of Korea
| | - Ok-Su Kim
- Chonnam National University, School of Dentistry, Hard-tissue Biointerface Research Center, Department of Periodontology, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Selvam D, Thangarasu A, Shyu DJH, Neelamegam R, Muthukalingan K, Nagarajan K. Antimicrobial Substance Produced by Pseudomonas aeruginosa Isolated from Slaughterhouse Sediment: Physicochemical Characterization, Purification, and Identification. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10135-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Rath H, Feng D, Neuweiler I, Stumpp NS, Nackenhorst U, Stiesch M. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol Ecol 2017; 93:2966864. [PMID: 28158402 DOI: 10.1093/femsec/fix010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/30/2017] [Indexed: 11/14/2022] Open
Abstract
For decades, extensive research efforts have been conducted to improve the functionality and stability of implants. Especially in dentistry, implant treatment has become a standard medical practice. The treatment restores full dental functionality, helping patients to maintain high quality of life. However, about 10% of the patients suffer from early and late device failure due to peri-implantitis, an inflammatory disease of the tissues surrounding the implant. Peri-implantitis is caused by progressive microbial colonization of the device surface and the formation of microbial communities, so-called biofilms. This infection can ultimately lead to implant failure. The causative agents for the inflammatory disease, periodontal pathogenic biofilms, have already been extensively studied, but are still not completely understood. As numerical simulations will have the potential to predict oral biofilm formation precisely in the future, for the first time, this study aimed to analyze Streptococcus gordonii biofilms by combining experimental studies and numerical simulation. The study demonstrated that numerical simulation was able to precisely model the influence of different nutrient concentration and spatial distribution of active and inactive biomass of the biofilm in comparison with the experimental data. This model may provide a less time-consuming method for the future investigation of any bacterial biofilm.
Collapse
Affiliation(s)
- Henryke Rath
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hanover Medical School, Hannover 30625, Germany
| | - Dianlei Feng
- Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Insa Neuweiler
- Institute of Fluid Mechanics and Environmental Physics in Civil Engineering, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Nico S Stumpp
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hanover Medical School, Hannover 30625, Germany
| | - Udo Nackenhorst
- Institute of Mechanics and Computational Mechanics, Leibniz Universität Hannover, Hannover 30167, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hanover Medical School, Hannover 30625, Germany
| |
Collapse
|
6
|
Quintas V, Prada-López I, Carreira MJ, Suárez-Quintanilla D, Balsa-Castro C, Tomás I. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial. Front Microbiol 2017; 8:2162. [PMID: 29218030 PMCID: PMC5703870 DOI: 10.3389/fmicb.2017.02162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/20/2017] [Indexed: 12/04/2022] Open
Abstract
Currently, there is little evidence on the in situ antibacterial activity of essential oils (EO) without alcohol. This study aimed to evaluate in situ the substantivity and antiplaque effect on the plaque-like biofilm (PL-biofilm) of two solutions, a traditional formulation that contains EO with alcohol (T-EO) and an alcohol-free formulation of EO (Af-EO). Eighteen healthy adults performed a single mouthwash of: T-EO, Af-EO, and sterile water (WATER) after wearing an individualized disk-holding splint for 2 days. The bacterial viability (BV) and thickness of the PL-biofilm were quantified at baseline, 30 s, and 1, 3, 5, and 7 h post-rinsing (Test 1). Subsequently, each volunteer wore the splint for 4 days, applying two daily mouthwashes of: T-EO, Af-EO, and WATER. The BV, thickness, and covering grade (CG) of the PL-biofilm were quantified (Test 2). Samples were analyzed by confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. To conduct the computations of the BV automatically, a Matlab toolbox called Dentius Biofilm was developed. In test 1, both EO antiseptics had a similar antibacterial effect, reducing BV after a single rinse compared to the WATER, and keeping it below baseline levels up to 7 h post-rinse (P < 0.001). The mean thickness of the PL-biofilm after rinsing was not affected by any of the EO formulations and ranged from 18.58 to 20.19 μm. After 4 days, the T-EO and Af-EO solutions were significantly more effective than the WATER, reducing the BV, thickness, and CG of the PL-biofilm (P < 0.001). Although, both EO antiseptics presented a similar bactericidal activity, the Af-EO rinses led to more significant reductions in the thickness and CG of the PL-biofilm than the T-EO rinses (thickness = 7.90 vs. 9.92 μm, P = 0.012; CG = 33.36 vs. 46.61%, P = 0.001). In conclusion, both essential oils antiseptics had very high immediate antibacterial activity and substantivity in situ on the 2-day PL-biofilm after a single mouthwash. In the 4-day PL-biofilm, both essential oils formulations demonstrated a very good antiplaque effect in situ, although the alcohol-free formula performed better at reducing the biofilm thickness and covering grade.
Collapse
Affiliation(s)
- Victor Quintas
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Prada-López
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Carreira
- Centro Singular de Investigación en Tecnoloxías da Información, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - David Suárez-Quintanilla
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Decker EM, Bartha V, von Ohle C. Improvement of Antibacterial Efficacy Through Synergistic Effect in Photodynamic Therapy Based on Thiazinium Chromophores Against Planktonic and Biofilm-Associated Periodontopathogens. Photomed Laser Surg 2017; 35:195-205. [PMID: 28068182 DOI: 10.1089/pho.2016.4152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Aim of the study was to improve the antibacterial efficacy of toluidine blue (TBO)/methylene blue (MB)-mediated photodynamic systems with light-emitting diode (LED) or laser irradiation administered to planktonic and biofilm-associated periodontopathogens. BACKGROUND DATA Antibacterial photodynamic therapy (PDT) is a common, noninvasive adjunctive clinical method to inactivate microorganisms. So far, the disadvantage of this method has been its limited effectiveness in eliminating pathogens. METHODS An anaerobic cocktail consisting of six representative periodontal pathogens was prepared as initial culture for planktonic samples and biofilms grown on human tooth slides. Both types of microbial samples were exposed to three commercial photodynamic systems (PDT1: TBO, 630 nm LED, PDT2: TBO, 635 nm laser, PDT3: MB, 665 nm laser) in conventional and a new modified approach (PDTplus) based on the use of an oxygen supplement (photosensitizer+hydrogen peroxide). The microbial viability was characterized by bacterial growth [colony forming units (CFU)], total bacterial cell counts, and microbial vitality. Statistical data analysis was performed using 95% confidence intervals (ANOVA) and post hoc Tukey's test (p < 0.05). RESULTS The modified PDTplus showed the highest statistically significant synergistic antimicrobial activity for TBO-based systems evidenced by a CFU reduction of 9 log10 units to 0 for planktonic pathogens and a 4 log10 CFU reduction for biofilm bacteria. The MB-based PDTplus was superior mainly against biofilm pathogens. By comparison, the default TBO-based PDT achieved colony growth reductions of 2 and 1 log10 units concerning planktonic and biofilm cells. CONCLUSIONS Compared to conventional PDT, PDTplus showed superior antibacterial efficacy based on its synergistic effect, promising vast application possibilities.
Collapse
Affiliation(s)
- Eva-Maria Decker
- Department of Conservative Dentistry and Periodontology, Center of Dentistry, Oral Medicine, and Maxillofacial Surgery, University Hospital , Tübingen, Germany
| | - Valentin Bartha
- Department of Conservative Dentistry and Periodontology, Center of Dentistry, Oral Medicine, and Maxillofacial Surgery, University Hospital , Tübingen, Germany
| | - Christiane von Ohle
- Department of Conservative Dentistry and Periodontology, Center of Dentistry, Oral Medicine, and Maxillofacial Surgery, University Hospital , Tübingen, Germany
| |
Collapse
|
8
|
Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. ACTA ACUST UNITED AC 2017; 44:23-33. [DOI: 10.1007/s10295-016-1859-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 11/27/2022]
Abstract
Abstract
This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.
Collapse
|
9
|
Quantifying implant-associated biofilms: Comparison of microscopic, microbiologic and biochemical methods. J Microbiol Methods 2016; 130:61-68. [PMID: 27444546 DOI: 10.1016/j.mimet.2016.07.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/10/2023]
Abstract
Biofilm-associated infections pose severe problems in modern implant medicine. Screening for new implant materials with antibacterial properties requires reliable quantification of colonizing bacteria. There are many different methods to quantify biofilms on solid surfaces in vitro, employing different (bio-)chemical/microbiological reference parameters. It is therefore difficult to compare studies with different quantification techniques. Here, we have evaluated commonly used microscopic, microbiologic and biochemical methods to quantify bacterial biofilms, in order to clarify their comparability and applicability. Two bacterial species frequently involved in biofilm-associated infections, Staphylococcus aureus and Aggregatibacter actinomycetemcomitans, were used as model organisms; their initial adhesion and biofilm formation on titanium and on antibacterial copper were analyzed using the following methods: LIVE/DEAD fluorescence staining and confocal laser-scanning microscopy, ultrasonic or a newly developed enzymatic detachment followed by standard plate counting (CFU method), a resazurin-based assay, the BacTiter-Glo™ assay and crystal violet staining. The methods differed greatly in complexity, reliability and the applicability to initial adhesion and biofilm formation. To screen biofilm formation on a multitude of surfaces, the resazurin-based and the BacTiterGlo™ assay are well suited. LIVE/DEAD staining and confocal laser-scanning microscopy can be applied for a more detailed analysis of both, initial adhesion and biofilm formation. When using the CFU method for screening purposes, the introduced enzymatic detachment procedure is to be favored over ultrasonic detachment. There is not one single method, which is suitable for all purposes. The appropriate biofilm quantification method has to be chosen on the basis of the specific scientific question.
Collapse
|
10
|
Decker EM, Bartha V, Kopunic A, von Ohle C. Antimicrobial efficiency of mouthrinses versus and in combination with different photodynamic therapies on periodontal pathogens in an experimental study. J Periodontal Res 2016; 52:162-175. [PMID: 27038101 DOI: 10.1111/jre.12379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE In the therapy of destructive periodontal disease, chemical antimicrobial agents and increasingly photodynamic therapy (PDT) play an important adjunctive role to standard mechanical anti-infective treatment procedures. However, both antiseptic methods have their shortcomings in terms of eliminating periodontal pathogens. The aim of the study was to compare the antibacterial efficacy of different antiseptic mouthrinses, of a conventional and a new, modified PDTplus as well as of the different antiseptic mouthrinses combined with either the conventional or the modified PDTplus against periopathogens. MATERIAL AND METHODS Six representative periodontitis-associated bacterial strains were grown for 24 h under anaerobic conditions. After mixing the individual cell pellets they were exposed to 10 different antiseptic mouthrinse formulations: chlorhexidine (0.2%, 0.06%, CHX); CHX + cetylpyridinium chloride (each 0.05%); sodium hypochlorite (0.05%); polyhexanide (0.04%, PHMB1; 0.1%, PHMB2); octenidine dihydrochloride (0.1%); fluoride (250 ppm); essential oils; povidone iodine (10%); and saline (0.9%, NaCl) as control. Furthermore, the bacteria were treated with conventional PDT based on light-emitting diodes and a new modified photodisinfection combining photosensitizer with hydrogen peroxide to PDTplus also based on light-emitting diodes. In addition to the single treatments, a combined application of antiseptic exposure followed by use of PDT or PDTplus was performed. The microbial viability was characterized by analyzing colony growth and fluorescence-based vitality proportions. RESULTS Nearly all mouthrinses caused a statistically significant growth inhibition. The most effective antiseptics, CHX (0.2%), CHX/cetylpyridinium chloride and octenidine dihydrochloride, inhibited bacterial growth completely. Conventional PDT resulted in moderate reduction of colony growth. The modified PDTplus achieved maximum antimicrobial effect. The combination of antiseptic exposure and PDT against periopathogens predominantly increased antibacterial efficacy compared to the single applications. The mouthrinse containing essential oil seemed to interfere with PDT. CONCLUSION A combination therapy of preceding chemotherapeutical exposure and subsequent photodisinfection may be a more effective and promising antibacterial treatment than single applications of the antiseptic methods. The modified PDTplus using oxygen-enriched toluidine showed a superior antibacterial effect on periodontal pathogens to conventional PDT and to the majority of the investigated mouthrinses.
Collapse
Affiliation(s)
- E-M Decker
- Department for Pediatric and Operative Dentistry, Periodontology and Endodontology, University of Tübingen, Center of Dentistry, Oral Medicine and Maxillofacial Surgery, Tuebingen, Germany
| | - V Bartha
- Department for Pediatric and Operative Dentistry, Periodontology and Endodontology, University of Tübingen, Center of Dentistry, Oral Medicine and Maxillofacial Surgery, Tuebingen, Germany
| | - A Kopunic
- Department for Pediatric and Operative Dentistry, Periodontology and Endodontology, University of Tübingen, Center of Dentistry, Oral Medicine and Maxillofacial Surgery, Tuebingen, Germany
| | - C von Ohle
- Department for Pediatric and Operative Dentistry, Periodontology and Endodontology, University of Tübingen, Center of Dentistry, Oral Medicine and Maxillofacial Surgery, Tuebingen, Germany
| |
Collapse
|
11
|
Quintas V, Prada-López I, Donos N, Suárez-Quintanilla D, Tomás I. Antiplaque effect of essential oils and 0.2% chlorhexidine on an in situ model of oral biofilm growth: a randomised clinical trial. PLoS One 2015; 10:e0117177. [PMID: 25689859 PMCID: PMC4331278 DOI: 10.1371/journal.pone.0117177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the in situ antiplaque effect after 4 days of using of 2 commercial antimicrobial agents in short term on undisturbed plaque-like biofilm. TRIAL DESIGN AND PARTICIPANTS An observer-masked, crossover randomised clinical trial on 15 oral and systemically healthy volunteers between 20-30 years who were randomly and sequentially allocated in the same group which performed 3 interventions in different randomised sequences. INTERVENTION The participants wore an appliance in 3 different rinsing periods doing mouthwashes twice a day (1/0/1) with essential oils, 0.2% chlorhexidine or sterile water (negative control). At the end of each 4-day mouthwash period, samples were removed from the appliance. Posteriorly, after bacterial vital staining, samples were analysed using a Confocal Laser Scanning Microscope. MAIN OUTCOME MEASURES Bacterial vitality, thickness and covering grade by the biofilm after 4 days of applying each of the mouthwashes. RESULTS The essential oils and the 0.2% chlorhexidine were significantly more effective than the sterile water at reducing bacterial vitality, thickness and covering grade by the biofilm. No significant differences were found between the 0.2% chlorhexidine and the essential oils at reducing the bacterial vitality (13.2% vs. 14.7%). However, the 0.2% chlorhexidine showed more reduction than the essential oils in thickness (6.5 μm vs. 10.0 μm; p<0.05) and covering grade by the biofilm (20.0% vs. 54.3%; p<0.001). CONCLUSION The essential oils and 0.2% chlorhexidine showed a high antiplaque effect. Although the 0.2% chlorhexidine showed better results with regard to reducing the thickness and covering grade by the biofilm, both antiseptics showed a high and similar antibacterial activity. CLINICAL RELEVANCE Daily essential oils or 0.2% chlorhexidine mouthwashes are effective when reducing dental plaque formation in the short term. Although 0.2% chlorhexidine continues to be the "gold standard" in terms of antiplaque effect, essential oils could be considered a reliable alternative. TRIAL REGISTRATION ClinicalTrials.gov NCT02124655.
Collapse
Affiliation(s)
- Víctor Quintas
- Oral Sciences Research Group, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Prada-López
- Oral Sciences Research Group, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Nikolaos Donos
- Periodontology Unit, UCL Eastman Dental Institute, London, United Kingdom
| | - David Suárez-Quintanilla
- Oral Sciences Research Group, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci 2014; 6:195-204. [PMID: 25059251 PMCID: PMC5153587 DOI: 10.1038/ijos.2014.38] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
Collapse
|
13
|
Quintas V, Prada-López I, Prados-Frutos JC, Tomás I. In situ antimicrobial activity on oral biofilm: essential oils vs. 0.2 % chlorhexidine. Clin Oral Investig 2014; 19:97-107. [DOI: 10.1007/s00784-014-1224-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
|
14
|
Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms--which stain is suitable? BMC Oral Health 2014; 14:2. [PMID: 24410850 PMCID: PMC3898065 DOI: 10.1186/1472-6831-14-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.
Collapse
Affiliation(s)
- Lutz Netuschil
- Department of Periodontology, Dental School, Philipps-University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
15
|
Tsaousoglou P, Nietzsche S, Cachovan G, Sculean A, Eick S. Antibacterial activity of moxifloxacin on bacteria associated with periodontitis within a biofilm. J Med Microbiol 2013; 63:284-292. [PMID: 24217128 DOI: 10.1099/jmm.0.065441-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. MICs and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multispecies biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002-512 µg ml(-1)) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken using confocal laser-scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, whilst moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, and the lowest MBECs were always found for moxifloxacin (2-8 µg ml(-1)). MBECs against the multispecies biofilms were 128, >512 and >512 µg ml(-1) for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.
Collapse
Affiliation(s)
- Phoebus Tsaousoglou
- School of Dental Medicine, Department of Periodontology, University of Bern, Bern, Switzerland
| | - Sandor Nietzsche
- Department of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Georg Cachovan
- Department of Restorative and Preventive Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anton Sculean
- School of Dental Medicine, Department of Periodontology, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- School of Dental Medicine, Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Penetration kinetics of four mouthrinses into Streptococcus mutans biofilms analyzed by direct time-lapse visualization. Clin Oral Investig 2013; 18:625-34. [DOI: 10.1007/s00784-013-1002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
17
|
Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig 2012; 17:841-50. [DOI: 10.1007/s00784-012-0792-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
18
|
Gosau M, Bürgers R, Vollkommer T, Holzmann T, Prantl L. Effectiveness of antibacterial copper additives in silicone implants. J Biomater Appl 2012; 28:187-98. [DOI: 10.1177/0885328212441957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Staphylococcus epidermidis plays a major role in capsular contractures of silicone breast implants. This in vitro study evaluates the antibacterial effect of copper on S. epidermidis in silicone implants. Specimens of a silicone material used for breast augmentation (Cu0) and specimens coated with different copper concentrations (Cu1, Cu2) were artificially aged. Surface roughness and surface free energy were assessed. The specimens were incubated in an S. epidermidis suspension. We assessed the quantification and the viability of adhering bacteria by live/dead cell labeling with fluorescence microscopy. Additionally, inhibition of bacterial growth was evaluated by agar diffusion, broth culture, and quantitative culture of surface bacteria. No significant differences in surface roughness and surface free energy were found between Cu0, Cu1 and Cu2. Aging did not change surface characteristics and the extent of bacterial adhesion. Fluorescence microscopy showed that the quantity of bacteria on Cu0 was significantly higher than that on Cu1 and Cu2. The ratio of dead to total adhering bacteria was significantly lower on Cu0 than on Cu1 and Cu2, and tended to be higher for Cu2 than for Cu1. Quantitative culture showed equal trends. Copper additives seem to have anti-adherence and bactericidal effects on S. epidermidis in vitro.
Collapse
Affiliation(s)
- Martin Gosau
- Department of Cranio-Maxillo-Facial Surgery, University Medical Center Regensburg, Germany
| | - Ralf Bürgers
- Department of Prosthetic Dentistry, University Medical Center Regensburg, Germany
| | - Tobias Vollkommer
- Department of Cranio-Maxillo-Facial Surgery, University Medical Center Regensburg, Germany
| | - Thomas Holzmann
- Institute for Medical Microbiology and Hygiene, University Medical Center Regensburg, Germany
| | - Lukas Prantl
- Department of Trauma and Plastic Surgery, University Medical Center Regensburg, Germany
| |
Collapse
|
19
|
Dynamic Production of Soluble Extracellular Polysaccharides by Streptococcus mutans. Int J Dent 2011; 2011:435830. [PMID: 22046185 PMCID: PMC3199192 DOI: 10.1155/2011/435830] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/16/2011] [Indexed: 11/18/2022] Open
Abstract
Caries development in the presence of Streptococcus mutans is associated not only with the production of extracellular water-insoluble polymers but also is based on water-soluble polysaccharides. The aim of this study was the evaluation of a novel glucan-specific Lectin assay for monitoring water-soluble EPS produced by S. mutans during several growth periods in different media. S. mutans cultures were grown for 24 h, 48 h, and 144 h in medium deficient of sucrose (A) and medium supplemented with 5% sucrose (B). Microtiter well plates were coated with cell-free supernatants followed by the addition of labeled Concanavalin-A and enzyme substrate. The substrate reactions were kinetically detected at 405 nm. The validation of the assay was performed using carbohydrates dextran, xanthan, and sucrose as reference. This new Concanavalin-A-based assay showed the highest sensitivity for dextran and revealed that the glucan production of S. mutans reached its maximum at 144 h in medium B according to bacterial maturation.
Collapse
|
20
|
Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Daniels AU, Wirz D, Weiger R, Waltimo T. Quantification of vital adherent Streptococcus sanguinis cells on protein-coated titanium after disinfectant treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2045-2051. [PMID: 21670995 DOI: 10.1007/s10856-011-4377-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/06/2011] [Indexed: 05/30/2023]
Abstract
The quantification of vital adherent bacteria is challenging, especially when efficacy of antimicrobial agents is to be evaluated. In this study three different methods were compared in order to quantify vital adherent Streptococcus sanguinis cells after exposure to disinfectants. An anaerobic flow chamber model accomplished initial adhesion of S. sanguinis on protein-coated titanium. Effects of chlorhexidine, Betadine®, Octenidol®, and ProntOral® were assessed by quantifying vital cells using Live/Dead BacLight™, conventional culturing and isothermal microcalorimetry (IMC). Results were analysed by Kruskal-Wallis one-way analysis of variance. Live/dead staining revealed highest vital cell counts (P < 0.05) and demonstrated dose-dependent effect for all disinfectants. Microcalorimetry showed time-delayed heat flow peaks that were proportioned to the remaining number of viable cells. Over 48 h there was no difference in total heat between treated and untreated samples (P > 0.05), indicating equivalent numbers of bacteria were created and disinfectants delayed growth but did not eliminate it. In conclusion, contrary to culturing, live/dead staining enables detection of cells that may be viable but non-cultivable. Microcalorimetry allows unique evaluation of relative disinfectant effects by quantifying differences in time delay of regrowth of remaining vital cells.
Collapse
Affiliation(s)
- Monika Astasov-Frauenhoffer
- Institute of Preventive Dentistry and Oral Microbiology, School of Dental Medicine, University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
21
|
MALDI-ToF mass spectrometry-multivariate data analysis as a tool for classification of reactivation and non-culturable states of bacteria. Anal Bioanal Chem 2011; 401:1593-600. [PMID: 21769553 DOI: 10.1007/s00216-011-5227-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/09/2011] [Accepted: 06/30/2011] [Indexed: 10/18/2022]
Abstract
Some bacterial life states are only difficult to describe and to detect because they are on the border of active metabolism. A prominent example is the so-called viable but non-culturable state, which is mainly characterized by the inability of bacteria to grow on synthetic media. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF/MS) in combination with multivariate data analysis represents a powerful tool for mass-spectrometric pattern recognition of biological samples. This method is already used for differentiation of bacterial strains. In this study we present a rapid readout method based on MALDI-ToF/MS in combination with principal component analysis to classify the bacterial non-culturable state using Enterococcus faecalis as a model organism. By applying this technique to samples of different physiological states, distinct clusters were calculated and all mass spectra were classified correctly into groups of similar type concerning their physiological state.
Collapse
|
22
|
Gosau M, Prantl L, Feldmann M, Kokott A, Hahnel S, Burgers R. The effects of copper additives on the quantity and cell viability of adherent Staphylococcus epidermidis in silicone implants. BIOFOULING 2010; 26:359-365. [PMID: 20140797 DOI: 10.1080/08927011003629300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This in vitro study evaluated the antibacterial effect of copper additives in silicone implants. Specimens of a standard silicone material used in breast augmentation and modified copper-loaded silicone specimens were prepared and incubated in a Staphylococcus epidermidis suspension (2 h, 37 degrees C). After the quantification of adhering staphylococci using a biofluorescence assay (Resazurin), the viability of the adhering bacterial cells was quantified by live or dead cell labeling in combination with fluorescence microscopy. In the Resazurin fluorometric quantification, a higher amount of adhering S. epidermidis cells was detected on pure silicone (4612 [2319/7540] relative fluorescence units [rfu]) than on silicone with copper additives (2701 [2158/4153] rfu). Additionally, a significantly higher amount of adhering bacterial cells (5.07% [2.03%/8.93%]) was found for pure silicone than for silicone with copper additives (1.72% [1.26%/2.32%]); (p < 0.001). Calculations from live or dead staining showed that the percentage of dead S. epidermidis cells adhered on pure silicone (52.1%) was significantly lower than on silicone with copper additives (79.7%); (p < 0.001). In vitro, silicone material with copper additives showed antibacterial effects against S. epidermidis. Copper-loaded silicone may prevent bacterial colonization, resulting in lower infection rates of silicone implants.
Collapse
Affiliation(s)
- Martin Gosau
- Department of Cranio-Maxillo-Facial Surgery, University Medical Center, Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Gosau M, Hahnel S, Schwarz F, Gerlach T, Reichert TE, Bürgers R. Effect of six different peri-implantitis disinfection methods onin vivohuman oral biofilm. Clin Oral Implants Res 2010; 21:866-72. [DOI: 10.1111/j.1600-0501.2009.01908.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Bürgers R, Gerlach T, Hahnel S, Schwarz F, Handel G, Gosau M. In vivoandin vitrobiofilm formation on two different titanium implant surfaces. Clin Oral Implants Res 2010; 21:156-64. [DOI: 10.1111/j.1600-0501.2009.01815.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Real-time microsensor measurement of local metabolic activities in ex vivo dental biofilms exposed to sucrose and treated with chlorhexidine. Appl Environ Microbiol 2010; 76:2326-34. [PMID: 20118374 DOI: 10.1128/aem.02090-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dental biofilms are characterized by structural and functional heterogeneity. Due to bacterial metabolism, gradients develop and diverse ecological microniches exist. The aims of this study were (i) to determine the metabolic activity of microorganisms in naturally grown dental biofilms ex vivo by measuring dissolved oxygen (DO) and pH profiles with microelectrodes with high spatial resolution and (ii) to analyze the impact of an antimicrobial chlorhexidine (CHX) treatment on microbial physiology during stimulation by sucrose in real time. Biofilms were cultivated on standardized human enamel surfaces in vivo. DO and pH profiles were measured in a flow cell system in sterile human saliva, after sucrose addition (10%), again after alternative treatment of the sucrose exposed biofilms with CHX (0.2%) for 1 or 10 min or after being killed with paraformaldehyde (4%). Biofilm structure was visualized by vitality staining with confocal microscopy. With saliva as the sole nutrient source oxygen consumption was high within the superficial biofilm layers rendering deeper layers (>220 mum) anoxic. Sucrose addition induced the thickness of the anaerobic zone to increase with a concurrent decrease in pH (7.1 to 4.4). CHX exposure reduced metabolic activity and microbial viability at the biofilm surface and drove metabolic activity deeper into the biofilm. CHX treatment led to a reduced viability at the biofilm surface with minor influence on overall biofilm physiology after 1 min; even after 10 min there was measurable respiration and fermentation inside the biofilm. However, the local microenvironment was more aerated, less acidogenic, and presumably less pathogenic.
Collapse
|
26
|
Hannig C, Follo M, Hellwig E, Al-Ahmad A. Visualization of adherent micro-organisms using different techniques. J Med Microbiol 2010; 59:1-7. [PMID: 19815663 DOI: 10.1099/jmm.0.015420-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The visualization and quantification of adherent bacteria is still one of the most relevant topics in microbiology. Besides electron microscopic techniques such as transmission electron microscopy, scanning electron microscopy and environmental scanning electron microscopy, modern fluorescence microscopic approaches based on fluorogenic dyes offer detailed insight into bacterial biofilms. The aim of the present review was to provide an overview of the advantages and disadvantages of different methods for visualization of adherent bacteria with a special focus on the experiences gained in dental research.
Collapse
Affiliation(s)
- Christian Hannig
- Department of Operative Dentistry and Periodontology, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Marie Follo
- Department of Hematology and Oncology, Core Facility, Albert-Ludwig University, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| |
Collapse
|
27
|
Singh R, Olson MS. Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:56-63. [PMID: 20821419 DOI: 10.1002/etc.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The goal of the present study was to elucidate the distribution of viable bacteria in chemical gradients and to evaluate the toxic effect of high concentrations of contaminants on contaminant-degrading bacteria under prolonged exposure. Accumulations of viable Pseudomonas putida F1 (P. putida F1) cells were observed surrounding trichloroethylene (TCE)-containing plugs. Results from this work indicate that P. putida F1 immediately adjacent to a TCE source become nonviable, whereas cells accumulating farther away use chemotaxis to migrate toward regions with optimal chemical concentrations in the form of concentrated bacterial bands. A method was developed to test the toxicity of model contaminant stressors, TCE and toluene, to P. putida F1; data obtained from toxicity experiments were fit to linear and exponential bacterial viability-decay models. Toxicity of TCE to P. putida F1 was best described with an exponential viability-decay model, with a viability-decay constant k(TCE) = 0.025 h(-4.95) (r(2) = 0.965). Toluene toxicity showed a marginally better fit to the linear viability-decay model (r(2) = 0.976), with a viability-decay constant k(toluene) = 0.208 h(-1). Best-fit model parameters obtained for both TCE and toluene were used to predict bacterial viability in toxicity experiments with higher contaminant concentrations and matched well with experimental data. Results from the present study can be used to predict bacterial accumulation and viability near nonaqueous-phase liquid (NAPL) sources in groundwater and may be helpful in designing bioremediation strategies for sites contaminated with residual NAPLs.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Civil Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
28
|
Antibacterial Efficacy of MTAD Final Rinse and Two Percent Chlorhexidine Gel Medication in Teeth with Apical Periodontitis: A Randomized Double-blinded Clinical Trial. J Endod 2009; 35:1483-90. [DOI: 10.1016/j.joen.2009.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022]
|
29
|
Bürgers R, Eidt A, Frankenberger R, Rosentritt M, Schweikl H, Handel G, Hahnel S. The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Arch Oral Biol 2009; 54:595-601. [DOI: 10.1016/j.archoralbio.2009.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/02/2009] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
|
30
|
Meier R, Hauser-Gerspach I, Lüthy H, Meyer J. Adhesion of oral streptococci to all-ceramics dental restorative materials in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:3249-3253. [PMID: 18470704 DOI: 10.1007/s10856-008-3457-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/16/2008] [Indexed: 05/26/2023]
Abstract
In recent years, patients have benefited from the development of better and more esthetic materials, including all-ceramics dental restorative materials. Dental plaque formation on teeth and restorative materials plays an important role in the pathogenesis of oral diseases. This study investigates initial adhesion of stationary phase streptococcal species to different all-ceramics dental restorative materials. The saliva-coated materials were incubated with the bacteria for 1 h in an in vitro flow chamber which mimics environmental conditions in the oral cavity. Number and vitality of adhering bacteria were determined microscopically after staining. Surface roughness and the composition of the materials had no distinctive influence on bacterial adhesion. However, S. mutans and S. sobrinus adhered about tenfold less numerous to all materials than the other streptococcal species. Further, there was a correlation between bacterial vitality and materials' glass content. The results showed that early plaque formation was influenced predominantly by the presence of the salivary pellicle rather than by material dependent parameters whereas the composition of the all-ceramics appeared to have influenced the percentage of viable cells during the adhesion process. This presented in vitro technique may provide a useful model to study the influence of different parameters on adherence of oral streptococcal species.
Collapse
Affiliation(s)
- R Meier
- Institute of Preventive Dentistry and Oral Microbiology, Dental School, University of Basel, Hebelstrasse 3, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
31
|
Al-Ahmad A, Wiedmann-Al-Ahmad M, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB. Effects of commonly used food preservatives on biofilm formation of Streptococcus mutans in vitro. Arch Oral Biol 2008; 53:765-72. [DOI: 10.1016/j.archoralbio.2008.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/01/2008] [Accepted: 02/28/2008] [Indexed: 11/28/2022]
|
32
|
Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM. Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b813026d] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Mitchell J, Siboo IR, Takamatsu D, Chambers HF, Sullam PM. Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB. Mol Microbiol 2007; 64:844-57. [PMID: 17462028 DOI: 10.1111/j.1365-2958.2007.05703.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PblA and PblB are prophage-encoded proteins of Streptococcus mitis strain SF100 that mediate binding to human platelets. The mechanism for surface expression of these proteins has been unknown, as they do not contain signal sequences or cell wall sorting motifs. We therefore assessed whether expression of these proteins was linked the lytic cycle of the prophage. Deletion of either the holin or lysin gene resulted in retention of PblA and PblB in the cytoplasm, and loss of these proteins from the cell wall. Flow cytometric analysis revealed that induction of phage replication in SF100 produced a subpopulation of cells with increased permeability. This effect was abrogated by disruption of the holin and lysin genes. Treatment of these mutants with exogenous PblA and PblB restored surface expression, apparently via binding of the proteins to cell wall choline. Loss of PblA and PblB expression was associated with decreased platelet binding in vitro, and reduced virulence in an animal model of endocarditis. Thus, expression of PblA and PblB occurs via a novel mechanism, whereby phage induction increases bacterial permeability and release of the proteins, followed by their binding to surface of viable cells. This mechanism may be important for endovascular infection.
Collapse
Affiliation(s)
- Jennifer Mitchell
- Veterans Affairs Medical Center and the University of California, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
34
|
Quirós C, Herrero M, García LA, Díaz M. Application of flow cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl Environ Microbiol 2007; 73:3993-4000. [PMID: 17483273 PMCID: PMC1932747 DOI: 10.1128/aem.00171-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/21/2007] [Indexed: 11/20/2022] Open
Abstract
Flow cytometry (FC) has been introduced to characterize and to assess the physiological states of microorganisms in conjunction with the classical plate-counting method. To show the applicability of the technique, in particular for the development of kinetic models, pure culture fermentation experiments were followed over time, using both prokaryotic (Lactobacillus hilgardii) and eukaryotic (Saccharomyces cerevisiae) microorganisms growing in standard culture media (MRS and YPD). The differences observed between the active and viable cells determined by FC and CFU, respectively, allowed us to determine that a large number of cells were in a viable but nonculturable (VBNC) state, which resulted in a subpopulation much larger than the damaged-cell (double-stained) subpopulation. Finally, the determination of the evolution of viable, the VBNC, and the dead cells allowed us to develop a segregated kinetic model to describe the yeast and the bacteria population dynamics and glucose consumption in batch cultures. This model, more complete than that which is traditionally used, based only on viable cell measurements, describes better the behavior and the functionality of the cultures, giving a deeper knowledge in real time about the status and the course of the bioprocesses.
Collapse
Affiliation(s)
- Covadonga Quirós
- Department of Chemical Engineering and Environmental Technology, Faculty of Chemistry, University of Oviedo, C/Julián Clavería s/n, 33071 Oviedo, Spain
| | | | | | | |
Collapse
|
35
|
Janssen M, Geeraerd AH, Cappuyns A, Garcia-Gonzalez L, Schockaert G, Van Houteghem N, Vereecken KM, Debevere J, Devlieghere F, Van Impe JF. Individual and combined effects of ph and lactic acid concentration on Listeria innocua inactivation: development of a predictive model and assessment of experimental variability. Appl Environ Microbiol 2007; 73:1601-11. [PMID: 17209071 PMCID: PMC1828776 DOI: 10.1128/aem.02198-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/22/2006] [Indexed: 11/20/2022] Open
Abstract
In food technology, organic acids (e.g., lactic acid, acetic acid, and citric acid) are popular preservatives. The purpose of this study was to separate the individual effects of the influencing factors pH and undissociated lactic acid on Listeria innocua inactivation. Therefore, the inactivation process was investigated under controlled, initial conditions of pH (pH0) and undissociated lactic acid ([LaH]0). The resulting inactivation curves consisted of a (sometimes negligible) shoulder period followed by a descent phase. In a few cases, a tailing phase was observed. Depending on the conditions, the descent phase contained one or two log-linear parts or had a convex or concave shape. In addition, the inactivation process was characterized by a certain variability, dependent on the severity of the conditions. Furthermore, in the neighborhood of the growth/no growth interface sometimes contradictory observations occurred. Overall, the individual effects of the influencing factors pH and undissociated lactic acid could clearly be distinguished and were also apparent based on fluorescence microscopy. Appropriate model types were developed and enabled prediction of which conditions of pH0 and [LaH]0 are necessary to obtain a predetermined inactivation (number of decimal reductions) within a predetermined time range.
Collapse
Affiliation(s)
- M Janssen
- Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hauser-Gerspach I, Kulik EM, Weiger R, Decker EM, Von Ohle C, Meyer J. Adhesion of Streptococcus sanguinis to Dental Implant and Restorative Materials in vitro. Dent Mater J 2007; 26:361-6. [PMID: 17694745 DOI: 10.4012/dmj.26.361] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial adhesion to tooth surfaces or dental materials starts immediately upon exposure to the oral environment. The aim of this study, therefore, was to compare the adhesion of Streptococcus sanguinis to saliva-coated human enamel and dental materials - during a one-hour period - using an in vitro flow chamber system which mimicked the oral cavity. After fluorescent staining, the number of adhered cells and their vitality were recorded. The dental materials used were: titanium (Rematitan M), gold (Neocast 3), ceramic (Vita Omega 900), and composite (Tetric Ceram). The number of adherent bacterial cells was higher on titanium, gold, and ceramic surfaces and lower on composite as compared to enamel. As for the percentage of adherent vital cells, it was higher on enamel than on the restorative materials tested. These results suggested that variations in the number and vitality of the adherent pioneer oral bacteria, S. sanguinis, in the in vitro system depended on the surface characteristics of the substratum and the acquired salivary pellicle. The in vitro adhesion model used herein provided a simple and reproducible approach to investigate the impact of surface-modified dental materials on bacterial adhesion and vitality.
Collapse
Affiliation(s)
- Irmgard Hauser-Gerspach
- Institute of Preventive Dentistry and Oral Microbiology, University of Basel, Hebelstrasse 3, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Baena-Ruano S, Jiménez-Ot C, Santos-Dueñas I, Cantero-Moreno D, Barja F, García-García I. Rapid method for total, viable and non-viable acetic acid bacteria determination during acetification process. Process Biochem 2006. [DOI: 10.1016/j.procbio.2005.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ercolini D, Storia A, Villani F, Mauriello G. Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J Appl Microbiol 2006; 100:765-72. [PMID: 16553731 DOI: 10.1111/j.1365-2672.2006.02825.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To evaluate the effect of a bacteriocin-activated polythene film on resting and growing populations of Listeria monocytogenes. METHODS AND RESULTS The active polythene films were industrially obtained by coating a solution of bacteriocin 32Y from Lactobacillus curvatus upon the surface of the film to be in contact with the packaged material. The behaviour of live Listeria populations was examined in liquid suspensions directly in contact with the bacteriocin-activated film, packed in antimicrobial film, and in a challenge test of storage of frankfurters superficially contaminated by L. monocytogenes and packed in antimicrobial film. In all the experiments, live and dead cells of L. monocytogenes were counted in epifluorescence microscopy after viable staining, which proved to be a suitable method to evaluate the action of bacteriocins on populations of L. monocytogenes. The results showed that the direct contact between active film surface and L. monocytogenes cells is effective for a fast and irreversible inactivation of the population by determining a direct cell disruption. This was confirmed by the results of the challenge test indicating that the antimicrobial package was effective in inhibiting the growth and survival of the pathogen on the surface of frankfurters during storage. CONCLUSIONS The use of the antimicrobial film is encouraged especially for solid food products where the superficial contaminants come immediately in contact with the antimicrobial film. SIGNIFICANCE AND IMPACT OF THE STUDY A fast inactivation of the bacterial population, coupled with appropriate conditions of storage, can improve the quality and safety and prolong the shelf-life of the food products packed in antimicrobial films.
Collapse
Affiliation(s)
- D Ercolini
- Dipartimento di Scienza degli Alimenti, Università degli Studi di Napoli, Federico II, Naples, Italy
| | | | | | | |
Collapse
|
39
|
Savichtcheva O, Okayama N, Ito T, Okabe S. Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteroides spp. in drinking water. Biotechnol Bioeng 2005; 92:356-63. [PMID: 16028294 DOI: 10.1002/bit.20608] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To evaluate the viability and survival ability of fecal Bacteroides spp. in environmental waters, a fluorescence-based live/dead staining method using ViaGram Red+ Bacterial gram stain and viability kit was combined with fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probe (referred as LDS-FISH). The proposed LDS-FISH was a direct and reliable method to detect fecal Bacteroides cells and their viability at single-cell level in complex microbial communities. The pure culture of Bacteroides fragilis and whole human feces were dispersed in aerobic drinking water and incubated at different water temperatures (4 degrees C, 13 degrees C, 18 degrees C, and 24 degrees C), and then the viability of B. fragilis and fecal Bacteroides spp. were determined by applying the LDS-FISH. The results revealed that temperature and the presence of oxygen have significant effects on the survival ability. Increasing the temperature resulted in a rapid decrease in the viability of both pure cultured B. fragilis cells and fecal Bacteroides spp. The live pure cultured B. fragilis cells could be found at the level of detection in drinking water for 48 h of incubation at 24 degrees C, whereas live fecal Bacteroides spp. could be detected for only 4 h of incubation at 24 degrees C. The proposed LDS-FISH method should provide useful quantitative information on the presence and viability of Bacteroides spp., a potential alternative fecal indicator, in environmental waters.
Collapse
Affiliation(s)
- Olga Savichtcheva
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, 060-8628, Japan
| | | | | | | |
Collapse
|
40
|
Decker EM, von Ohle C, Weiger R, Wiech I, Brecx M. A synergistic chlorhexidine/chitosan combination for improved antiplaque strategies. J Periodontal Res 2005; 40:373-7. [PMID: 16105089 DOI: 10.1111/j.1600-0765.2005.00817.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The minor efficacy of chlorhexidine (CHX) on other cariogenic bacteria than mutans streptococci such as Streptococcus sanguinis may contribute to uneffective antiplaque strategies. METHODS AND RESULTS In addition to CHX (0.1%) as positive control and saline as negative control, two chitosan derivatives (0.2%) and their CHX combinations were applied to planktonic and attached sanguinis streptococci for 2 min. In a preclinical biofilm model, the bacteria suspended in human sterile saliva were allowed to attach to human enamel slides for 60 min under flow conditions mimicking human salivation. The efficacy of the test agents on streptococci was screened by the following parameters: vitality status, colony-forming units (CFU)/ml and cell density on enamel. The first combination reduced the bacterial vitality to approximately 0% and yielded a strong CFU reduction of 2-3 log(10) units, much stronger than CHX alone. Furthermore, the first chitosan derivative showed a significant decrease of the surface coverage with these treated streptococci after attachment to enamel. CONCLUSIONS Based on these results, a new CHX formulation would be beneficial unifying the bioadhesive properties of chitosan with the antibacterial activity of CHX synergistically resulting in a superior antiplaque effect than CHX alone.
Collapse
Affiliation(s)
- E-M Decker
- Department of Conservative Dentistry, School of Dental Medicine, University of Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
41
|
Lehtinen J, Nuutila J, Lilius EM. Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytometry A 2005; 60:165-72. [PMID: 15290717 DOI: 10.1002/cyto.a.20026] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Several staining protocols have been developed for flow cytometric analysis of bacterial viability. One promising method is dual staining with the LIVE/DEAD BacLight bacterial viability kit. In this procedure, cells are treated with two different DNA-binding dyes (SYTO9 and PI), and viability is estimated according to the proportion of bound stain. SYTO9 diffuses through the intact cell membrane and binds cellular DNA, while PI binds DNA of damaged cells only. This dual-staining method allows effective separation between viable and dead cells, which is far more difficult to achieve with single staining. Although SYTO9-PI dual staining is practical for various bacterial viability analyses, the method has a number of disadvantages. Specifically, the passage of SYTO9 through the cell membrane is a slow process, which is significantly accelerated when the integrity of the cell membrane is disrupted. As a result, SYTO9 binding to DNA is considerably enhanced. PI competes for binding sites with SYTO9 and may displace the bound dye. These properties diminish the reliability of the LIVE/DEAD viability kit. In this study, we investigate an alternative method for measuring bacterial viability using a combination of green fluorescent protein (GFP) and PI, with a view to improving data reliability. METHODS Recombinant Escherichia coli cells with a plasmid containing the gene for jellyfish GFP were stained with PI, and green and red fluorescence were measured by FCM. For comparison, cells containing the plasmid from which gfp was removed were stained with SYTO9 and PI, and analyzed by FCM. Viability was estimated according to the proportion of green and red fluorescence. In addition, bioluminescence and plate counting (other methods to assess viability) were used as reference procedures. RESULTS SYTO9-PI dual staining of bacterial cells revealed three different cell populations: living, compromised, and dead cells. These cell populations were more distinct when the GFP-PI combination was used instead of dual staining. No differences in sensitivity were observed between the two methods. However, substitution of SYTO9 with GFP accelerated the procedure. Bioluminescence and plate counting results were in agreement with flow cytometric viability data. CONCLUSIONS In bacterial viability analyses, the GFP-PI combination provided better distinction between current viability stages of E. coli cells than SYTO9-PI dual staining. Additionally, the overall procedure was more rapid. No marked differences in sensitivity were observed.
Collapse
Affiliation(s)
- Janne Lehtinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
42
|
Tang G, Samaranayake LP, Yip HK. Molecular evaluation of residual endodontic microorganisms after instrumentation, irrigation and medication with either calcium hydroxide or Septomixine. Oral Dis 2004; 10:389-97. [PMID: 15533217 DOI: 10.1111/j.1601-0825.2004.01015.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE The correct choice of antimicrobial agents as inter-appointment medicaments is as important as the instrumentation and irrigation to remove pathogens from infected root canals. Calcium hydroxide [Ca(OH)2] and framycetin sulfate (Septomixine) are common endodontic medicaments. Therefore, we evaluated the efficacy of either calcium hydroxide or Septomixine in eliminating residual intra-canal bacteria, particularly Actinomyces spp., during inter-appointment interval in endodontic therapy using molecular methods. METHODS A total of 31 single-rooted teeth with primary root canal infections were studied immediately after opening the canals and subsequently after instrumentation, irrigation with sterile saline and 1-week medication with either Ca(OH)2 (n = 25) or Septomixine (n = 6). Whole bacterial genomic DNA was isolated directly from samples and PCR with universal primers performed to detect total intra-canal bacteria. The variable regions of 16S rDNA of bacteria were amplified and labeled with digoxigenin for further hybridization to detect Actinomyces spp. A total of seven oligonucleotide probes specific for A. bovis, A. gerencseriae, A. israelii, A. meyeri, catalase-negative A. naeslundii (genospecies 1 and 2), catalase-positive A. naeslundii genospecies 2 and A. odontolyticus were used to detect Actinomyces spp. in 22 of 31 medicated root canals [Ca(OH)2: n = 17; Septomixine: n = 5]. RESULTS The PCR results showed that 25 of 31 examined canals were positively detected with residual microorganisms after instrumentation, irrigation with sterile saline and 1-week medication with either Ca(OH)2 (n = 20) or Septomixine (n = 5). Thus, only six canals [Ca(OH)2: n = 5, Septomixine: n = 1] were aseptic after treatment. Hybridization results showed higher detection frequency of both A. odontolyticus and A. gerencseriae after treatment. Significant correlation was found between exposed pulp before treatment and positive detection of Actinomyces spp., particularly A. odontolyticus on the second visit (P < 0.05). CONCLUSION The conventional, 1-week medication of either Ca(OH)2 or Septomixine in endodontic therapy may not effectively inhibit residual bacterial growth in all root canals during inter-appointment intervals. Further investigations using, for instance quantitative real-time PCR analyses, are required to substantiate the present findings.
Collapse
Affiliation(s)
- G Tang
- Oral Bio-Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
43
|
Tay JH, Tay STL, Ivanov V, Pan S, Jiang HL, Liu QS. Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett Appl Microbiol 2003; 36:297-301. [PMID: 12680942 DOI: 10.1046/j.1472-765x.2003.01312.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To obtain biomass and porosity profiles for aerobically grown granules of different diameters and to determine a suitable range of granule diameters for application in wastewater treatment. METHODS AND RESULTS Microbial granules were cultivated in an aerobic granulated sludge reactor with model wastewaters containing acetate, or ethanol plus acetate, or glucose as the main carbon source. Granules were formed by retaining microbial aggregates using a settling time of 2 min. Sampled granules had diameters ranging from 0.45 to 3 mm. Microbial biomass in the granules was detected with the nucleic acid stain SYTO 9 and confocal laser scanning microscopy. The thickness of the microbial biomass layer was proportional to the granule diameter, and had a maximum value of 0.8 mm. The thickness of the microbial biomass layer correlated with the penetration depth of 0.1 microm fluorescent beads into the granule. CONCLUSIONS The microbial biomass and porosity studies suggest that aerobically grown microbial granules should have diameters less than a critical diameter of 0.5 mm, if deployed for wastewater treatment applications. This critical diameter is based on the assumption that whole granules should have a porous biomass-filled matrix. SIGNIFICANCE AND IMPACT OF THE STUDY This work could contribute to the development of aerobic granulation technology for effective biological wastewater treatment.
Collapse
Affiliation(s)
- J-H Tay
- Environmental Engineering Research Centre, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
44
|
Decker EM, Weiger R, Wiech I, Heide PE, Brecx M. Comparison of antiadhesive and antibacterial effects of antiseptics on Streptococcus sanguinis. Eur J Oral Sci 2003; 111:144-8. [PMID: 12648266 DOI: 10.1034/j.1600-0722.2003.00025.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three antiseptic (chlorhexidine, Olaflur, Octenisept) and one putative antiadhesive (chitosan) agent were investigated for their effect on viable planktonic and attached Streptococcus sanguinis cells. The bacterial pretreatment with each chemotherapeutic was performed in two steps: (i) After the exposure of planktonic streptococci to the antiseptics, the cells were suspended in human sterile saliva and allowed to attach to human enamel for 60 min; (ii) After 60 min in the flow chamber system, initially attached streptococci were treated with these agents. The microbial viability was monitored by the percentage of vital streptococci determined by fluorescence microscopy and cell reproduction. In comparison with the negative control NaCl, the non-bactericidal chitosan derivative showed distinctive antiadhesive properties. For both treatment procedures, the efficacy of the antiseptics in reducing the viability of planktonic and attached streptococci was Octenisept > Olaflur > chlorhexidine > saline > chitosan. Further studies appear warranted to develop new antiplaque/antibiofilm strategies involving highly efficient bactericidals with antiadhesive formulations.
Collapse
Affiliation(s)
- Eva-Maria Decker
- Department of Conservative Dentistry, School of Dental Medicine, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
45
|
Marion-Ferey K, Pasmore M, Stoodley P, Wilson S, Husson GP, Costerton JW. Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. J Hosp Infect 2003; 53:64-71. [PMID: 12495687 DOI: 10.1053/jhin.2002.1320] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to assess the efficacy of 21 decontamination procedures, for the removal of a multispecies biofilm. Experiments were performed on five-day-old biofilms grown inside silicone tubing, using a reactor system that mimics a dialysis machine. The treatments were tested on 5 cm tubing samples. Effects of treatment were measured using direct microscopy following staining. Bacterial viability and endotoxin removal were determined using conventional microbiological methods following biofilm detachment by scraping. The 21 procedures were classified into four groups based on the amount of biofilm removed. The most effective treatment was an acid pre-treatment, followed by use of a concentrated bleach solution. Acid pre-treatment removes calcium and magnesium carbonate crystals that are always found in dialysis biofilms. Treatments performed at high temperature did not increase the efficacy of biofilm removal. Most treatments caused at least a 10(5)-fold reduction in bacterial viability with a few resulting in complete kill. Autoclaved and bleach-treated samples gave the best results for viability reduction, with both treatments providing an equally effective and complete kill. In addition, autoclaving led to a significant decrease in endotoxin level (removal of 99.99%).
Collapse
|