1
|
Röhrig AM, Jakobi K, Dietz J, Thomas D, Herrmann E, Welsch C, Sarrazin C, Pfeilschifter J, Zeuzem S, Grammatikos G. The role of serum sphingolipids as potential biomarkers of non-response to direct acting antiviral therapy in chronic hepatitis C virus infection. J Viral Hepat 2023; 30:138-147. [PMID: 36463431 DOI: 10.1111/jvh.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/09/2022]
Abstract
Elimination strategies of chronic hepatitis C virus (HCV) infection aim to optimize the high antiviral potency of direct-acting antivirals (DAAs). Sphingolipids (SLs) constitute bioactive lipid compounds with a remarkable second messenger potential. SL levels associate with responsiveness to interferon treatment in HCV-patients, thus prompting the question whether failure to DAAs can be predicted by the serologic sphingolipidomic profile. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to retrospectively quantify various sphingolipid metabolites in baseline serum samples of 97 chronic HCV patients with DAA failure compared with an age-matched cohort of 95 HCV-patients with sustained virological response (SVR). Sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and sphinganine-1-phosphate (SA1P) serum concentrations were significantly upregulated at baseline in patients with DAA failure compared to patients with SVR. Similarly, GluC24:1Cer baseline levels were significantly upregulated in patients with DAA failure compared to the patients with SVR. However, GluC18Cer serum levels showed decreased baseline levels for patients with DAA failure compared to patients with SVR. In multivariate analysis sphinganine (OR 0.08494, CI 0.07393-0.9759, p = .021223), SA1P (OR 0.9818, CI 0.9653-0.9987, p = .034801), GluCerC18 (OR 1.0683, CI 1.0297-1.1104, p = .000786) and GluCer24:1 (OR 0.9961, CI 0.994-0.998, p = .000294) constituted independent predictors of treatment response. In conclusion, serum sphingolipid concentrations, in particular sphingosine, sphinganine and their derivatives S1P and SA1P as well as glucosylceramides may identify at baseline the minority of HCV patients with DAA failure. Serum sphingolipids could constitute additional biomarkers for national treatment strategies aiming to eliminate HCV infection.
Collapse
Affiliation(s)
- Aissa Miriam Röhrig
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Katja Jakobi
- Goethe University Hospital, Pharmazentrum Frankfurt/ZAFES, Frankfurt am Main, Germany
| | - Julia Dietz
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Dominique Thomas
- Goethe University, Institute of Clinical Pharmacology, Frankfurt am Main, Germany
| | - Eva Herrmann
- Department of Medicine, Goethe University, Institute of Biostatistics and Mathematical Modelling, Frankfurt am Main, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christoph Sarrazin
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany.,St. Josefs-Hospital, Wiesbaden, Germany
| | - Josef Pfeilschifter
- Goethe University Hospital, Pharmazentrum Frankfurt/ZAFES, Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - Georgios Grammatikos
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany.,St' Lukes Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Reza S, Ugorski M, Suchański J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 2021; 31:1416-1434. [PMID: 34080016 PMCID: PMC8684486 DOI: 10.1093/glycob/cwab046] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
Abstract
Numerous clinical observations and exploitation of cellular and animal models indicate that glucosylceramide (GlcCer) and galactosylceramide (GalCer) are involved in many physiological and pathological phenomena. In many cases, the biological importance of these monohexosylcermides has been shown indirectly as the result of studies on enzymes involved in their synthesis and degradation. Under physiological conditions, GalCer plays a key role in the maintenance of proper structure and stability of myelin and differentiation of oligodendrocytes. On the other hand, GlcCer is necessary for the proper functions of epidermis. Such an important lysosomal storage disease as Gaucher disease (GD) and a neurodegenerative disorder as Parkinson’s disease are characterized by mutations in the GBA1 gene, decreased activity of lysosomal GBA1 glucosylceramidase and accumulation of GlcCer. In contrast, another lysosomal disease, Krabbe disease, is associated with mutations in the GALC gene, resulting in deficiency or decreased activity of lysosomal galactosylceramidase and accumulation of GalCer and galactosylsphingosine. Little is known about the role of both monohexosylceramides in tumor progression; however, numerous studies indicate that GlcCer and GalCer play important roles in the development of multidrug-resistance by cancer cells. It was shown that GlcCer is able to provoke immune reaction and acts as a self-antigen in GD. On the other hand, GalCer was recognized as an important cellular receptor for HIV-1. Altogether, these two molecules are excellent examples of how slight differences in chemical composition and molecular conformation contribute to profound differences in their physicochemical properties and biological functions.
Collapse
Affiliation(s)
- Safoura Reza
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| |
Collapse
|
3
|
Le Pogam P, Doué M, Le Page Y, Habauzit D, Zhadobov M, Sauleau R, Le Dréan Y, Rondeau D. Untargeted Metabolomics Reveal Lipid Alterations upon 2-Deoxyglucose Treatment in Human HaCaT Keratinocytes. J Proteome Res 2018; 17:1146-1157. [PMID: 29430917 DOI: 10.1021/acs.jproteome.7b00805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Mickael Doué
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yann Le Page
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Denis Habauzit
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - Maxim Zhadobov
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Ronan Sauleau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Yves Le Dréan
- Transcription, Environment and Cancer Group, Institute for Research on Environmental and Occupational Health (IRSET), Inserm UMR1085, University of Rennes 1 , 9 avenue du Prof. Léon Bernard, 35043 Rennes Cedex, France
| | - David Rondeau
- Institute of Electronics and Telecommunications of Rennes (IETR), UMR CNRS 6164, University of Rennes , Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France.,Département de Chimie, Université de Bretagne Occidentale , 6 avenue Victor Le Gorgeu, 29238 Brest Cedex, France
| |
Collapse
|
4
|
Vardi A, Zigdon H, Meshcheriakova A, Klein AD, Yaacobi C, Eilam R, Kenwood BM, Rahim AA, Massaro G, Merrill AH, Vitner EB, Futerman AH. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J Pathol 2016; 239:496-509. [DOI: 10.1002/path.4751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vardi
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Hila Zigdon
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Anna Meshcheriakova
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Andrés D Klein
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Chen Yaacobi
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Raya Eilam
- Department of Veterinary Resources; Weizmann Institute of Science; Rehovot Israel
| | - Brandon M Kenwood
- School of Biology and Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA USA
| | - Ahad A Rahim
- Department of Pharmacology, School of Pharmacy; University College London; London UK
| | - Giulia Massaro
- Department of Pharmacology, School of Pharmacy; University College London; London UK
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta GA USA
| | - Einat B Vitner
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| | - Anthony H Futerman
- Department of Biological Chemistry; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
5
|
Lanzini J, Dargère D, Regazzetti A, Tebani A, Laprévote O, Auzeil N. Changing in lipid profile induced by the mutation of Foxn1 gene: A lipidomic analysis of Nude mice skin. Biochimie 2015; 118:234-43. [PMID: 26427556 DOI: 10.1016/j.biochi.2015.09.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
Nude mice carry a spontaneous mutation affecting the gene Foxn1 mainly expressed in the epidermis. This gene is involved in several skin functions, especially in the proliferation and the differentiation of keratinocytes which are key cells of epithelial barrier. The skin, a protective barrier for the body, is essentially composed of lipids. Taking into account these factors, we conducted a lipidomic study to search for any changes in lipid composition of skin possibly related to Foxn1 mutation. Lipids were extracted from skin biopsies of Nude and BALB/c mice to be analyzed by liquid chromatography coupled to a high resolution mass spectrometer (HRMS). Multivariate and univariate data analyses were carried out to compare lipid extracts. Identification was performed using HRMS data, retention time and mass spectrometry fragmentation study. These results indicate that mutation of Foxn1 leads to significant modifications in the lipidome in Nude mice skin. An increase in cholesterol sulfate, phospholipids, sphingolipids and fatty acids associated with a decrease in glycerolipids suggest that the lipidome in mice skin is regulated by the Foxn1 gene.
Collapse
Affiliation(s)
- Justine Lanzini
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Delphine Dargère
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Anne Regazzetti
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Abdellah Tebani
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France
| | - Olivier Laprévote
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France; AP-HP, Service de Toxicologie Biologique, Hôpital Lariboisière, 4 Rue Ambroise Paré, 75475 Paris Cedex 10, France
| | - Nicolas Auzeil
- UMR CNRS 8638, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de L'Observatoire, 75006 Paris, France.
| |
Collapse
|
6
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
7
|
The Effect of a Hydrocolloid Dressing Containing Ceramide-2 on Split-Thickness Wounds in a Laser-Induced Erosion Model. Adv Skin Wound Care 2013; 26:224-9. [DOI: 10.1097/01.asw.0000428952.00149.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chen XS, Wu YL, Chen DH. Synthesis of a New Cerebroside Isolated from Typhonium giganteum Engl. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20030210743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
|
10
|
Feng Y, Rainteau D, Chachaty C, Yu ZW, Wolf C, Quinn PJ. Characterization of a quasicrystalline phase in codispersions of phosphatidylethanolamine and glucocerebroside. Biophys J 2004; 86:2208-17. [PMID: 15041660 PMCID: PMC1304071 DOI: 10.1016/s0006-3495(04)74279-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Synchrotron x-ray diffraction, differential scanning calorimetry, and electron spin resonance spectroscopy have been employed to characterize a quasicrystalline phase formed in aqueous dispersions of binary mixtures of glucocerebroside and palmitoyloleoylphosphatidylethanolamine. Small- and wide-angle x-ray scattering intensity patterns were recorded during temperature scans between 20 degrees and 90 degrees C from mixtures of composition 2, 5, 10, 20, 30, and 40 mol glucocerebroside per 100 mol phospholipid. The quasicrystalline phase was characterized by a broad lamellar d-spacing of 6.06 nm at 40 degrees C and a broad wide-angle x-ray scattering band centered at approximately 0.438 nm, close to the gel phase centered at approximately 0.425 nm and distinct from a broad peak centered at 0.457 nm observed for a liquid-crystal phase at 80 degrees C. The quasicrystalline phase coexisted with gel and fluid phase of the pure phospholipid. An analysis of the small-angle x-ray scattering intensity profiles indicated a stoichiometry of one glucosphingolipid per two phospholipid molecules in the complex. Structural transitions monitored in cooling scans by synchrotron x-ray diffraction indicated that a cubic phase transforms initially into a lamellar gel. Thermal studies showed that the gel phase subsequently relaxes into the quasicrystalline phase in an exothermic transition. Electron spin resonance spectroscopy using spin labels located at positions 7, 12, and 16 carbons of phospholipid hydrocarbon chains indicated that order and motional constraints at the 7 and 12 positions were indistinguishable between gel and quasicrystalline phases but there was a significant decrease in order and increase in rate of motion at the 16 position on transformation to the quasicrystalline phase. The results are interpreted as an arrangement of polar groups of the complex in a crystalline array and a quasicrystalline packing of the hydrocarbon chains predicated by packing problems in the bilayer core requiring disordering of the highly asymmetric chains. The possible involvement of quasicrystalline phases in formation of membrane rafts is considered.
Collapse
Affiliation(s)
- Ying Feng
- Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
11
|
Trajkovic-Bodennec S, Bodennec J, Futerman AH. Phosphatidylcholine metabolism is altered in a monocyte-derived macrophage model of Gaucher disease but not in lymphocytes. Blood Cells Mol Dis 2004; 33:77-82. [PMID: 15223015 DOI: 10.1016/j.bcmd.2004.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 03/08/2004] [Indexed: 11/24/2022]
Abstract
Gaucher disease is caused by defective activity of acid-beta-glucosidase (GlcCerase), resulting in accumulation of glucosylceramide (GlcCer) mainly in macrophages. We now demonstrate that secondary biochemical pathways regulating levels of phospholipid metabolism are altered in a Gaucher disease macrophage model. Upon treatment of macrophages with the GlcCerase inhibitor, conduritol-B-epoxide, phosphatidylcholine (PC) labeling with the metabolic precursor, [methyl-14C]choline, was elevated after 6 or 12 days in macrophages but not in lymphocytes. These changes correlated with increases in the cytoplasmic/nuclear ratio and with levels of [3H]GlcCer accumulation. Moreover, metabolic labeling with L-[3-3H]serine and L-[methyl-3H]methionine demonstrated that PC synthesis via the methylation of phosphatidylethanolamine is also increased in CBE-treated macrophages. Since PC is a major structural component of biological membranes and the source of various second messengers, we suggest that changes in its metabolism in macrophages may be relevant for understanding Gaucher disease pathology.
Collapse
|
12
|
Feng Y, Yu ZW, Quinn PJ. Stable cubic phases in codispersions of glucocerebroside and palmitoyloleoylphosphatidylethanolamine. Chem Phys Lipids 2003; 126:141-8. [PMID: 14623449 DOI: 10.1016/s0009-3084(03)00099-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of glucocerebroside (GlcCer) on the structure and thermotropic phase behavior of aqueous dispersions of palmitoyloleoylphosphatidylethanolamine (POPE) has been examined using simultaneous small-angle and wide-angle X-ray diffraction methods. Binary mixtures of GlcCer:POPE in molar ratios of 2:100, 5:100, 10:100, 20:100, 30:100, and 40:100 were examined in the temperature range 20-90 degrees C. Cubic phase has been observed in binary mixtures comprised of molar ratios greater than 5:100 in the temperature range of 60-90 degrees C upon heating at a rate of 2 degrees C/min. The cubic phase is relatively stable and coexists with inverted hexagonal or lamellar phases. It persists in the codispersions throughout subsequent cooling scans to 30 degrees C. The space group of the cubic phase is determined to be Pn3m or Pn3. The lattice constant of the Pn3m cubic phase was found to be almost constant when it coexists with lamellar liquid-crystal phase. Marked temperature-dependent changes were observed when cubic phase coexists with hexagonal phase or lamellar-gel phases. This is the first report of cubic phases formed by codispersions of glycosphingolipids and phospholipids. The mechanism of cubic phase formation and the interaction between GlcCer and POPE is discussed in terms of the putative biological functions of glycolipids.
Collapse
Affiliation(s)
- Ying Feng
- Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
13
|
Menon GK. Caveolins in epidermal lamellar bodies: skin is an interactive interface, not an inflexible barrier. J Invest Dermatol 2003; 120:xv-xvi. [PMID: 12648244 DOI: 10.1046/j.1523-1747.2003.12117.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Bodennec J, Pelled D, Riebeling C, Trajkovic S, Futerman AH. Phosphatidylcholine synthesis is elevated in neuronal models of Gaucher disease due to direct activation of CTP:phosphocholine cytidylyltransferase by glucosylceramide. FASEB J 2002; 16:1814-6. [PMID: 12223447 DOI: 10.1096/fj.02-0149fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucosylceramide (GlcCer) accumulates in the inherited metabolic disorder, Gaucher disease, because of the defective activity of lysosomal glucocerebrosidase. We previously demonstrated that upon GlcCer accumulation, cultured hippocampal neurons exhibit modified growth patterns, altered endoplasmic reticulum density, and altered calcium release from intracellular stores. We here examined the relationship between GlcCer accumulation and phospholipid synthesis. After treatment of neurons with an active site-directed inhibitor of glucocerebrosidase, or in neurons obtained from a mouse model of Gaucher disease, [14C]methyl choline incorporation into [14C]phosphatidylcholine ([14C]PC) and [14C]sphingomyelin was elevated, as were [14C]CDP-choline levels, suggesting that CTP:phosphocholine cytidylyltransferase (CCT) is activated. Indeed, CCT activity was elevated in neurons that had accumulated GlcCer. GlcCer, but not galactosylceramide (GalCer), stimulated CCT activity in rat brain homogenates, and significantly higher levels of CCT were membrane associated in cortical homogenates from a mouse model of Gaucher disease compared with wild-type mice. Because CCT mRNA and protein levels were unaltered in either neurons or brain tissue that had accumulated GlcCer, it appeared likely that GlcCer activates CCT by a post-translational mechanism. This was verified by examination of the effect of GlcCer on CCT purified about 1200-fold from rat brain. GlcCer stimulated CCT activity, with stimulation observed at levels as low as 2.5 mol% and with maximal activation reached at 10 mol%. In contrast, GalCer had no effect. Together, these data demonstrate that GlcCer directly activates CCT, which results in elevated PC synthesis, which may account for some of the changes in growth rates observed upon neuronal GlcCer accumulation.
Collapse
Affiliation(s)
- Jacques Bodennec
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
15
|
Hara M, Ma T, Verkman AS. Selectively Reduced Glycerol in Skin of Aquaporin-3-deficient Mice May Account for Impaired Skin Hydration, Elasticity, and Barrier Recovery. J Biol Chem 2002; 277:46616-21. [PMID: 12270942 DOI: 10.1074/jbc.m209003200] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by approximately 2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel (3)H(2)O distribution method, SC water content was reduced by approximately 50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with approximately 50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an approximately 2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also approximately 2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na(+), K(+), Ca(2+), Mg(2+)) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/microg protein: 5.5 +/- 0.4 versus 2.3 +/- 0.7 in SC; 0.037 +/- 0.007 versus 0.022 +/- 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.
Collapse
Affiliation(s)
- Mariko Hara
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0521, USA
| | | | | |
Collapse
|
16
|
Claycombe KJ, Wu D, Nikolova-Karakashian M, Palmer H, Beharka A, Paulson KE, Meydani SN. Ceramide mediates age-associated increase in macrophage cyclooxygenase-2 expression. J Biol Chem 2002; 277:30784-91. [PMID: 12072440 DOI: 10.1074/jbc.m204463200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previously, we showed that macrophages (MØ) from old mice have significantly higher levels of lipopolysaccharide (LPS)-induced prostaglandin E(2) (PGE(2)) production than young mice, due to increased cyclooxygenase-2 (COX-2) mRNA levels. The aim of the current study was to determine the underlying mechanisms of age-associated increase in COX-2 gene expression. The results demonstrate that increased COX-2 mRNA expression in the old mice is due to a higher rate of transcription rather than increased stability of COX-2 mRNA. Furthermore, the results show that LPS-induced ceramide levels from the old mice are significantly higher than those of young mice, whereas there is no age-related difference in concentration of its down stream metabolite, sphingosine. The addition of ceramide in the presence or absence of LPS resulted in a significant increase in PGE(2) production in a dose- and time-dependent manner. Inhibition of ceramide conversion to sphingosine had no effect on this ceramide-induced effect. The ceramide-induced up-regulation in PGE(2) production was mediated through increase in COX activity and transcriptional up-regulation of COX-2 mRNA. Collectively, these data suggest that the age-associated increase in MØ COX-2 mRNA is due to transcriptional up-regulation. Furthermore, this increase in transcription is mediated by higher cellular ceramide concentration in old MØ compared with that of young MØ.
Collapse
Affiliation(s)
- Kate J Claycombe
- Nutritional Immunology Laboratory, Jean Mayer United States Department of Agriculture/Human Nutrition Research Center at Tufts University, 711 Washington Street, Boston, MA 02111
| | | | | | | | | | | | | |
Collapse
|
17
|
Uchida Y, Murata S, Schmuth M, Behne MJ, Lee JD, Ichikawa S, Elias PM, Hirabayashi Y, Holleran WM. Glucosylceramide synthesis and synthase expression protect against ceramide-induced stress. J Lipid Res 2002. [DOI: 10.1194/jlr.m100442-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Ye J, Garg A, Calhoun C, Feingold KR, Elias PM, Ghadially R. Alterations in cytokine regulation in aged epidermis: implications for permeability barrier homeostasis and inflammation. I. IL-1 gene family. Exp Dermatol 2002; 11:209-16. [PMID: 12102659 DOI: 10.1034/j.1600-0625.2002.110303.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute disruption of the cutaneous permeability barrier with either solvents or tape-stripping stimulates a homeostatic metabolic response in the subjacent nucleated layers of the epidermis that results in a rapid restoration of normal permeability barrier function. When the aged epidermal permeability barrier is stressed, it reveals a diminished capacity for recovery, in comparison to young epidermis, analogous to other organs in the aged when stressed. Although the signals that regulate this homeostatic response by the epidermis have not yet been resolved, acute permeability barrier disruption stimulates release of prestored IL-1alpha, and increased production of potentially regulatory cytokines, including IL-1alpha and TNFalpha in the epidermis. In these studies, we addressed the hypothesis that cytokine dysregulation explains the permeability barrier abnormality in aged epidermis, assessing the regulation of IL-1 and TNF signaling in aged vs young mice. To determine whether the IL-1 family of cytokines plays a key role in the permeability barrier abnormality of the aged, permeability barrier recovery rates were compared in transgenic mice lacking the functional IL-1 type 1 receptor vs wild-type mice at various ages. Knockout of the IL-1 type 1 receptor exacerbates the defect in permeability barrier homeostasis that is seen in age-matched, wild-type counterparts. Furthermore, the sluggish permeability barrier recovery in aged epidermis is associated with, and at least in part attributable to, altered expression of the IL-1 family of cytokines and receptors both under basal conditions and after acute barrier perturbations. Whereas modulations in cytokine expression with epidermal permeability barrier perturbation are qualitatively similar in aged epidermis, they greatly differ quantitatively. In contrast, examination of TNFalpha mRNA and protein basally, and following barrier perturbation revealed no alterations in aged epidermis. Together, these results show that selective alterations in the IL-1 family of cytokines occur with aging and that defects in IL-1 signaling may contribute to the epidermal permeability barrier abnormality of aged skin.
Collapse
Affiliation(s)
- J Ye
- Department of Dermatology, University of California at San Francisco, CA USA
| | | | | | | | | | | |
Collapse
|
19
|
Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med 2002; 18:103-20, vii. [PMID: 11913735 DOI: 10.1016/s0749-0690(03)00037-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aged epidermis develops an abnormality in permeability barrier homeostasis, which is accentuated further in photoaged skin. The biochemical basis is a global reduction in stratum corneum lipids and profound abnormality in cholesterol synthesis. Various cytokine/growth factor signaling pathways are abnormal in aged skin, particularly in the interleukin-1 family. Barrier repair therapy can be effective in restoring normal function if a cholesterol-dominant mixture of the three key physiologic lipids, including ceramides and free fatty acids, is emphasized.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California, San Francisco, USA.
| | | |
Collapse
|
20
|
Geilen CC, Barz S, Bektas M. Sphingolipid signaling in epidermal homeostasis. Current knowledge and new therapeutic approaches in dermatology. SKIN PHARMACOLOGY AND APPLIED SKIN PHYSIOLOGY 2001; 14:261-71. [PMID: 11586067 DOI: 10.1159/000056356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present review we have attempted to give an overview of the role of sphingolipids in skin homoeostasis. Sphingolipid metabolites are emerging as potent second messengers in diverse cellular signaling pathways. In the skin little is known about sphingolipids in signaling events. In various cell populations it has been shown that different sphingolipid metabolites have opposing effects on the biological outcome of a stimulus. Therefore, the term 'sphingolipid rheostat' has been established and has also been shown to exist in skin-derived cell populations. In many cells ceramide is a mediator of proliferation inhibition and apoptosis, whereas sphingosine-1-phosphate acts more like a growth factor and reverses ceramide effects. In keratinocytes extracellular and intracellular ceramides play important roles. Extracellular ceramides are necessary for the water retention capacity and for maintaining the permeability barrier of the skin. Intracellular ceramides cause differentiation of keratinocytes. Until now less is known about the effect of other sphingolipid metabolites in the skin.
Collapse
Affiliation(s)
- C C Geilen
- Department of Dermatology, University Medical Center Benjamin Franklin, The Free University of Berlin, Berlin-Dahlem, Germany.
| | | | | |
Collapse
|
21
|
Toledo MS, Suzuki E, Levery SB, Straus AH, Takahashi HK. Characterization of monoclonal antibody MEST-2 specific to glucosylceramide of fungi and plants. Glycobiology 2001; 11:105-12. [PMID: 11287397 DOI: 10.1093/glycob/11.2.105] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An IgG2a monoclonal antibody anti-glucosylceramide was established and termed MEST-2. High performance thin layer chromatography immunostaining, and solid-phase radioimmunoassay showed that MEST-2 reacts with glucosylceramide from yeast and mycelium forms of Paracoccidioides brasiliensis, Histoplasma capsulatum, and Sporothrix schenckii; from hyphae of Aspergillus fumigatus; and from yeast forms of Candida albicans, Cryptococcus neoformans, Cryptococcus laurentii, and Cryptococcus albidus. Studies on the fine specificity of MEST-2 showed that it recognizes the beta-D-glucose residue, and that the 2-hydroxy group present in the fatty acid is an important auxiliary feature for the antibody binding. It was also demonstrated that phosphatidylcholine and ergosterol modulate MEST-2 reactivity to glucosylceramide, by solid-phase radioimmunoassay. Indirect immunofluorescence showed that MEST-2 reacts with the surface of yeast forms of P. brasiliensis, H. capsulatum and S. schenckii. Weak staining of mycelial forms of P. brasiliensis and hyphae of A. fumigatus was also observed. The availability of a monoclonal antibody specific to fungal glucosylceramide, and its potential use in analyzing biological roles attributed to glucosylceramide in fungi are discussed.
Collapse
Affiliation(s)
- M S Toledo
- Department of Biochemistry, Universidade Federal de São Paulo/Escola Paulista de Medicina, Rua Botucatu 862, São Paulo, SP, 04023-900, Brazil
| | | | | | | | | |
Collapse
|
22
|
Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K. Physiology and pathophysiology of sphingolipid metabolism and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1485:63-99. [PMID: 10832090 DOI: 10.1016/s1388-1981(00)00042-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- A Huwiler
- Zentrum der Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
| | | | | | | |
Collapse
|
23
|
The interrelation between the biological functions of sphingolipids and their chemical structure. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02758855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|