1
|
Mitina I, Grajdieru C, Sturza R, Mitin V, Rubtov S, Balanuta A, Behta E, Deaghileva A, Inci F, Hacıosmanoğlu N, Zgardan D. Molecular Detection of Acetobacter aceti and Acetobacter pasteurianus at Different Stages of Wine Production. Foods 2025; 14:132. [PMID: 39796422 PMCID: PMC11720281 DOI: 10.3390/foods14010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Acetobacter aceti and Acetobacter pasteurianus belong to acetic acid bacteria (AAB), associated with wine spoilage. The timely detection of AAB, thought essential for their control, is however challenging due to the difficulties of their isolation. Thus, it would be advantageous to detect them using molecular methods at all stages of winemaking and storage. In this paper, we analyzed wines, musts and grapes of 13 varieties grown in different regions with Protected Geographical Indication of the Republic of Moldova for the presence of AAB, Acetobacter aceti and Acetobacter pasteurianus by real-time PCR and measured wine volatile acidity. Overall, the AAB content in the mature wine explained 33.7% of the variance in the volatile acidity of the mature wine, while the A. pasteurianus content in the mature wine alone explained 59.6% of the variability in the volatile acidity in the wine, and its content in the grapes, must and wine explained about 70% of the variance in the the volatile acidity. This makes A. pasteurianus a good candidate to be a potential predictor of wine volatile acidity.
Collapse
Affiliation(s)
- Irina Mitina
- The Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2002 Chisinau, Moldova; (I.M.); (C.G.); (V.M.); (A.D.)
| | - Cristina Grajdieru
- The Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2002 Chisinau, Moldova; (I.M.); (C.G.); (V.M.); (A.D.)
| | - Rodica Sturza
- Department of Oenology and Chemistry, Technical University of Moldova, 2004 Chisinau, Moldova; (R.S.); (S.R.); (A.B.)
| | - Valentin Mitin
- The Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2002 Chisinau, Moldova; (I.M.); (C.G.); (V.M.); (A.D.)
| | - Silvia Rubtov
- Department of Oenology and Chemistry, Technical University of Moldova, 2004 Chisinau, Moldova; (R.S.); (S.R.); (A.B.)
| | - Anatol Balanuta
- Department of Oenology and Chemistry, Technical University of Moldova, 2004 Chisinau, Moldova; (R.S.); (S.R.); (A.B.)
| | - Emilia Behta
- Department of Preventive Medicine, State University of Medicine and Pharmacy of the Republic of Moldova, 2029 Chisinau, Moldova;
| | - Angela Deaghileva
- The Institute of Genetics, Physiology and Plant Protection, Moldova State University, 2002 Chisinau, Moldova; (I.M.); (C.G.); (V.M.); (A.D.)
| | - Fatih Inci
- National Nanotechnology Research Center (UNAM), Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Cankaya, Ankara, Turkey; (F.I.); (N.H.)
| | - Nedim Hacıosmanoğlu
- National Nanotechnology Research Center (UNAM), Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Cankaya, Ankara, Turkey; (F.I.); (N.H.)
| | - Dan Zgardan
- Department of Oenology and Chemistry, Technical University of Moldova, 2004 Chisinau, Moldova; (R.S.); (S.R.); (A.B.)
| |
Collapse
|
2
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
3
|
Puyo M, Mas P, Roullier-Gall C, Romanet R, Lebleux M, Klein G, Alexandre H, Tourdot-Maréchal R. Bioprotection Efficiency of Metschnikowia Strains in Synthetic Must: Comparative Study and Metabolomic Investigation of the Mechanisms Involved. Foods 2023; 12:3927. [PMID: 37959046 PMCID: PMC10649255 DOI: 10.3390/foods12213927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Three Metschnikowia strains marketed as bioprotection yeasts were studied to compare their antimicrobial effect on a mixture of two Hanseniaspora yeast strains in synthetic must at 12 °C, mimicking pre-fermentative maceration by combining different approaches. The growth of the different strains was monitored, their nitrogen and oxygen requirements were characterised, and their metabolomic footprint in single and co-cultures studied. Only the M. fructicola strain and one M. pulcherrima strains colonised the must and induced the rapid decline of Hanseniaspora. The efficiency of these two strains followed different inhibition kinetics. Furthermore, the initial ratio between Metschnikowia and Hanseniaspora was an important factor to ensure optimal bioprotection. Nutrient consumption kinetics showed that apiculate yeasts competed with Metschnikowia strains for nutrient accessibility. However, this competition did not explain the observed bioprotective effect, because of the considerable nitrogen content remaining on the single and co-cultures. The antagonistic effect of Metschnikowia on Hanseniaspora probably implied another form of amensalism. For the first time, metabolomic analyses of the interaction in a bioprotection context were performed after the pre-fermentative maceration step. A specific footprint of the interaction was observed, showing the strong impact of the interaction on the metabolic modulation of the yeasts, especially on the nitrogen and vitamin pathways.
Collapse
Affiliation(s)
- Maëlys Puyo
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Perrine Mas
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Chloé Roullier-Gall
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Rémy Romanet
- DIVVA (Développement Innovation Vigne Vin Aliments) Platform/PAM UMR A 02.102, IUVV, 2 Rue Claude Ladrey, 21000 Dijon, France;
| | - Manon Lebleux
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Géraldine Klein
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.P.); (C.R.-G.); (M.L.); (G.K.); (H.A.)
| |
Collapse
|
4
|
Parra A, Ovejas A, González-Arenzana L, Gutiérrez AR, López-Alfaro I. Development and Validation of a New Method for Detecting Acetic Bacteria in Wine. Foods 2023; 12:3734. [PMID: 37893627 PMCID: PMC10606930 DOI: 10.3390/foods12203734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
In winemaking, excessive production of acetic acid by acetic acid bacteria poses a major challenge, leading to rejection of wine by consumers. The aim of this study was to devise an economically viable and easy-to-use liquid culture medium for the preventive detection of microorganisms capable of generating acetic acid in wine. The modified medium incorporated specific nutrients that favored the growth of acetic acid bacteria and increased selectivity. Under varying conditions and with different types of wine, this medium was tested together with inoculated samples, comparing the occurrence of acetic acid and olfaction. The result was a new liquid medium based on olfactometry, designed to facilitate its use in wineries, even by untrained personnel and without the need for complex laboratory equipment. Validation was carried out on a variety of wines, determining the onset of the presence of acetic acid in the medium. This innovative culture medium provides a means to estimate the concentration of micro-organisms capable of producing acetic acid in wine. Its application in wineries facilitates proactive decision making, avoiding undesirable increases in acetic acid concentration.
Collapse
Affiliation(s)
- Alejandro Parra
- Laboratorio Dolmar Tentamus, Paraje Micalanda, 26221 Gimileo, La Rioja, Spain; (A.P.); (A.O.)
| | - Aroa Ovejas
- Laboratorio Dolmar Tentamus, Paraje Micalanda, 26221 Gimileo, La Rioja, Spain; (A.P.); (A.O.)
| | - Lucía González-Arenzana
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja and CSIC), Finca La Grajera, Ctra. Burgos km 6, 26007 Logroño, La Rioja, Spain; (L.G.-A.); (A.R.G.)
| | - Ana Rosa Gutiérrez
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja and CSIC), Finca La Grajera, Ctra. Burgos km 6, 26007 Logroño, La Rioja, Spain; (L.G.-A.); (A.R.G.)
| | - Isabel López-Alfaro
- ICVV, Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, Gobierno de La Rioja and CSIC), Finca La Grajera, Ctra. Burgos km 6, 26007 Logroño, La Rioja, Spain; (L.G.-A.); (A.R.G.)
| |
Collapse
|
5
|
Budziak-Wieczorek I, Mašán V, Rząd K, Gładyszewska B, Karcz D, Burg P, Čížková A, Gagoś M, Matwijczuk A. Evaluation of the Quality of Selected White and Red Wines Produced from Moravia Region of Czech Republic Using Physicochemical Analysis, FTIR Infrared Spectroscopy and Chemometric Techniques. Molecules 2023; 28:6326. [PMID: 37687155 PMCID: PMC10489813 DOI: 10.3390/molecules28176326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The FTIR-ATR method coupled with the multivariate analysis of specific spectral areas of samples was developed to characterize two white grape varieties (Sauvignon Blanc and Hibernal) and two blue grape varieties (André and Cabernet Moravia) of wine planted and harvested in the Moravia region, Czech Republic. Principal component analysis and hierarchical cluster analysis were performed using fingerprint regions of FTIR spectra for all wines. The results obtained by principal component analysis in combination with linear discriminant analysis (PCA-LDA) scores yielded clear separation between the four classes of samples and showed very good discrimination between the wine samples, with a 91.7% overall classification rate for the samples. The conducted FTIR spectroscopy studies coupled with chemometrics allowed for the swift analysis of multiple wine components with minimal sample preparation. These methods can be used in research to improve specific properties of these wines, which will undoubtedly enhance the quality of the final wine samples obtained.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- Department of Chemistry, Faculty of Life Sciences and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Vladimír Mašán
- Department of Horticultural Machinery, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic; (V.M.); (P.B.); (A.Č.)
| | - Klaudia Rząd
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.R.); (B.G.)
| | - Bożena Gładyszewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.R.); (B.G.)
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics, Krakow University of Technology, 31-155 Krakow, Poland;
- ECOTECH-COMPLEX—Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033 Lublin, Poland
| | - Patrik Burg
- Department of Horticultural Machinery, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic; (V.M.); (P.B.); (A.Č.)
| | - Alice Čížková
- Department of Horticultural Machinery, Mendel University in Brno, Valtická 337, 691 44 Lednice, Czech Republic; (V.M.); (P.B.); (A.Č.)
| | - Mariusz Gagoś
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (K.R.); (B.G.)
- ECOTECH-COMPLEX—Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Maria Curie-Sklodowska University, Głęboka 39, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Qin L, Huang M, Ma Y, Zhang D, Cui Y, Kang W. Effects of two Saccharomyces cerevisiae strains on physicochemical and oenological properties of Aranèle white wine. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Wine Microbial Consortium: Seasonal Sources and Vectors Linking Vineyard and Winery Environments. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Winemaking involves a wide diversity of microorganisms with different roles in the process. The wine microbial consortium (WMC) includes yeasts, lactic acid bacteria and acetic acid bacteria with different implications regarding wine quality. Despite this technological importance, their origin, prevalence, and routes of dissemination from the environment into the winery have not yet been fully unraveled. Therefore, this study aimed to evaluate the WMC diversity and incidence associated with vineyard environments to understand how wine microorganisms overwinter and enter the winery during harvest. Soils, tree and vine barks, insects, vine leaves, grapes, grape musts, and winery equipment were sampled along four seasons. The isolation protocol included: (a) culture-dependent microbial recovery; (b) phenotypical screening to select fermenting yeasts, lactic acid, and acetic acid bacteria; and (c) molecular identification. The results showed that during all seasons, only 11.4% of the 1424 isolates presumably belonged to the WMC. The increase in WMC recovery along the year was mostly due to an increase in the number of sampled sources. Acetic acid bacteria (Acetobacter spp., Gluconobacter spp., Gluconoacetobacter spp.) were mostly recovered from soils during winter while spoilage lactic acid bacteria (Leuconostoc mesenteroides and Lactobacillus kunkeii) were only recovered from insects during véraison and harvest. The fermenting yeast Saccharomyces cerevisiae was only isolated from fermented juice and winery equipment. The spoilage yeast Zygosaccharomyces bailii was only recovered from fermented juice. The single species bridging both vineyard and winery environments was the yeast Hanseniaspora uvarum, isolated from insects, rot grapes and grape juice during harvest. Therefore, this species appears to be the best surrogate to study the dissemination of the WMC from vineyard into the winery. Moreover, the obtained results do not evidence the hypothesis of a perennial terroir-dependent WMC given the scarcity of their constituents in the vineyard environment along the year and the importance of insect dissemination.
Collapse
|
8
|
Gonzalez Viejo C, Fuentes S. Digital Assessment and Classification of Wine Faults Using a Low-Cost Electronic Nose, Near-Infrared Spectroscopy and Machine Learning Modelling. SENSORS 2022; 22:s22062303. [PMID: 35336472 PMCID: PMC8955090 DOI: 10.3390/s22062303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
The winemaking industry can benefit greatly by implementing digital technologies to avoid guesswork and the development of off-flavors and aromas in the final wines. This research presents results on the implementation of near-infrared spectroscopy (NIR) and a low-cost electronic nose (e-nose) coupled with machine learning to detect and assess wine faults. For this purpose, red and white base wines were used, and treatments consisted of spiked samples with 12 faults that are traditionally formed in wines. Results showed high accuracy in the classification models using NIR and e-nose for red wines (94–96%; 92–97%, respectively) and white wines (96–97%; 90–97%, respectively). Implementing new and emerging digital technologies could be a turning point for the winemaking industry to become more predictive in terms of decision-making and maintaining and increasing wine quality traits in a changing and challenging climate.
Collapse
|
9
|
Fentie EG, Jeong M, Emire SA, Demsash HD, Kim MA, Shin JH. Fermentation dynamics of spontaneously fermented Ethiopian honey wine, Tej. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine, Tej. Food Res Int 2022; 152:110765. [DOI: 10.1016/j.foodres.2021.110765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
|
11
|
Almeida FLC, Oliveira ENA, Almeida EC, Silva LN, Polari IDLB, Magalhães Cordeiro AMT, Albuquerque Meireles BRL, Sousa Guedes JP, Souza WFC. Mangaba (
Hancornia speciosa
Gomes) beverage as an alternative wine. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Francisco Lucas Chaves Almeida
- School of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Brazil
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agro‐Industrial Management and Technology (DGTA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| | | | - Elisândra Costa Almeida
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agro‐Industrial Management and Technology (DGTA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| | - Luana Nascimento Silva
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agriculture (DA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| | - Isabelle de Lima Brito Polari
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agro‐Industrial Management and Technology (DGTA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| | | | | | - Jossana Pereira Sousa Guedes
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agro‐Industrial Management and Technology (DGTA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| | - Weysser Felipe Cândido Souza
- School of Food Engineering (FEA) University of Campinas (UNICAMP) Campinas Brazil
- Center for Human, Social and Agrarian Sciences (CCHSA), Department of Agro‐Industrial Management and Technology (DGTA) Federal University of Paraíba (UFPB) Bananeiras Brazil
| |
Collapse
|
12
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
13
|
Detection of Red Wine Faults over Time with Flash Profiling and the Electronic Tongue. BEVERAGES 2021. [DOI: 10.3390/beverages7030052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wine faults, often caused by spoilage microorganisms, are considered negative sensory attributes, and may result in substantial economic losses. The objective of this study was to use the electronic tongue (e-tongue) and flash sensory profiling (FP) to evaluate changes in red wine over time due to the presence of different spoilage microorganisms. Merlot wine was inoculated with one of the following microorganisms: Brettanomyces bruxellensis, Lactobacillus brevis, Pediococcus parvulus, or Acetobacter pasteurianus. These wines were analyzed weekly until Day 42 using the e-tongue and FP, with microbial plate counts. Over time, both FP and e-tongue differentiated the wines. The e-tongue showed a low discrimination among microorganisms up to Day 14 of storage. However, at Day 21 and continuing to Day 42, the e-tongue discriminated among the samples with a discrimination index of 91. From the sensory FP data, assessors discriminated among the wines starting at Day 28. Non-spoilage terms were used to describe the wines at significantly higher frequency for all time points until Day 42, at which point the use of spoilage terms was significantly higher (p < 0.05). These results suggest that application of these novel techniques may be the key to detecting and limiting financial losses associated with wine faults.
Collapse
|
14
|
Felšöciová S, Sabo J, Galovičová L, Kačániová M. The diversity of fungal population from grape harvest to young wine in Small Carpathian wine region. POTRAVINARSTVO 2021. [DOI: 10.5219/1609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The study aimed to identify the filamentous fungi and yeast mycobiota found on the surface and in grapes, grape must, and wine obtained from four red grape varieties: Alibernet, Dornfelder, Blue Frankish, Cabernet Sauvignon, and four white grape varieties: Green Veltliner, Rheinriesling, Pinot Blanc, Sauvignon. Grapes from vineyard Vrbové located in southwestern Slovakia were used for the research in 2020. The identification of filamentous fungi was performed using the macroscopic and microscopic observations and yeasts were identified by MALDI-TOF Mass Spectrometer. A total of 642 isolates were obtained. Grapes were rich in diversity of filamentous fungi (13 genera) and must on yeasts (8 genera). Penicillium, Botrytis, and Hanseniaspora uvarum were identified in both grapes and must. Three of the fungal genera identified by conventional or molecular techniques from the surface of red grape varieties were predominant: Alternaria (26%), Botrytis (21%), and Issatchenkia terricola (13%), two from endogenous mycobiota: Hanseniaspora uvarum (45%) and Botrytis (17%), four from the surface of white grape varieties: Penicillium (25%), Botrytis (21%), Alternaria (16%) and Hanseniaspora uvarum (15%), and three from endogenous mycobiota: Botrytis (44%), Hanseniaspora uvarum (23%) and Alternaria (20%). Saccharomyces cerevisiae, Candida krusei, C. utilis, and Cryptococcus neoformans were identified only in wine.
Collapse
|
15
|
Laureys D, Leroy F, Hauffman T, Raes M, Aerts M, Vandamme P, De Vuyst L. The Type and Concentration of Inoculum and Substrate as Well as the Presence of Oxygen Impact the Water Kefir Fermentation Process. Front Microbiol 2021; 12:628599. [PMID: 33643256 PMCID: PMC7904701 DOI: 10.3389/fmicb.2021.628599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Eleven series of water kefir fermentation processes differing in the presence of oxygen and the type and concentration of inoculum and substrate, were followed as a function of time to quantify the impact of these parameters on the kinetics of this process via a modeling approach. Increasing concentrations of the water kefir grain inoculum increased the water kefir fermentation rate, so that the metabolic activity during water kefir fermentation was mainly associated with the grains. Water kefir liquor could also be used as an alternative means of inoculation, but the resulting fermentation process progressed slower than the one inoculated with water kefir grains, and the production of water kefir grain mass was absent. Substitution of sucrose with glucose and/or fructose reduced the water kefir grain growth, whereby glucose was fermented faster than fructose. Lacticaseibacillus paracasei (formerly known as Lactobacillus paracasei), Lentilactobacillus hilgardii (formerly known as Lactobacillus hilgardii), Liquorilactobacillus nagelii (formerly known as Lactobacillus nagelii), Saccharomyces cerevisiae, and Dekkera bruxellensis were the main microorganisms present. Acetic acid bacteria were present in low abundances under anaerobic conditions and only proliferated under aerobic conditions. Visualization of the water kefir grains through scanning electron microscopy revealed that the majority of the microorganisms was attached onto their surface. Lactic acid bacteria and yeasts were predominantly associated with the grains, whereas acetic acid bacteria were predominantly associated with the liquor.
Collapse
Affiliation(s)
- David Laureys
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Hauffman
- Research Group of Electrochemical and Surface Engineering, Faculty of Engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Raes
- Research Group of Electrochemical and Surface Engineering, Faculty of Engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maarten Aerts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
16
|
Grapevine Microbiota Reflect Diversity among Compartments and Complex Interactions within and among Root and Shoot Systems. Microorganisms 2021; 9:microorganisms9010092. [PMID: 33401756 PMCID: PMC7823683 DOI: 10.3390/microorganisms9010092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Grafting connects root and shoot systems of distinct individuals, bringing microbial communities of different genotypes together in a single plant. How do root system and shoot system genotypes influence plant microbiota in grafted grapevines? To address this, we utilized clonal replicates of the grapevine ‘Chambourcin’, growing ungrafted and grafted to three different rootstocks in three irrigation treatments. Our objectives were to (1) characterize the microbiota (bacteria and fungi) of below-ground compartments (roots, adjacent soil) and above-ground compartments (leaves, berries), (2) determine how rootstock genotype, irrigation, and their interaction influences grapevine microbiota in different compartments, and (3) investigate abundance of microorganisms implicated in the late-season grapevine disease sour rot (Acetobacterales and Saccharomycetes). We found that plant compartment had the largest influence on microbial diversity. Neither rootstock genotype nor irrigation significantly influenced microbial diversity or composition. However, differential abundance of bacterial and fungal taxa varied as a function of rootstock and irrigation treatment; in particular, Acetobacterales and Saccharomycetes displayed higher relative abundance in berries of grapevines grafted to ‘1103P’ and ‘SO4’ rootstocks and varied across irrigation treatments. This study demonstrates that grapevine compartments retain distinct microbiota and identifies associations between rootstock genotypes, irrigation treatment, and the relative abundance of agriculturally relevant microorganisms in the berries.
Collapse
|
17
|
Carpena M, Fraga-Corral M, Otero P, Nogueira RA, Garcia-Oliveira P, Prieto MA, Simal-Gandara J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020; 10:foods10010051. [PMID: 33375439 PMCID: PMC7824511 DOI: 10.3390/foods10010051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Aroma profile is one of the main features for the acceptance of wine. Yeasts and bacteria are the responsible organisms to carry out both, alcoholic and malolactic fermentation. Alcoholic fermentation is in turn, responsible for transforming grape juice into wine and providing secondary aromas. Secondary aroma can be influenced by different factors; however, the influence of the microorganisms is one of the main agents affecting final wine aroma profile. Saccharomyces cerevisiae has historically been the most used yeast for winemaking process for its specific characteristics: high fermentative metabolism and kinetics, low acetic acid production, resistance to high levels of sugar, ethanol, sulfur dioxide and also, the production of pleasant aromatic compounds. Nevertheless, in the last years, the use of non-saccharomyces yeasts has been progressively growing according to their capacity to enhance aroma complexity and interact with S. cerevisiae, especially in mixed cultures. Hence, this review article is aimed at associating the main secondary aroma compounds present in wine with the microorganisms involved in the spontaneous and guided fermentations, as well as an approach to the strain variability of species, the genetic modifications that can occur and their relevance to wine aroma construction.
Collapse
Affiliation(s)
- Maria Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - Raquel A. Nogueira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence: (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain; (M.C.); (M.F.-C.); (P.O.); (R.A.N.); (P.G.-O.)
- Correspondence: (M.A.P.); (J.S.-G.)
| |
Collapse
|
18
|
Mathew B, Agrawal S, Nashikkar N, Bundale S, Upadhyay A. Isolation of Acetic Acid Bacteria and Preparation of Starter Culture for Apple Cider Vinegar Fermentation. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.96034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
García-Ríos E, Ruiz-Rico M, Guillamón JM, Pérez-Esteve É, Barat JM. Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Attchelouwa CK, N'guessan FK, Aké FMD, Djè MK. Molecular identification of yeast, lactic and acetic acid bacteria species during spoilage of tchapalo, a traditional sorghum beer from Côte d'Ivoire. World J Microbiol Biotechnol 2018; 34:173. [PMID: 30413892 DOI: 10.1007/s11274-018-2555-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/02/2018] [Indexed: 11/25/2022]
Abstract
Yeasts, lactic and acetic acid bacteria are responsible of microbial spoilage of alcoholic beverages. However species involved in deterioration of sorghum beer produced in Côte d'Ivoire has not been investigated. This study was carried out to identify species of yeast, LAB and AAB during spoilage of tchapalo in order to define the best strategy for beer preservative. Thus, a total of 210 yeasts, LAB and AAB were isolated from samples of tchapalo stored at ambient temperature and at 4 °C for 3 days. Based on PCR-RFLP of the ITS region and the sequencing of D1/D2 domain, yeast isolates were assigned to seven species (Saccharomyces cerevisiae, Candida tropicalis, Rhodotorula mucilaginosa, Trichosporon asahii, Kluyveromyces marxianus, Meyerozyma guilliermondii and Trichosporon coremiiforme). During the storage at ambient temperature and at 4 °C, S. cerevisiae was the predominant species (> 76%). Excepted R. mucilaginosa, occurrence of non-Saccharomyces species was sporadic. LAB species detected in fresh samples using molecular methods were Pediococcus acidilactici, Lactobacillus paracasei, Lb. curvatus, Lb. fermentum and Weisssella paramesenteroides. P. acidilactici was the dominant species (47.8%) followed by Lb. paracasei (17.5%). W. paramesenteroides and Lb. fermentum were not detected during the spoilage at ambient temperature while at 4 °C W. paramesenteroides and Lb. paracasei have not been detected. For AAB, the species found were Acetobacter pasteurianus sub paradoxus and Acetobacter cerevisiae. These species were common to all samples during spoilage and A. pasteurianus sub paradoxus was the most frequently detected.
Collapse
Affiliation(s)
- Constant K Attchelouwa
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire.
| | - Florent K N'guessan
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Francine M D Aké
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| | - Marcellin K Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Côte d'Ivoire
| |
Collapse
|
21
|
Laureys D, Aerts M, Vandamme P, De Vuyst L. Oxygen and diverse nutrients influence the water kefir fermentation process. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Milanović V, Osimani A, Garofalo C, De Filippis F, Ercolini D, Cardinali F, Taccari M, Aquilanti L, Clementi F. Profiling white wine seed vinegar bacterial diversity through viable counting, metagenomic sequencing and PCR-DGGE. Int J Food Microbiol 2018; 286:66-74. [PMID: 30048915 DOI: 10.1016/j.ijfoodmicro.2018.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The production of traditional vinegar is usually carried out using the so-called "seed vinegar" or "mother of vinegar" that is composed of an undefined and complex pool of microorganisms deriving from a previous vinegar production. To date, there have been relatively few studies on the microbiota of seed vinegars. The present study was carried out to discover the bacterial biota of seed vinegar samples used in the homemade production of local vinegars obtained from the acetic fermentation of white wine. The seed vinegar samples were subjected to viable counting and advanced molecular analyses, namely, Illumina sequencing and PCR-DGGE. The adopted polyphasic approach allowed the bacterial diversity of the analyzed samples to be profiled, thus revealing the presence of acetic acid bacteria ascribed to the genera Acetobacter, Gluconacetobacter, Gluconobacter and Komagataeibacter. Moreover, other microbial genera as Pseudomonas, Bacillus and Clostridium were abundantly found in almost all the samples, together with other minority genera. The results of viable counting confirmed the well-acknowledged limitations inherent with acetic acid bacteria recovery on plate growth media. The overall results confirmed that seed vinegars have a complex and heterogeneous biodiversity, thus encouraging their exploitation for the isolation and future technological characterization of cultures to be selected for the manufacture of mixed starter cultures.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples "Federico II", Portici, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
23
|
Kim NH, Jun SH, Lee SH, Hwang IG, Rhee MS. Microbial diversities and potential hazards of Korean turbid rice wines (makgeolli): Multivariate analyses. Food Microbiol 2018; 76:466-472. [PMID: 30166175 DOI: 10.1016/j.fm.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022]
Abstract
A number of makgeolli (Korean traditional turbid rice wine) products are commercially available in various forms. To date, there has been no comprehensive investigation of these products. Here, we collected samples of almost all of the makgeolli products that are currently commercially available (n = 167), recorded their manufacturing variables, and examined physiochemical parameters and microbial communities, using quantitative and qualitative methods. The aerobic plate count (APC) and counts of lactic acid bacteria (LAB), acetic acid bacteria (AAB), fungi, total coliforms, and Bacillus cereus were obtained, and the presence of Escherichia coli and eight foodborne pathogens was also examined. The data obtained were segmented and analyzed based on multiple variables associated with the manufacturing characteristics. Despite high ethanol contents (up to 16.0%) and high acidities (pH 3.3-4.5), the rice wine products examined here had diverse and abundant microbiotas (mean values: APC, 5.3; LAB,4.4; AAB,1.5; fungi, 3.8 log CFU/ml). In particular, LAB and fungi, which are used as co-starter cultures during rice wine manufacturing, accounted for the majority of the microbiotas. Bivariate analyses revealed significant positive correlations between the individual micro-organism counts (Pearson correlation coefficient = 0.668-0.947). Among the manufacturing variables considered in this study, only the pasteurization status had a significant effect on the microbial communities of rice wine products (p < 0.05). When examining the presence of foodborne pathogens, B. cereus was isolated from some of the rice wine products (58.1%) at low levels (<100 CFU/ml), and its detection rate was not significantly lower in the pasteurized products than the raw products. Overall, the results presented here provide a comprehensive overview of the microbiotas of commercially available turbid rice wines and their relationships to manufacturing variables. These data will help to direct future studies focusing on rice wine quality and safety control measures.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Se Hui Jun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Soon Ho Lee
- Nutrition Safety Policy Division, Ministry of Food and Drug Safety, North Chungcheong Province, 28159, Republic of Korea
| | - In Gyun Hwang
- Ulsan Institute of Health and Environment, Ulsan, 44642, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
24
|
Diversity of microbiota found in coffee processing wastewater treatment plant. World J Microbiol Biotechnol 2017; 33:211. [PMID: 29134289 DOI: 10.1007/s11274-017-2372-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL- 1), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL- 1. Yeasts were present at 7 log CFU mL- 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL- 1, with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.
Collapse
|
25
|
Effect of chitosan and SO 2 on viability of Acetobacter strains in wine. Int J Food Microbiol 2017; 246:1-4. [PMID: 28187326 DOI: 10.1016/j.ijfoodmicro.2017.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 11/24/2022]
Abstract
Wine spoilage is an important concern for winemakers to preserve the quality of their final product and avoid contamination throughout the production process. The use of sulphur dioxide (SO2) is highly recommended to prevent wine spoilage due to its antimicrobial activity. However, SO2 has a limited effect on the viability of acetic acid bacteria (AAB). Currently, the use of SO2 alternatives is favoured in order to reduce the use of chemicals and improve stabilization in winemaking. Chitosan is a biopolymer that is approved by the European authorities and the International Organization of Vine and Wine to be used as a fining agent and antimicrobial in wines. However, its effectiveness in AAB prevention has not been studied. Two strains of Acetobacter, adapted to high ethanol environments, were analysed in this study. Both chitosan and SO2 effects were compared in artificially contaminated wines. Both molecules reduced the metabolic activity of both AAB strains. Although AAB populations were detected by culture independent techniques, their numbers were reduced with time, and their viability decreased following the application of both products, especially with chitosan.
Collapse
|
26
|
Hucker B, Christophersen M, Vriesekoop F. The influence of thiamine and riboflavin on various spoilage microorganisms commonly found in beer. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Barry Hucker
- Faculty of Science and Technology; Federation University Australia; Ballarat Victoria 3353 Australia
| | - Melinda Christophersen
- Analytical Services Department; Carlton and United Breweries; Southbank Victoria 3006 Australia
| | - Frank Vriesekoop
- Faculty of Science and Technology; Federation University Australia; Ballarat Victoria 3353 Australia
- Department of Food Science and Agri-Food Supply Chain Management; Harper Adams University; Newport TF10 8NB UK
| |
Collapse
|
27
|
Mukisa IM, Byaruhanga YB, Muyanja CMBK, Langsrud T, Narvhus JA. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from Obushera, a traditional sorghum malt fermented beverage. Food Sci Nutr 2016; 5:702-712. [PMID: 28572960 PMCID: PMC5448335 DOI: 10.1002/fsn3.450] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
Single and mixed starter cultures of lactic acid bacteria (LAB): Weissella confusa MNC20, Lactobacillus plantarum MNC21, Lactococcus lactis MNC24 and Lactobacillus fermentum MNC34 and yeasts: Issatchenkia orientalis MNC20Y and Saccharomyces cerevisiae MNC21Y were used to produce Obushera, a fermented sorghum beverage. Microbial counts, pH, sugars, organic acids, and volatile compounds in starter culture and spontaneous fermentations were monitored during 48 hrs. Maximum counts of LAB (8.4–9.4 log cfu g−1) and yeasts (7.5 ± 0.1 cfu g−1) starter cultures were attained in 6–48 hrs. Weissella confusa, Lc. lactis, and Lb. fermentum showed possible acid sensitivity while I. orientalis produced surface films. LAB starter cultures and their combinations with S. cerevisiae lowered pH from 5.83 to <4.5 (3.50–4.13) in a shorter time (12 hrs) than spontaneous fermentations (24 hrs). Lactococcus lactis and W. confusa metabolized glucose the fastest (p < .05) during the first 6 hrs. Lactobacillus fermentum, Lb. plantarum, and S. cerevisiae utilized glucose and maltose concurrently. Lactobacillus plantarum and S. cerevisiae additionally utilized fructose. S. cerevisiae metabolized sugars the fastest (p < .05) during the first 12–24 hrs. Lactobacillus plantarum and W. confusa produced the highest (p < .05) amounts of lactate (5.43 g kg−1) and diacetyl (9.5 mg kg−1), respectively. LAB also produced acetate, ethanol, acetaldehyde, acetone, and acetoin. Coculturing LAB with S. cerevisiae reduced (p < .05) lactate and diacetyl yield. Yeasts produced high amounts of acetaldehyde and methyl alcohols. Issatchenkia orientalis produced higher (p < .05) amounts of 2‐methy‐1‐propanol and 3‐methyl‐1‐butanol than S. cerevisiae. Combinations of LAB with S. cerevisiae produced a profile flavor compounds close to that of spontaneously fermented Obushera. These combinations can be adopted for controlled fermentation of Obushera and related fermented cereal products.
Collapse
Affiliation(s)
- Ivan M Mukisa
- Department of Chemistry Biotechnology and Food Science (IKBM) Norwegian University of Life Sciences (UMB) Ås Norway.,Department of Food Technology and Nutrition Makerere University Kampala Uganda
| | - Yusuf B Byaruhanga
- Department of Food Technology and Nutrition Makerere University Kampala Uganda
| | | | - Thor Langsrud
- Department of Chemistry Biotechnology and Food Science (IKBM) Norwegian University of Life Sciences (UMB) Ås Norway
| | - Judith A Narvhus
- Department of Chemistry Biotechnology and Food Science (IKBM) Norwegian University of Life Sciences (UMB) Ås Norway
| |
Collapse
|
28
|
Longin C, Guilloux-Benatier M, Alexandre H. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR. Front Microbiol 2016; 7:831. [PMID: 27313572 PMCID: PMC4887704 DOI: 10.3389/fmicb.2016.00831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022] Open
Abstract
Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage.
Collapse
Affiliation(s)
- Cédric Longin
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Michèle Guilloux-Benatier
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| | - Hervé Alexandre
- Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, UMR Procédés Alimentaires et Microbiologiques, AgroSup Dijon - Université de Bourgogne Dijon, France
| |
Collapse
|
29
|
Štornik A, Skok B, Trček J. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar. Food Technol Biotechnol 2016; 54:113-119. [PMID: 27904401 DOI: 10.17113/ftb.54.01.16.4082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial production of organic apple cider vinegar is clearly more heterogeneous than the bacterial microbiota for the industrial production of conventional apple cider vinegar. Further chemical analysis should reveal if a difference in microbiota composition influences the quality of different types of apple cider vinegar.
Collapse
Affiliation(s)
- Aleksandra Štornik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Barbara Skok
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17,
SI-2000 Maribor, Slovenia
| |
Collapse
|
30
|
Ferrer S, Mañes-Lázaro R, Benavent-Gil Y, Yépez A, Pardo I. Acetobacter musti sp. nov., isolated from Bobal grape must. Int J Syst Evol Microbiol 2015; 66:957-961. [PMID: 26637821 DOI: 10.1099/ijsem.0.000818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An acetic acid bacterium (strain Bo7T), obtained during a study of the microbial diversity of spontaneous fermentations of Bobal grape must, was subjected to a taxonomic study using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain Bo7T to the genus Acetobacter, and revealed Acetobacter aceti and Acetobacter oeni to be nearest neighbours (99.57 % 16S rRNA gene sequence similarity between strain Bo7T and A. oeni CECT 5830T, and 98.76 % between strain Bo7T and A. aceti CECT 298T). Cells of strain Bo7T are Gram-negative, motile rods, catalase-positive and oxidase-negative. The DNA G+C content of strain Bo7T was 58.0 mol%. DNA-DNA hybridizations demonstrated that strain Bo7T belongs to a single novel genospecies that can be differentiated from its nearest phylogenetic neighbours by the following phenotypic characteristics: no production of 5-keto-d-gluconic acid from d-glucose, growth with glycerol but not with methanol or maltose as sole carbon sources, and growth on yeast extract with 30 % d-glucose. The major fatty acid was C18 : 1ω7c/C18 : 1ω6c (summed feature 8; approx. 56 %); other fatty acids in significant amounts (>5 %) were C16 : 0 2-OH (11 %), C16 : 0 (7 %), C14 : 0 2-OH (7 %) and C14 : 0 3-OH/iso-C16 : 1 I (summed feature 2; 6 %). The results obtained indicate that strain Bo7T represents a novel species of the genus Acetobacter, for which the name Acetobacter musti sp. nov. is proposed. The type strain is Bo7T ( = DSM 23824T = CECT 7722T).
Collapse
Affiliation(s)
- Sergi Ferrer
- ENOLAB - Laboratori de Microbiologia Enològica, ERI-ISIC BioTecMed, Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| | - Rosario Mañes-Lázaro
- ENOLAB - Laboratori de Microbiologia Enològica, ERI-ISIC BioTecMed, Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| | - Yaiza Benavent-Gil
- ENOLAB - Laboratori de Microbiologia Enològica, ERI-ISIC BioTecMed, Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| | - Alba Yépez
- ENOLAB - Laboratori de Microbiologia Enològica, ERI-ISIC BioTecMed, Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| | - Isabel Pardo
- ENOLAB - Laboratori de Microbiologia Enològica, ERI-ISIC BioTecMed, Universitat de València, c/ Dr. Moliner 50 E46100, Burjassot-València, Spain
| |
Collapse
|
31
|
Kim SA, Jeon SH, Kim NH, Kim HW, Lee NY, Cho TJ, Jung YM, Lee SH, Hwang IG, Rhee MS. Changes in the Microbial Composition of Microbrewed Beer during the Process in the Actual Manufacturing Line. J Food Prot 2015; 78:2233-9. [PMID: 26613919 DOI: 10.4315/0362-028x.jfp-15-261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated changes in the microbial composition of microbrewed beer during the manufacturing processes and identified potential microbial hazards, effective critical quality control points, and potential contamination routes. Comprehensive quantitative (aerobic plate count, lactic acid bacteria, fungi, acetic acid bacteria, coliforms, and Bacillus cereus) and qualitative (Escherichia coli and eight foodborne pathogens) microbiological analyses were performed using samples of raw materials (malt and manufacturing water), semiprocessed products (saccharified wort, boiled wort, and samples taken during the fermentation and maturation process), and the final product obtained from three plants. The initial aerobic plate count and lactic acid bacteria counts in malt were 5.2 and 4.3 log CFU/g, respectively. These counts were reduced to undetectable levels by boiling but were present at 2.9 and 0.9 log CFU/ml in the final product. Fungi were initially present at 3.6 log CFU/g, although again, the microbes were eliminated by boiling; however, the level in the final product was 4.6 log CFU/ml. No E. coli or foodborne pathogens (except B. cereus) were detected. B. cereus was detected at all stages, although it was not present in the water or boiled wort (total detection rate ¼ 16.4%). Results suggest that boiling of the wort is an effective microbial control measure, but careful management of raw materials and implementation of effective control measures after boiling are needed to prevent contamination of the product after the boiling step. The results of this study may constitute useful and comprehensive information regarding the microbiological quality of microbrewed beer.
Collapse
Affiliation(s)
- S A Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - S H Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - N H Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - H W Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - N Y Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - T J Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Y M Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - S H Lee
- Nutrition Safety Policy Division, Ministry of Food and Drug Safety, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - I G Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - M S Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Pinto C, Pinho D, Cardoso R, Custódio V, Fernandes J, Sousa S, Pinheiro M, Egas C, Gomes AC. Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front Microbiol 2015; 6:905. [PMID: 26388852 PMCID: PMC4555975 DOI: 10.3389/fmicb.2015.00905] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 08/19/2015] [Indexed: 11/13/2022] Open
Abstract
Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation - Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.
Collapse
Affiliation(s)
- Cátia Pinto
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Diogo Pinho
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Remy Cardoso
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Valéria Custódio
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Joana Fernandes
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Susana Sousa
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Miguel Pinheiro
- GenoInSeq Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Conceição Egas
- GenoInSeq Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| | - Ana C Gomes
- Genomics Unit, Biocant - Biotechnology Innovation Center, Cantanhede Portugal
| |
Collapse
|
33
|
Kim S, Yun S, Jeon S, Kim N, Kim H, Cho T, Lee S, Hwang I, Rhee M. Microbial composition of turbid rice wine (Makgeolli) at different stages of production in a real processing line. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Jeon SH, Kim NH, Shim MB, Jeon YW, Ahn JH, Lee SH, Hwang IG, Rhee MS. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju). J Food Prot 2015; 78:812-8. [PMID: 25836410 DOI: 10.4315/0362-028x.jfp-14-431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P < 0.05), whereas the other FABs contained , 25 CFU/25 ml microorganisms. Unexpectedly, neither microbial diversity nor microbial count correlated with the alcohol content (4.7 to 14.1%) or pH (3.4 to 4.2) of the product. Despite the harsh conditions, coliforms (detected in 23.8% of microbrewed beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P < 0.05). The finding that spore-forming B. cereus and coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.
Collapse
Affiliation(s)
- Se Hui Jeon
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Nam Hee Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Moon Bo Shim
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Young Wook Jeon
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Ji Hye Ahn
- R&D Center, Hitejinro Co., Ltd., North Chungcheong Province, 363-823, Republic of Korea
| | - Soon Ho Lee
- Foodborne Diseases Prevention and Surveillance Division, Ministry of Food and Drug Safety, North Chungcheong Province, 363-700, Republic of Korea
| | - In Gyun Hwang
- Food Standard Division, Ministry of Food and Drug Safety, North Chungcheong Province, 363-700, Republic of Korea
| | - Min Suk Rhee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
35
|
Yetiman AE, Kesmen Z. Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol 2015; 204:9-16. [PMID: 25828705 DOI: 10.1016/j.ijfoodmicro.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/24/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
Abstract
Culture-dependent and culture-independent methods were combined for the investigation of acetic acid bacteria (AAB) populations in traditionally produced vinegars and mother of vinegar samples obtained from apple and grape. The culture-independent denaturing gradient gel electrophoresis (DGGE) analysis, which targeted the V7-V8 regions of the 16S rRNA gene, showed that Komagataeibacter hansenii and Komagataeibacter europaeus/Komagataeibacter xylinus were the most dominant species in almost all of the samples analyzed directly. The culture-independent GTG5-rep PCR fingerprinting was used in the preliminary characterization of AAB isolates and species-level identification was carried out by sequencing of the 16S rRNA gene, 16S-23S rDNA internally transcribed to the spacer (ITS) region and tuf gene. Acetobacter okinawensis was frequently isolated from samples obtained from apple while K. europaeus was identified as the dominant species, followed by Acetobacter indonesiensis in the samples originating from grape. In addition to common molecular techniques, real-time PCR intercalating dye assays, including DNA melting temperature (Tm) and high resolution melting analysis (HRM), were applied to acetic acid bacterial isolates for the first time. The target sequence of ITS region generated species-specific HRM profiles and Tm values allowed discrimination at species level.
Collapse
Affiliation(s)
- Ahmet E Yetiman
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey
| | - Zülal Kesmen
- Erciyes University, Faculty of Engineering, Food Engineering Department, Kayseri, Turkey.
| |
Collapse
|
36
|
Trček J, Barja F. Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol 2014; 196:137-44. [PMID: 25589227 DOI: 10.1016/j.ijfoodmicro.2014.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/13/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria have attracted much attention over the past few years, due mainly to their metabolic traits that are of interest to the biotechnology industry. In addition, it turns out that their ecological habitats are almost unlimited since they have been found as symbionts in different insects and also as emerging opportunistic human pathogens. Very surprising is the finding that they colonize niches considered anaerobic, disproving the generalized statement that they are strict aerobes. Since they have taken on different biological roles in our environment, more and more people are charged with the task of identifying them. However, this turns out to be not always easy, especially if we are using phenotypic approaches for identification. A substantial step forward in making the identification of acetic acid bacteria easier was made possible using molecular biological methods, which have been extensively tested since 2000. However, some molecular methods require expensive machines and experienced staff, and moreover the level of their discrimination varies. All these factors must be considered when selecting the most appropriate approach for identifying acetic acid bacteria. With this objective in mind, this review article discusses the benefits and drawbacks of molecular biological methods for identification of acetic acid bacteria, with a focus on the 16S-23S rRNA gene ITS regions and the recently described alternative method for identification of acetic acid bacteria, MALDI-TOF MS.
Collapse
Affiliation(s)
- Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.
| | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Jussy-Geneva, Switzerland
| |
Collapse
|
37
|
Brandão CC, Asquieri ER, Attaran S, Damiani C. Study of the aging of fermented of yacon (Smallanthus sonchifolius) and sensory profile and acceptance. FOOD SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1590/s0101-20612014005000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Wine. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Acetic acid bacteria isolated from grapes of South Australian vineyards. Int J Food Microbiol 2014; 178:98-106. [PMID: 24681711 DOI: 10.1016/j.ijfoodmicro.2014.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard.
Collapse
|
40
|
Huang CH, Chang MT, Huang L, Chua WS. Molecular discrimination and identification of Acetobacter genus based on the partial heat shock protein 60 gene (hsp60) sequences. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:213-218. [PMID: 23681743 DOI: 10.1002/jsfa.6231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND To identify the Acetobacter species using phenotypic and genotypic (16S rDNA sequence analysis) technique alone is inaccurate. The aim of this study was to use the hsp60 gene as a target for species discrimination in the genus Acetobacter, as well as to develop species-specific polymerase chain reaction and mini-sequencing methods for species identification and differentiation. RESULTS The average sequence similarity for the hsp60 gene (89.8%) among type strains was significantly less than that for the 16S rRNA gene (98.0%), and the most Acetobacter species could be clearly distinguished. In addition, a pair of species-specific primer was designed and used to specifically identify Acetobacter aceti, Acetobacter estunensis and Acetobacter oeni, but none of the other Acetobacter strains. Afterwards, two specific single-nucleotide polymorphism primers were designed and used to direct differentiate the strains belonging to the species A. aceti by mini-sequencing assay. CONCLUSION The phylogenetic relationships in the Acetobacter genus can be resolved by using hsp60 gene sequencing, and the species of A. aceti can be differentiated using novel species-specific PCR combined with the mini-sequencing technology.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Road, Hsinchu, 30062, Taiwan, ROC
| | | | | | | |
Collapse
|
41
|
Antonic V, Stojadinovic A, Zhang B, Izadjoo MJ, Alavi M. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infect Drug Resist 2013; 6:175-86. [PMID: 24232573 PMCID: PMC3825675 DOI: 10.2147/idr.s49039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection. S. aureus variants displayed white and yellow colony phenotypes. The sequence of the operons for staphyloxanthin synthesis indicated that coding and promoter regions were identical between the two pigment variants. Quorum sensing controls pigment synthesis in some bacteria. It is also shown that P. aeruginosa quorum-sensing molecules affect S. aureus transcription. We explored whether the co-infecting P. aeruginosa can affect pigment production in the white S. aureus variant. In co-culture experiments between the white variants and a selected number of Gram-positive and Gram-negative bacteria, only P. aeruginosa induced pigment production in the white variant. Gene expression analysis of the white variant did not indicate upregulation of the crtM and other genes known to be involved in pigment production (sigB, sarA, farnesyl pyrophosphate synthase gene [FPP-synthase], hfq). In contrast, transcription of the catalase gene was significantly upregulated after co-culture. P. aeruginosa-induced pigment synthesis and catalase upregulation correlated with increased resistance to polymyxin B, hydrogen peroxide, and the intracellular environment of macrophages. Our data indicate the presence of silent but functional staphyloxanthin synthesis machinery in a white phenotypic variant of S. aureus which is activated by a co-infecting P. aeruginosa via inter-species communication. Another S. aureus virulence factor, catalase is also induced by this co-infecting bacterium. The resulting phenotypic changes are directly correlated with resistance of the white variant to stressful conditions.
Collapse
Affiliation(s)
- Vlado Antonic
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA ; Diagnostic and Translational Research Center, Gaithersburg, MD, USA ; Combat Wound Initiative Program, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
42
|
Huang CH, Chang MT, Huang L, Chu WS. Utilization of elongation factor Tu gene (tuf) sequencing and species-specific PCR (SS-PCR) for the molecular identification of Acetobacter species complex. Mol Cell Probes 2013; 28:31-3. [PMID: 23969032 DOI: 10.1016/j.mcp.2013.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to use tuf gene as a molecular target for species discrimination in the Acetobacter genus, as well as to develop species-specific PCR method for direct species identification of Acetobacter aceti. The results showed that most Acetobacter species could be clearly distinguished, and the average sequence similarity for the tuf gene (89.5%) among type strains was significantly lower than that of the 16S rRNA gene sequence (98.0%). A pair of species-specific primers were designed and used to specifically identify A. aceti, but none of the other Acetobacter strains. Our data indicate that the phylogenetic relationships of most strains in the Acetobacter genus can be resolved using tuf gene sequencing, and the novel species-specific primer pair could be used to rapidly and accurately identify the species of A. aceti by the PCR based assay.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Road, Hsinchu 30062, Taiwan, ROC
| | | | | | | |
Collapse
|
43
|
Valera MJ, Torija MJ, Mas A, Mateo E. Acetobacter malorum and Acetobacter cerevisiae identification and quantification by Real-Time PCR with TaqMan-MGB probes. Food Microbiol 2013; 36:30-9. [PMID: 23764217 DOI: 10.1016/j.fm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
The identification and quantification of Acetobacter malorum and Acetobacter cerevisiae in wine and vinegar were performed using the Real-Time PCR (RT-PCR) with two TaqMan-MGB probes designed to amplify the internal transcribed spacer (ITS) region between the 16S-23S rRNA genes. The primers and probes were highly specific, with a detection limit of 10² cells/ml for both species, and the efficiency of the technique was >80%. The RT-PCR technique with these two new TaqMan-MGB probes, together with the five (Acetobacter aceti, Acetobacter pasteurianus, Gluconobacter oxydans, Gluconacetobacter hansenii and Gluconacetobacter europaeus) that are already available (Torija et al., 2010), were validated on known concentrations of Acetic Acid Bacteria (AAB) grown in glucose medium (GY) and in inoculated matrices of wine and vinegar. Furthermore, this technique was applied to evaluate the AAB population in real wine samples collected in the Canary Islands. PCR enrichment performed prior to RT-PCR increased the accuracy of quantification and produced results similar to those detected with SYBR-Green. In real wine samples, the total AAB enumeration ranged from 9 × 10² to 10⁶ cells/ml, and the seven AAB species tested were detected in more than one sample. However, AAB recovery on plates was poor; the isolates obtained on plates were A. malorum, G. oxydans, A. cerevisiae and A. pasteurianus species. RT-PCR with TaqMan-MGB probes is an accurate, specific and fast method for the identification and quantification of AAB species commonly found in wine and vinegar.
Collapse
Affiliation(s)
- Maria José Valera
- Biotecnologia Enológica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | | | | | |
Collapse
|
44
|
Taboada-Rodríguez A, Belisario-Sánchez YY, Cava-Roda R, Cano JA, López-Gómez A, Marín-Iniesta F. Optimisation of preservatives for dealcoholised red wine using a survival model for spoilage yeasts. Int J Food Sci Technol 2012. [DOI: 10.1111/ijfs.12017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amaury Taboada-Rodríguez
- Grupo de Biotecnología de Alimentos; Departamento de Tecnología de Alimentos; Nutrición y Bromatología; Facultad de Veterinaria; Universidad de Murcia; Campus de Espinardo; Murcia; 30100; Spain
| | - Yulissa Y. Belisario-Sánchez
- Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 48; Cartagena; Murcia; 30203; Spain
| | - Rita Cava-Roda
- Grupo de Biotecnología de Alimentos; Departamento de Tecnología de Alimentos; Nutrición y Bromatología; Facultad de Veterinaria; Universidad de Murcia; Campus de Espinardo; Murcia; 30100; Spain
| | - Juan A. Cano
- Departamento de Estadística e Investigación Operativa; Facultad de Matemáticas; Universidad de Murcia; Murcia; 30100; Spain
| | - Antonio López-Gómez
- Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 48; Cartagena; Murcia; 30203; Spain
| | - Fulgencio Marín-Iniesta
- Grupo de Biotecnología de Alimentos; Departamento de Tecnología de Alimentos; Nutrición y Bromatología; Facultad de Veterinaria; Universidad de Murcia; Campus de Espinardo; Murcia; 30100; Spain
| |
Collapse
|
45
|
Hidalgo C, Mateo E, Mas A, Torija M. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki). Food Microbiol 2012; 30:98-104. [DOI: 10.1016/j.fm.2011.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
|
46
|
Valera MJ, Laich F, González SS, Torija MJ, Mateo E, Mas A. Diversity of acetic acid bacteria present in healthy grapes from the Canary Islands. Int J Food Microbiol 2011; 151:105-12. [DOI: 10.1016/j.ijfoodmicro.2011.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/01/2011] [Accepted: 08/13/2011] [Indexed: 10/17/2022]
|
47
|
|
48
|
Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F. Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiol 2010; 27:973-8. [DOI: 10.1016/j.fm.2010.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/18/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
49
|
Torija M, Mateo E, Guillamón J, Mas A. Identification and quantification of acetic acid bacteria in wine and vinegar by TaqMan–MGB probes. Food Microbiol 2010; 27:257-65. [DOI: 10.1016/j.fm.2009.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
|
50
|
Population dynamics of acetic acid bacteria during traditional wine vinegar production. Int J Food Microbiol 2010; 138:130-6. [DOI: 10.1016/j.ijfoodmicro.2010.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 11/22/2022]
|