1
|
Holtkamp HU, Aguergaray C, Prangnell K, Pook C, Amirapu S, Grey A, Simpson C, Nieuwoudt M, Jarrett P. Raman spectroscopy and mass spectrometry identifies a unique group of epidermal lipids in active discoid lupus erythematosus. Sci Rep 2023; 13:16452. [PMID: 37777584 PMCID: PMC10542761 DOI: 10.1038/s41598-023-43331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Discoid lupus erythematosus (DLE) is the most common form of cutaneous lupus1. It can cause permanent scarring. The pathophysiology of is not fully understood. Plasmacytoid dendritic cells are found in close association with apoptotic keratinocytes inferring close cellular signalling. Matrix Associated Laser Desorption Ionisation (MALDI) combined with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) is an exquisitely sensitive combination to examine disease processes at the cellular and molecular level. Active areas of discoid lupus erythematosus were compared with normal perilesional skin using MALDI combined with FT-ICR-MS. A unique set of biomarkers, including epidermal lipids is identified in active discoid lupus. These were assigned as sphingomyelins, phospholipids and ceramides. Additionally, increased levels of proteins from the keratin, and small proline rich family, and aromatic amino acids (tryptophan, phenylalanine, and tyrosine) in the epidermis are observed. These techniques, applied to punch biopsies of the skin, have shown a distinctive lipid profile of active discoid lupus. This profile may indicate specific lipid signalling pathways. Lipid rich microdomains (known as lipid rafts) are involved in cell signalling and lipid abnormalities have been described with systemic lupus erythematosus which correlate with disease activity.
Collapse
Affiliation(s)
- Hannah U Holtkamp
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
| | - Claude Aguergaray
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Kalita Prangnell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher Pook
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Satya Amirapu
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Angus Grey
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Cather Simpson
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Michel Nieuwoudt
- The Photon Factory, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The Dodd Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Paul Jarrett
- Department of Dermatology, Middlemore Hospital, Auckland, New Zealand.
- Department of Medicine, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Zhou Q, Tao X, Guo F, Wu Y, Deng D, Lv L, Dong D, Shang D, Xiang H. Tryptophan metabolite norharman secreted by cultivated Lactobacillus attenuates acute pancreatitis as an antagonist of histone deacetylases. BMC Med 2023; 21:329. [PMID: 37635214 PMCID: PMC10463520 DOI: 10.1186/s12916-023-02997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Patients with acute pancreatitis (AP) exhibit specific phenotypes of gut microbiota associated with severity. Gut microbiota and host interact primarily through metabolites; regrettably, little is known about their roles in AP biological networks. This study examines how enterobacterial metabolites modulate the innate immune system in AP aggravation. METHODS In AP, alterations in gut microbiota were detected via microbiomics, and the Lactobacillus metabolites of tryptophan were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). By culturing Lactobacillus with tryptophan, differential metabolites were detected by LC-MS/MS. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells and mice with cerulein plus LPS-induced AP were used to evaluate the biological effect of norharman on M1 macrophages activation in AP development. Further, RNA sequencing and lipid metabolomics were used for screening the therapeutic targets and pathways of norharman. Confocal microscopy assay was used to detect the structure of lipid rafts. Molecular docking was applied to predict the interaction between norharman and HDACs. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were used to explore the direct mechanism of norharman promoting Rftn1 expression. In addition, myeloid-specific Rftn1 knockout mice were used to verify the role of Rftn1 and the reversed effect of norharman. RESULTS AP induced the dysfunction of gut microbiota and their metabolites, resulting in the suppression of Lactobacillus-mediated tryptophan metabolism pathway. The Lactobacillus metabolites of tryptophan, norharman, inhibited the release of inflammatory factor in vitro and in vivo, as a result of its optimal inhibitory action on M1 macrophages. Moreover, norharman blocked multiple inflammatory responses in AP exacerbation due to its ability to maintain the integrity of lipid rafts and restore the dysfunction of lipid metabolism. The mechanism of norharman's activity involved inhibiting the enzyme activity of histone deacetylase (HDACs) to increase histone H3 at lysine 9/14 (H3K9/14) acetylation, which increased the transcription level of Rftn1 (Raftlin 1) to inhibit M1 macrophages' activation. CONCLUSIONS The enterobacterial metabolite norharman can decrease HDACs activity to increase H3K9/14 acetylation of Rftn1, which inhibits M1 macrophage activation and restores the balance of lipid metabolism to relieve multiple inflammatory responses. Therefore, norharman may be a promising prodrug to block AP aggravation.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dawei Deng
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, China.
| |
Collapse
|
3
|
Hammoud MK, Dietze R, Pesek J, Finkernagel F, Unger A, Bieringer T, Nist A, Stiewe T, Bhagwat AM, Nockher WA, Reinartz S, Müller-Brüsselbach S, Graumann J, Müller R. Arachidonic acid, a clinically adverse mediator in the ovarian cancer microenvironment, impairs JAK-STAT signaling in macrophages by perturbing lipid raft structures. Mol Oncol 2022; 16:3146-3166. [PMID: 35451191 PMCID: PMC9441005 DOI: 10.1002/1878-0261.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/29/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Survival of ovarian carcinoma is associated with the abundance of immunosuppressed CD163highCD206high tumor‐associated macrophages (TAMs) and high levels of arachidonic acid (AA) in the tumor microenvironment. Here, we show that both associations are functionally linked. Transcriptional profiling revealed that high CD163 and CD206/MRC1 expression in TAMs is strongly associated with an inhibition of cytokine‐triggered signaling, mirrored by an impaired transcriptional response to interferons and IL‐6 in monocyte‐derived macrophages by AA. This inhibition of pro‐inflammatory signaling is caused by dysfunctions of the cognate receptors, indicated by the inhibition of JAK1, JAK2, STAT1, and STAT3 phosphorylation, and by the displacement of the interferon receptor IFNAR1, STAT1 and other immune‐regulatory proteins from lipid rafts. AA exposure led to a dramatic accumulation of free AA in lipid rafts, which appears to be mechanistically crucial, as the inhibition of its incorporation into phospholipids did not affect the AA‐mediated interference with STAT1 phosphorylation. Inhibition of interferon‐triggered STAT1 phosphorylation by AA was reversed by water‐soluble cholesterol, known to prevent the perturbation of lipid raft structure by AA. These findings suggest that the pharmacologic restoration of lipid raft functions in TAMs may contribute to the development new therapeutic approaches.
Collapse
Affiliation(s)
- Mohamad K Hammoud
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Raimund Dietze
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Tim Bieringer
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.,Hochschule Landshut, 84036, Landshut, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Aditya M Bhagwat
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - W Andreas Nockher
- Medical Mass Spectrometry Core Facility, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | | | - Johannes Graumann
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Institute for Translational Proteomics, Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
4
|
Lopes PH, van den Berg CW, Tambourgi DV. Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front Pharmacol 2020; 11:636. [PMID: 32477123 PMCID: PMC7237637 DOI: 10.3389/fphar.2020.00636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.
Collapse
Affiliation(s)
| | - Carmen W. van den Berg
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
5
|
Cheng CL, Chao WT, Li YH, Ou YC, Wang SS, Chiu KY, Yuan SY. Escin induces apoptosis in human bladder cancer cells: An in vitro and in vivo study. Eur J Pharmacol 2018; 840:79-88. [PMID: 30287153 DOI: 10.1016/j.ejphar.2018.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Escin (β-escin) is used as traditional folk medicine. The anti-tumour effects of escin have been demonstrated in vitro in certain cell lines, but its effect on bladder cancer has not been well investigated. In this study, the apoptotic activity of escin dissolved in dimethyl sulfoxide (DMSO) in bladder cancer cells and normal peripheral blood mononuclear cells (PBMC) and SV-HUC1 cells (controls) was determined. Cell cytotoxicity was assessed using the MTT assay. Cell cycle, Reactive oxygen species (ROS) generation, annexin V-FITC staining (for detecting early apoptosis), and changes in mitochondrial membrane potential were evaluated using flow cytometry. Expression of apoptosis-related proteins such as Fas (CD95) death receptor/FADD (Fas-associated protein with death domain) and BCL2 family of proteins was assessed using immunoblotting. Escin dose-dependently inhibited the growth of human bladder cancer cells, and showed IC50 of ~40 μM. The cell population in the sub-G1 phase, annexin-V staining, Fas expression, ratio of BAX/BCL2, cleavage of activated caspase-3/-8/-9, increase in poly (ADP-ribose) polymerase (PARP) levels, and suppression of nuclear factor kappa B (NF-κB) were observed after 24 h of escin treatment. Escin decreased mitochondrial membrane potential and increased cytochrome C release via generation of reactive oxygen species, which led to apoptosis of bladder cancer cells. Furthermore, escin effectively inhibited bladder tumour growth in a xenograft mouse model. Together, these results demonstrate that escin induces apoptosis in human bladder cancer cells through the Fas death receptor and mitochondrial pathways and inhibits bladder tumour growth. Escin is a potential chemotherapeutic agent for bladder cancer.
Collapse
Affiliation(s)
- Chen-Li Cheng
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Yu-Hsuan Li
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung 43503, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou 54561, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou 54561, Taiwan
| | - Sheau-Yun Yuan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705,Taiwan; Department of Nursing, Hung Kuang University, Taichung 43302, Taiwan.
| |
Collapse
|
6
|
Bi C, Tham DKL, Perronnet C, Joshi B, Nabi IR, Moukhles H. The Oxidative Stress-Induced Increase in the Membrane Expression of the Water-Permeable Channel Aquaporin-4 in Astrocytes Is Regulated by Caveolin-1 Phosphorylation. Front Cell Neurosci 2017; 11:412. [PMID: 29326556 PMCID: PMC5742350 DOI: 10.3389/fncel.2017.00412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/08/2017] [Indexed: 01/14/2023] Open
Abstract
The reperfusion of ischemic brain tissue following a cerebral stroke causes oxidative stress, and leads to the generation of reactive oxygen species (ROS). Apart from inflicting oxidative damage, the latter may also trigger the upregulation of aquaporin 4 (AQP4), a water-permeable channel expressed by astroglial cells of the blood-brain barrier (BBB), and contribute to edema formation, the severity of which is known to be the primary determinant of mortality and morbidity. The mechanism through which this occurs remains unknown. In the present study, we have attempted to address this question using primary astrocyte cultures treated with hydrogen peroxide (H2O2) as a model system. First, we showed that H2O2 induces a significant increase in AQP4 protein levels and that this is inhibited by the antioxidant N-acetylcysteine (NAC). Second, we demonstrated using cell surface biotinylation that H2O2 increases AQP4 cell-surface expression independently of it's increased synthesis. In parallel, we found that caveolin-1 (Cav1) is phosphorylated in response to H2O2 and that this is reversed by the Src kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). PP2 also abrogated the H2O2-induced increase in AQP4 surface levels, suggesting that the phosphorylation of tyrosine-14 of Cav1 regulates this process. We further showed that dominant-negative Y14F and phosphomimetic Y14D mutants caused a decrease and increase in AQP4 membrane expression respectively, and that the knockdown of Cav1 inhibits the increase in AQP4 cell-surface, expression following H2O2 treatment. Together, these findings suggest that oxidative stress-induced Cav1 phosphorylation modulates AQP4 subcellular distribution and therefore may indirectly regulate AQP4-mediated water transport.
Collapse
Affiliation(s)
- Chongshan Bi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel K L Tham
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Perronnet
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bharat Joshi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ivan R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hakima Moukhles
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Caveolin-1: An Oxidative Stress-Related Target for Cancer Prevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7454031. [PMID: 28546853 PMCID: PMC5436035 DOI: 10.1155/2017/7454031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 01/19/2023]
Abstract
Aberrant oxidative metabolism is one of the hallmarks of cancer. Reactive species overproduction could promote carcinogenesis via inducing genetic mutations and activating oncogenic pathways, and thus, antioxidant therapy was considered as an important strategy for cancer prevention and treatment. Caveolin-1 (Cav-1), a constituent protein of caveolae, has been shown to mediate tumorigenesis and progression through oxidative stress modulation recently. Reactive species could modulate the expression, degradation, posttranslational modifications, and membrane trafficking of Cav-1, while Cav-1-targeted treatments could scavenge the reactive species. More importantly, emerging evidences have indicated that multiple antioxidants could exert antitumor activities in cancer cells and protective activities in normal cells by modulating the Cav-1 pathway. Altogether, these findings indicate that Cav-1 may be a promising oxidative stress-related target for cancer antioxidant prevention. Elucidating the underlying interaction mechanisms between oxidative stress and Cav-1 is helpful for enhancing the preventive effects of antioxidants on cancer, for improving clinical outcomes of antioxidant-related therapeutics in cancer patients, and for developing Cav-1 targeted drugs. Herein, we summarize the available evidence of the roles of Cav-1 and oxidative stress in tumorigenesis and development and shed novel light on designing strategies for cancer prevention or treatment by utilizing the interaction mode between Cav-1 and oxidative stress.
Collapse
|
8
|
Vij M, Natarajan P, Yadav AK, Patil KM, Pandey T, Gupta N, Santhiya D, Kumar VA, Fernandes M, Ganguli M. Efficient Cellular Entry of (r-x-r)-Type Carbamate–Plasmid DNA Complexes and Its Implication for Noninvasive Topical DNA Delivery to Skin. Mol Pharm 2016; 13:1779-90. [DOI: 10.1021/acs.molpharmaceut.5b00915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Manika Vij
- Department
of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South
Campus, Mathura Road, New Delhi, India 110020
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India 110001
| | - Poornemaa Natarajan
- Department
of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South
Campus, Mathura Road, New Delhi, India 110020
| | - Amit K. Yadav
- CSIR-National Chemical Laboratory, Pune, Maharashtra, India 411008
| | - Kiran M. Patil
- CSIR-National Chemical Laboratory, Pune, Maharashtra, India 411008
| | - Tanuja Pandey
- Department
of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South
Campus, Mathura Road, New Delhi, India 110020
| | - Nidhi Gupta
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, India 110042
| | - Deenan Santhiya
- Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, New Delhi, India 110042
| | | | | | - Munia Ganguli
- Department
of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South
Campus, Mathura Road, New Delhi, India 110020
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India 110001
| |
Collapse
|
9
|
Insights into the impact of silver nanoparticles on human keratinocytes metabolism through NMR metabolomics. Arch Biochem Biophys 2016; 589:53-61. [DOI: 10.1016/j.abb.2015.08.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 01/19/2023]
|
10
|
Abstract
Photosensitization, subsequent to photon absorption by chromophores present in the human skin, appears to be a key mechanism of UV-induced oxidative stress. The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ), an aryl hydrocarbon receptor ligand, has been found to be a potent UVA photosensitizer, effective at nanomolar concentrations. A novel addition to the family of endogenous photosensitizers, the precise mechanism(s) through which it mediates oxidative stress in UVA exposed skin and its response to the UVB spectrum of the solar UV flux remains unexplored. Further studies related to its functionality in the human skin, its utility as a tool against UV-induced adverse effects, and its role in inflammatory skin diseases will have the potential to open up new avenues in the realms of human skin photobiology.
Collapse
|
11
|
Hasan I, Watanabe M, Ishizaki N, Sugita-Konishi Y, Kawakami Y, Suzuki J, Dogasaki C, Rajia S, Kawsar SMA, Koide Y, Kanaly RA, Sugawara S, Hosono M, Ogawa Y, Fujii Y, Iriko H, Hamako J, Matsui T, Ozeki Y. A galactose-binding lectin isolated from Aplysia kurodai (sea hare) eggs inhibits streptolysin-induced hemolysis. Molecules 2014; 19:13990-4003. [PMID: 25197935 PMCID: PMC6271371 DOI: 10.3390/molecules190913990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 01/01/2023] Open
Abstract
A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan. Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi-6205, Bangladesh.
| | - Miharu Watanabe
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Naoto Ishizaki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yoshiko Sugita-Konishi
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Yasushi Kawakami
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Jun Suzuki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Chikaku Dogasaki
- School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| | - Sultana Rajia
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Sarkar M A Kawsar
- Department of Chemistry, Faculty of Sciences, University of Chittagong, Chittagong-4331, Bangladesh.
| | - Yasuhiro Koide
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Robert A Kanaly
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Shigeki Sugawara
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Masahiro Hosono
- Division of Cell Recognition Study, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Yukiko Ogawa
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Hideyuki Iriko
- Department of Parasitology, Graduate School of Health Sciences, Kobe University, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan.
| | - Jiharu Hamako
- Department of Biology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Taei Matsui
- Department of Biology, School of Health Sciences, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | - Yasuhiro Ozeki
- Laboratories of Glycobiology & Marine Biochemistry and Molecular Toxicology, Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
12
|
Sialyl-glycoconjugates in cholesterol-rich microdomains of P388 cells are the triggers for apoptosis induced by Rana catesbeiana oocyte ribonuclease. Glycoconj J 2013; 31:171-84. [PMID: 24271942 DOI: 10.1007/s10719-013-9513-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
SBL/RC-RNase was originally isolated from frog (Rana catesbeiana) oocytes and purified as a novel sialic acid-binding lectin (SBL) that displayed strong anti-cancer activity. SBL was later shown to be identical to a ribonuclease (RC-RNase) from oocytes of the same species. The administration of SBL/RC-RNase induced apoptosis (with nuclear condensation and DNA fragmentation) in mouse leukemia P388 cells but did not kill umbilical vein endothelial or fibroblast cells derived from normal tissues. The cytotoxic activity of SBL/RC-RNase was inhibited by desialylation of P388 cells and/or the co-presence of free bovine submaxillary mucin. FACS analysis showed that SBL/RC-RNase was incorporated into cells after attachment to cholesterol-rich microdomains. Addition of the cholesterol remover methyl-β-cyclodextrin reduced SBL/RC-RNase-induced apoptosis. Apoptosis occurred through the caspase-3 pathway following activation of caspase-8 by SBL/RC-RNase. A heat shock cognate protein (Hsc70) and a heat shock protein (Hsp70) (each 70 kDa) on the cell membrane were shown to bind to SBL/RC-RNase by mass spectrometric and flow cytometric analyses. Quercetin, an inhibitor of Hsc70 and Hsp70, significantly reduced SBL/RC-RNase-induced apoptosis. Taken together, our findings suggest that sialyl-glycoconjugates present in cholesterol-rich microdomains form complexes with Hsc70 or Hsp70 that act as triggers for SBL/RC-RNase to induce apoptosis through a pathway involving the activation of caspase-3 and caspase-8.
Collapse
|
13
|
Kleszczyński K, Tukaj S, Kruse N, Zillikens D, Fischer TW. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. J Pineal Res 2013; 54:89-99. [PMID: 22856627 DOI: 10.1111/j.1600-079x.2012.01028.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/22/2012] [Indexed: 12/13/2022]
Abstract
Melatonin exhibits protective effects against ultraviolet radiation (UVR) via modulation of proinflammatory mediators and its free radical scavenging capacity. To date, several reports presented protective mechanisms of this agent against UVR-induced alterations in mitochondria and nuclei. This investigation evaluates the potent preventing action of melatonin regarding early-stage UVR-mediated perturbations in plasma membrane potential (mbΔψ) and intracellular (cytosolic) pH (pH i) analyzed by flow cytometry. Experiments were carried out in a dose- and time-dependent manner using human keratinocytes [HaCaT and normal human epidermal keratinocytes (NHEK)]. First investigations, which used viability/cytotoxicity assays, showed the gradual mortality with increasing UVR doses and cultivation time. Pre-incubation with melatonin (10(-3) m) prior to UVR exposure reduced lactate dehydrogenase release by 30% (HaCaT) and 28% (NHEK) at the dose of 50 mJ/cm(2) after 48 hr (P < 0.001). Furthermore, UVR caused hyperpolarization of mbΔψ immediately (0 hr) after irradiation (25 or 50 mJ/cm(2)). At the dose of 50 mJ/cm(2), cells cultivated for 48 hr manifested a marked increase in mbΔψ by 112% (HaCaT) and 123% (NHEK). The presence of melatonin significantly protected the cells by 12% (HaCaT) and 14% (NHEK) (P < 0.001). Simultaneously, 50 mJ/cm(2) induced dramatic acidification reaching after 24 hr the level of 6.40 (without melatonin), 6.56 (with melatonin) for HaCaT and 6.11 (without melatonin), 6.43 (with melatonin) for NHEK. The results presented provide information about the protective mechanisms of melatonin itself on one hand and, combined with data reported so far, confirm the potent antiapoptotic action of melatonin.
Collapse
|
14
|
Nechifor MT, Niculiţe CM, Urs AO, Regalia T, Mocanu M, Popescu A, Manda G, Dinu D, Leabu M. UVA irradiation of dysplastic keratinocytes: oxidative damage versus antioxidant defense. Int J Mol Sci 2012; 13:16718-36. [PMID: 23222638 PMCID: PMC3546716 DOI: 10.3390/ijms131216718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/13/2012] [Accepted: 11/29/2012] [Indexed: 01/24/2023] Open
Abstract
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate.
Collapse
Affiliation(s)
- Marina T. Nechifor
- Faculty of Biology, University of Bucharest, Bucharest 050095, Romania; E-Mails: (M.T.N.); (D.D.)
| | - Cristina M. Niculiţe
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Andreea O. Urs
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Teodor Regalia
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
- “Carol Davila” University of Medicine and Pharmacy, Bucharest 050096, Romania
| | - Mihaela Mocanu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Alexandra Popescu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Gina Manda
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
| | - Diana Dinu
- Faculty of Biology, University of Bucharest, Bucharest 050095, Romania; E-Mails: (M.T.N.); (D.D.)
| | - Mircea Leabu
- “Victor Babes” National Institute of Pathology, Bucharest 050096, Romania; E-Mails: (C.M.N.); (A.O.U.); (T.R.); (M.M.); (A.P.); (G.M.)
- “Carol Davila” University of Medicine and Pharmacy, Bucharest 050096, Romania
| |
Collapse
|
15
|
Aliche-Djoudi F, Podechard N, Chevanne M, Nourissat P, Catheline D, Legrand P, Dimanche-Boitrel MT, Lagadic-Gossmann D, Sergent O. Physical and chemical modulation of lipid rafts by a dietary n-3 polyunsaturated fatty acid increases ethanol-induced oxidative stress. Free Radic Biol Med 2011; 51:2018-30. [PMID: 21945097 DOI: 10.1016/j.freeradbiomed.2011.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/28/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to modulate lipid raft-dependent signaling, but not yet lipid raft-dependent oxidative stress. Previously, we have shown that ethanol-induced membrane remodeling, i.e., an increase in membrane fluidity and alterations in physical and biochemical properties of lipid rafts, participated in the development of oxidative stress. Thus, we decided to study n-3 PUFA effects in this context, by pretreating hepatocytes with eicosapentaenoic acid (EPA), a long-chain n-3 PUFA, before addition of ethanol. EPA was found to increase ethanol-induced oxidative stress through membrane remodeling. Addition of EPA resulted in a marked increase in lipid raft aggregation compared to ethanol alone. In addition, membrane fluidity of lipid rafts was markedly enhanced. Interestingly, EPA was found to preferentially incorporate into nonraft membrane regions, leading to raft cholesterol increase. Lipid raft aggregation by EPA enhanced phospholipase Cγ translocation into these microdomains. Finally, phospholipase Cγ was shown to participate in the potentiation of oxidative stress by promoting lysosome accumulation, a major source of low-molecular-weight iron. To conclude, the ability of EPA to modify lipid raft physical and chemical properties plays a key role in the enhancement, by this dietary n-3 PUFA, of ethanol-induced oxidative stress.
Collapse
Affiliation(s)
- Fatiha Aliche-Djoudi
- EA 4427 SeRAIC/IRSET, IFR 140, UFR des Sciences Pharmaceutiques et Biologiques, Université de Rennes 1, Rennes Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
CD47-dependent molecular mechanisms of blood outgrowth endothelial cell attachment on cholesterol-modified polyurethane. Biomaterials 2010; 31:6394-9. [PMID: 20538335 DOI: 10.1016/j.biomaterials.2010.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 05/07/2010] [Indexed: 11/23/2022]
Abstract
We previously showed that blood outgrowth endothelial cells (BOECs) had a high affinity for polyurethane (PU) covalently configured with cholesterol residues (PU-Chol). However, the molecular mechanisms responsible for this enhanced affinity were not determined. CD47, a multifunctional transmembrane glycoprotein involved in cellular attachment, can form a cholesterol-dependent complex with integrin alpha(v)beta(3) and heterotrimeric G proteins. We tested herein the hypothesis that CD47, and the other components of the multi-molecular complex, enhance the attachment of BOECs to PU-Chol. Immunoprecipitation studies, of human and ovine BOECs, demonstrated that CD47 associates with integrin alpha(v) and integrin beta(3) as well as G(alphai-2) protein. The three-fold increase in BOEC attachment to PU-Chol, compared to unmodified PU, was reversed with the addition of blocking antibodies specific for CD47 and integrin alpha(v) and integrin beta(3). Similar results were observed with the addition of methyl-beta-cyclodextrin (MbetaCD), a known disruptor of the CD47 complex as well as of the membrane cholesterol content, to seeded BOEC or PU-Chol films. Reducing CD47 expression, via lentivirus transduced shRNA, decreased BOEC binding to PU-Chol by 50% compared to control groups. These data are the first demonstration of a role for the CD47 cholesterol-dependent signaling complex in BOEC attachment onto synthetic surfaces.
Collapse
|
17
|
|
18
|
Spörl F, Wunderskirchner M, Ullrich O, Bömke G, Breitenbach U, Blatt T, Wenck H, Wittern KP, Schrader A. Real-time monitoring of membrane cholesterol reveals new insights into epidermal differentiation. J Invest Dermatol 2009; 130:1268-78. [PMID: 20043016 DOI: 10.1038/jid.2009.412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cholesterol is organized in distinctive liquid-ordered micro-domains within biological membranes called lipid rafts. These micro-domains direct multiple physiological functions in mammalian cells by modulating signaling processes. Recent findings suggest a role for lipid rafts in cellular processes in human keratinocytes such as early differentiation and apoptosis. However, research of lipid rafts is hindered by technological limitations in visualizing dynamic cholesterol organization in plasma membranes. This study addresses a real-time, non-invasive method for the long-term observation of cholesterol reorganization in plasma membranes. In addition, this study also addresses the dynamic process of cholesterol depletion and repletion in primary human keratinocytes. Cholesterol reorganization was measured by observed changes in cellular impedance. Disruption of lipid rafts with low concentrations of methyl-beta-cyclodextrin (MbetaCD) resulted in an increase in the proliferative capacity of keratinocytes, which was assessed using real-time proliferation curves and adenosine triphosphate (ATP)-based proliferation assays. Quantitative PCR showed a concomitant decrease in messenger RNA (mRNA) expression of the early differentiation markers keratins 1 and 10. Conversely, specific cholesterol reintegration led to a 4.5-fold increase in keratin 2 mRNA expression, a marker for late keratinocyte differentiation, whereas depletion resulted in a significant downregulation. These findings imply a strictly controlled mechanism for the regulation of membrane cholesterol composition in both early and terminal keratinocyte differentiation. The impedance-based method that this study addresses further enhances our understanding of how physiological processes in keratinocytes are controlled by membrane cholesterol.
Collapse
Affiliation(s)
- Florian Spörl
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dutot M, Liang H, Martin C, Rousseau D, Grynberg A, Warnet JM, Rat P. Per os administered refined olive oil and marine PUFA-rich oils reach the cornea: possible role on oxidative stress through caveolin-1 modulation. Nutr Metab (Lond) 2009; 6:48. [PMID: 19930652 PMCID: PMC2785814 DOI: 10.1186/1743-7075-6-48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 11/23/2009] [Indexed: 01/03/2023] Open
Abstract
Background Olive oil and fish oils are known to possess beneficial properties for human health. We investigated whether different oils and fatty acids alone were able to decrease oxidative stress induced on corneal cells. Methods In our in vivo study, rats were fed with marine oils rich in polyunsaturated fatty acids (PUFA) or refined olive oil during 28 days. At the end of the protocol, corneas were analysed for their fatty acids composition to study the incorporation of fatty acids in cell membranes. In our in vitro study, a human corneal cell line was incubated with marine oils or refined olive oil and subjected to oxidative stress (tBHP 50 μM, 1 hour). Effects on reactive oxygen species generation, mitochondria and caveolin-1 expression were studied using microcytofluorometry, flow cytometry and confocal microscopy. Results Our results indicate that dietary oils changed the fatty acids composition of corneal cell membranes. According to our results, PUFA-rich oils and refined olive oil (free of antioxidants) blocked reactive oxygen species production. Oleic acid, the major fatty acid of olive oil, also decreased oxidative stress. Moreover, oleic acid modified caveolin-1 expression. Antioxidant properties of oleic acid could be due to disruption of membrane microdomains such as caveolae. Conclusion Oleic acid, a potential potent modulator of oxidative stress, could be added to PUFA-rich oils to prevent oxidative stress-linked corneal pathology.
Collapse
Affiliation(s)
- Mélody Dutot
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | - Chantal Martin
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Delphine Rousseau
- Lipides Membranaires et Fonctions Cardiovasculaires, Institut National de la Recherche Agronomique-UR1154, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | - Alain Grynberg
- Lipides Membranaires et Fonctions Cardiovasculaires, Institut National de la Recherche Agronomique-UR1154, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France
| | - Jean-Michel Warnet
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Patrice Rat
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| |
Collapse
|
20
|
Kontogiorgis CA, Xu Y, Hadjipavlou-Litina D, Luo Y. Coumarin derivatives protection against ROS production in cellular models of Aβtoxicities. Free Radic Res 2009; 41:1168-80. [PMID: 17886039 DOI: 10.1080/10715760701447884] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of oxidative stress and free radicals in the development of Alzheimer's disease (AD) has been the focus of many recent studies. The role of hydrogen peroxide (H(2)O(2)) in AD is thought to be associated with Abeta (amyloid - beta) damage in cells. A number of coumarin derivatives were previously found to be potent anti-inflammatory and antioxidant agents. Herein, these coumarin derivatives were tested as H(2)O(2) scavengers with the DCF assay using two types of neuronal cells: (a) wild type (N2a) neuroblastoma cells and (b) APP/PS1 transgenic cell line expressing Abeta. Their scavenging activity was varied between the types of cell cultures and it was found to be concentration and time dependent in the mutant cells. Their protective role against cell death further supports this notion. These results suggest that these compounds could be used as a template in the design of new molecules with a possible role in AD.
Collapse
Affiliation(s)
- Christos A Kontogiorgis
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
21
|
Briganti S, Wlaschek M, Hinrichs C, Bellei B, Flori E, Treiber N, Iben S, Picardo M, Scharffetter-Kochanek K. Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging. Free Radic Biol Med 2008; 45:636-44. [PMID: 18538675 DOI: 10.1016/j.freeradbiomed.2008.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 05/08/2008] [Accepted: 05/12/2008] [Indexed: 11/26/2022]
Abstract
Exposure of human fibroblasts to 8-methoxypsoralen plus ultraviolet-A irradiation (PUVA) results in stress-induced cellular senescence in fibroblasts. We here studied the role of the antioxidant defense system in the accumulation of reactive oxygen species (ROS) and the effect of the antioxidants alpha-tocopherol, N-acetylcysteine, and alpha-lipoic acid on PUVA-induced cellular senescence. PUVA treatment induced an immediate and increasing generation of intracellular ROS. Supplementation of PUVA-treated fibroblasts with alpha-tocopherol (alpha-Toc), N-acetylcysteine (NAC), or alpha-lipoic acid (alpha-LA) abrogated the increased ROS generation and rescued fibroblasts from the ROS-dependent changes into the cellular senescence phenotype, such as cytoplasmic enlargement, enhanced expression of senescence-associated-beta-galactosidase and matrix-metalloproteinase-1, hallmarks of photoaging and intrinsic aging. PUVA treatment disrupted the integrity of cellular membranes and impaired homeostasis and function of the cellular antioxidant system with a significant decrease in glutathione and hydrogen peroxide-detoxifying enzymes activities. Supplementation with NAC, alpha-LA, and alpha-Toc counteracted these changes. Our data provide causal evidence that (i) oxidative stress due to an imbalance in the overall cellular antioxidant capacity contributes to the induction and maintenance of the PUVA-induced fibroblast senescence and that (ii) low molecular antioxidants protect effectively against these deleterious alterations.
Collapse
Affiliation(s)
- Stefania Briganti
- Cutaneous Physiopathology Laboratory, San Gallicano Dermatology Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ceramide and raft signaling are linked with each other in UVA radiation-induced gene expression. Oncogene 2008; 27:4768-78. [DOI: 10.1038/onc.2008.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Nourissat P, Travert M, Chevanne M, Tekpli X, Rebillard A, Le Moigne-Müller G, Rissel M, Cillard J, Dimanche-Boitrel MT, Lagadic-Gossmann D, Sergent O. Ethanol induces oxidative stress in primary rat hepatocytes through the early involvement of lipid raft clustering. Hepatology 2008; 47:59-70. [PMID: 18038449 DOI: 10.1002/hep.21958] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED The role of the hepatocyte plasma membrane structure in the development of oxidative stress during alcoholic liver diseases is not yet fully understood. Previously, we have established the pivotal role of membrane fluidity in ethanol-induced oxidative stress, but no study has so far tested the involvement of lipid rafts. In this study, methyl-beta-cyclodextrin or cholesterol oxidase, which were found to disrupt lipid rafts in hepatocytes, inhibited both reactive oxygen species production and lipid peroxidation, and this suggested a role for these microstructures in oxidative stress. By immunostaining of lipid raft components, a raft clustering was detected in ethanol-treated hepatocytes. In addition, we found that rafts were modified by formation of malondialdehyde adducts and disulfide bridges. Interestingly, pretreatment of cells by 4-methyl-pyrazole (to inhibit ethanol metabolism) and various antioxidants prevented the ethanol-induced raft aggregation. In addition, treatment of hepatocytes by a stabilizing agent (ursodeoxycholic acid) or a fluidizing compound [2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate] led to inhibition or enhancement of raft clustering, respectively, which pointed to a relationship between membrane fluidity and lipid rafts during ethanol-induced oxidative stress. We finally investigated the involvement of phospholipase C in raft-induced oxidative stress upon ethanol exposure. Phospholipase C was shown to be translocated into rafts and to participate in oxidative stress by controlling hepatocyte iron content. CONCLUSION Membrane structure, depicted as membrane fluidity and lipid rafts, plays a key role in ethanol-induced oxidative stress of the liver, and its modulation may be of therapeutic relevance.
Collapse
Affiliation(s)
- Philippe Nourissat
- Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil (UPRES EA) 3891, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vind-Kezunovic D, Wojewodzka U, Gniadecki R. Focal junctions retard lateral movement and disrupt fluid phase connectivity in the plasma membrane. Biochem Biophys Res Commun 2008; 365:1-7. [DOI: 10.1016/j.bbrc.2007.10.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 10/10/2007] [Indexed: 11/26/2022]
|
25
|
Mathay C, Giltaire S, Minner F, Bera E, Hérin M, Poumay Y. Heparin-binding EGF-like growth factor is induced by disruption of lipid rafts and oxidative stress in keratinocytes and participates in the epidermal response to cutaneous wounds. J Invest Dermatol 2007; 128:717-27. [PMID: 17928891 DOI: 10.1038/sj.jid.5701069] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epidermal homeostasis and repair of the skin barrier require that epidermal keratinocytes respond to alterations of their environment. We report that cellular stress with methyl-beta-cyclodextrin (MBCD), a molecule that extracts membrane cholesterol and thereby disrupts the structure of lipid rafts, strongly induces the synthesis of heparin-binding EGF-like growth factor (HB-EGF) in keratinocytes through the activation of p38 mitogen-activated protein kinase. Interesting parallels between lipid raft disruption and oxidative stress can be drawn as hydrogen peroxide induces p38 activation and HB-EGF synthesis in keratinocytes. Consistent with other studies, we show increased HB-EGF expression in keratinocytes located at the margin of wounded skin areas. Analyzing cultured keratinocytes exposed to rhHB-EGF, we report increased HB-EGF mRNA levels and alterations in the expression of differentiation markers. Interestingly, identical alterations in differentiation markers are shown to occur in vivo at the wound margin and in HB-EGF-treated cultures. In addition, in vitro sectioning of skin samples also induces the expression of HB-EGF at the border of the incisions. Altogether, our data suggest that expression of HB-EGF is a marker of the keratinocyte's response to a challenging environment and demonstrate that this growth factor alters the phenotype of keratinocytes in a manner similar to that observed during epidermal repair.
Collapse
Affiliation(s)
- Conny Mathay
- Cell and Tissue Laboratory, URPHYM, University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Baier J, Maisch T, Maier M, Landthaler M, Bäumler W. Direct Detection of Singlet Oxygen Generated by UVA Irradiation in Human Cells and Skin. J Invest Dermatol 2007; 127:1498-506. [PMID: 17363921 DOI: 10.1038/sj.jid.5700741] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UVA light produces deleterious biological effects in which singlet oxygen plays a major role. These effects comprise a significant risk of carcinogenesis in the skin and cataract formation of the eye lens. Singlet oxygen is generated by UVA light absorption in endogenous molecules present in the cells. To elucidate the primary processes and sources of singlet oxygen in tissue, it is a major goal to uncover the hidden process of singlet oxygen generation, in particular in living tissue. When exposing keratinocytes or human skin in vivo to UVA laser light (355 nm) at 6 J/cm2, we measured the luminescence of singlet oxygen at 1,270 nm. This is a positive and direct proof of singlet oxygen generation in cells and skin by UVA light. Moreover, a clear signal of singlet oxygen luminescence was detected in phosphatidylcholine suspensions (water or ethanol) irradiated by UVA. Oxidized products of phosphatidylcholine are the likely chromophores because phosphatidylcholine itself does not absorb at 355 nm. The signal intensity was reduced by mannitol or super oxide dismutase. Additionally, the monochromatic UVA irradiation at 355 nm leads to upregulation of the key cytokine IL-12. This affects the balance of UV radiation on the immune system, which is comparable to effects of broadband UVA irradiation.
Collapse
Affiliation(s)
- Jürgen Baier
- Department of Dermatology, Regensburg University Medical Center, Regensburg, Germany
| | | | | | | | | |
Collapse
|
27
|
Tarozzi A, Marchesl A, Hrelia S, Angeloni C, Andrisano V, Fiori J, Cantelli-Forti G, Hrella P. Protective Effects of Cyanidin-3-O-β-glucopyranoside Against UVA-induced Oxidative Stress in Human Keratinocytes¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00235.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Valencia A, Rajadurai A, Carle AB, Kochevar IE. 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: roles of NADPH oxidase, mitochondria, and lipid rafts. Free Radic Biol Med 2006; 41:1704-18. [PMID: 17145559 PMCID: PMC1880892 DOI: 10.1016/j.freeradbiomed.2006.09.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 08/23/2006] [Accepted: 09/05/2006] [Indexed: 12/20/2022]
Abstract
Long wavelength solar UVA radiation stimulates formation of reactive oxygen species (ROS) and prostaglandin E(2) (PGE(2)), which are involved in skin photosensitivity and tumor promotion. High levels of 7-dehydrocholesterol (7-DHC), the precursor to cholesterol, cause exaggerated photosensitivity to UVA in patients with Smith-Lemli-Opitz syndrome (SLOS). Partially replacing cholesterol with 7-DHC in keratinocytes rapidly (<5 min) increased UVA-induced ROS, intracellular calcium, phospholipase A(2) activity, PGE(2), and NADPH oxidase activity. UVA-induced ROS and PGE(2) production were inhibited in these cells by depleting the Nox1 subunit of NADPH oxidase using siRNA or using a mitochondrial radical quencher, MitoQ. Partial replacement of cholesterol with 7-DHC also disrupted membrane lipid raft domains, although depletion of cholesterol, which also disrupts lipid rafts, did not affect UVA-induced increases in ROS and PGE(2). Phospholipid liposomes containing 7-DHC were more rapidly oxidized by a free radical mechanism than those containing cholesterol. These results indicate that 7-DHC enhances rapid UVA-induced ROS and PGE(2) formation by enhancing free radical-mediated membrane lipid oxidation and suggests that this mechanism might underlie the UVA photosensitivity in SLOS.
Collapse
Affiliation(s)
- Antonio Valencia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Thier-224, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
29
|
Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 2006; 5:215-37. [PMID: 16465308 DOI: 10.1039/b504573h] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous chromophores in human skin serve as photosensitizers involved in skin photocarcinogenesis and photoaging. Absorption of solar photons, particularly in the UVA region, induces the formation of photoexcited states of skin photosensitizers with subsequent generation of reactive oxygen species (ROS), organic free radicals and other toxic photoproducts that mediate skin photooxidative stress. The complexity of endogenous skin photosensitizers with regard to molecular structure, pathways of formation, mechanisms of action, and the diversity of relevant skin targets has hampered progress in this area of photobiology and most likely contributed to an underestimation of the importance of endogenous sensitizers in skin photodamage. Recently, UVA-fluorophores in extracellular matrix proteins formed posttranslationally as a consequence of enzymatic maturation or spontaneous chemical damage during chronological and actinic aging have been identified as an abundant source of light-driven ROS formation in skin upstream of photooxidative cellular stress. Importantly, sensitized skin cell photodamage by this bystander mechanism occurs after photoexcitation of sensitizers contained in skin structural proteins without direct cellular photon absorption thereby enhancing the potency and range of phototoxic UVA action in deeper layers of skin. The causative role of photoexcited states in skin photodamage suggests that direct molecular antagonism of photosensitization reactions using physical quenchers of photoexcited states offers a novel chemopreventive opportunity for skin photoprotection.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ, USA
| | | | | |
Collapse
|
30
|
Zimina EP, Bruckner-Tuderman L, Franzke CW. Shedding of collagen XVII ectodomain depends on plasma membrane microenvironment. J Biol Chem 2005; 280:34019-24. [PMID: 16020548 DOI: 10.1074/jbc.m503751200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII, a hemidesmosomal component, mediates the adhesion of epidermal keratinocytes to the underlying basement membrane. It exists as a full-length transmembrane protein and a soluble ectodomain that is proteolytically released from the cell surface by sheddases of a disintegrin and metalloproteinase (ADAM) family; TACE, the tumor necrosis factor-alpha-converting enzyme, is the major physiological proteinase. Because both collagen XVII and the ADAMs are transmembrane proteins, their plasma membrane microenvironment can influence shedding. Lipid rafts, assemblies of sphingolipids and cholesterol within the plasma membrane, are responsible for the separation of membrane proteins and are thought to regulate shedding of cell surface proteins. In this study we analyzed the influence of the cholesterol-depleting agent methyl-beta-cyclodextrin (MbetaCD), which disintegrates lipid rafts, on the shedding of collagen XVII in HaCaT keratinocytes and in transfected COS-7 cells. Increasing concentrations of MbetaCD led to a dose-dependent decrease of membrane cholesterol levels and to stimulation of collagen XVII shedding. The stimulation was completely inhibited by sheddase inhibitors, and experiments with COS-7 cells co-transfected with TACE and collagen XVII demonstrated that TACE mediated the low cholesterol-dependent shedding. Co-patching analysis by double immunofluorescence staining revealed co-localization of collagen XVII with the raft resident phosphatidylinositol-linked placental alkaline phosphatase and segregation from the non-raft protein human transferrin receptor, indicating that a majority of collagen XVII molecules was incorporated into lipid rafts. These data deliver the first evidence for the role of plasma membrane lipid organization in the regulation of collagen XVII shedding and, therefore, in the regulation of keratinocyte migration and differentiation.
Collapse
Affiliation(s)
- Elena P Zimina
- Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
31
|
Bang B, Gniadecki R, Gajkowska B. Disruption of lipid rafts causes apoptotic cell death in HaCaT keratinocytes. Exp Dermatol 2005; 14:266-72. [PMID: 15810884 DOI: 10.1111/j.0906-6705.2005.00283.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid rafts are cholesterol-enriched microdomains in plasma membranes. The functional activity of many membrane proteins, including death and growth factor receptors, depends on their insertion in lipid rafts. We have previously demonstrated the presence of lipid rafts in keratinocytes and shown that lipid rafts are involved in the control of keratinocyte proliferation and metabolic activity. In this work, we investigated the effect of lipid-raft disruption on HaCaT keratinocyte survival. Lipid rafts could be disrupted or rearranged with cholesterol-targeting detergents: methyl-beta-cyclodextrin and filipin III. Moreover, cholesterol oxidation by a specific oxidase or blocking of cholesterol synthesis by mevastatin had a similar effect on lipid rafts. All cholesterol-modifying substances caused cell death in a concentration-dependent manner. More detailed studies on the effects of cyclodextrin revealed apoptotic cell death at concentrations >or=0.5% (w/v). The molecular mechanism of apoptosis precipitated by raft disruption remains unknown but does not seem to be dependent of either membrane permeabilization or cell-cycle arrest imposed by cholesterol-modifying compounds.
Collapse
Affiliation(s)
- Bo Bang
- Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou JP. UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 2005; 280:19196-204. [PMID: 15769735 DOI: 10.1074/jbc.m412867200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initiation of UV light-induced signaling in mammalian cells is largely considered to be subsequent to DNA damage. Several studies have also described ceramide (CER), a lipid second messenger, as a major contributor in mediating UV light-induced c-Jun N-terminal kinase (JNK) activation and cell death. It is demonstrated here that UV-C light irradiation of U937 cells results in the activation and translocation of a Zn2+-independent acid sphingomyelinase, leading to CER accumulation in raft microdomains. These CER-enriched rafts aggregate and play a functional role in JNK activation. The observation that UV-C light also induced CER generation and the externalization of acid sphingomyelinase and JNK in human platelets conclusively rules out the involvement of a nuclear signal generated by DNA damage in the initiation of a UV light response, which is generated at the plasma membrane.
Collapse
Affiliation(s)
- Alexandra Charruyer
- INSERM U563, Centre de Physiopathologie de Toulouse-Purpan, Centre Hospitalier Universitaire Purpan, 31024 Toulouse, France
| | | | | | | | | | | |
Collapse
|
33
|
Vodenicharov MD, Ghodgaonkar MM, Halappanavar SS, Shah RG, Shah GM. Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B radiation. J Cell Sci 2005; 118:589-99. [PMID: 15657079 DOI: 10.1242/jcs.01636] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The damage to DNA caused by ultraviolet B radiation (280-320 nm) contributes significantly to development of sunlight-induced skin cancers. The susceptibility of mice to ultraviolet B-induced skin carcinogenesis is increased by an inhibitor of the DNA damage-activated nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP), hence PARP activation is likely to be associated with cellular responses that suppress carcinogenesis. To understand the role of activated PARP in these cellular functions, we need to first clearly identify the cause of PARP activation in ultraviolet B-irradiated cells. Ultraviolet B, like ultraviolet C, causes direct DNA damage of cyclobutane pyrimidine dimer and 6, 4-photoproduct types, which are subjected to the nucleotide excision repair. Moreover, ultraviolet B also causes oxidative DNA damage, which is subjected to base excision repair. To identify which of these two types of DNA damage activates PARP, we examined mechanism of early PARP activation in mouse fibroblasts exposed to ultraviolet B and C radiations. The ultraviolet B-irradiated cells rapidly activated PARP in two distinct phases, initially within the first 5 minutes and later between 60-120 minutes, whereas ultraviolet C-irradiated cells showed only the immediate PARP activation. Using antioxidants, local irradiation, chromatin immunoprecipitation and in vitro PARP assays, we identified that ultraviolet radiation-induced direct DNA damage, such as thymine dimers, cause the initial PARP activation, whereas ultraviolet B-induced oxidative damage cause the second PARP activation. Our results suggest that cells can selectively activate PARP for participation in different cellular responses associated with different DNA lesions.
Collapse
Affiliation(s)
- Momchil D Vodenicharov
- Laboratory for Skin Cancer Research, CHUL Research Center (CHUQ), Faculty of Medicine, Laval University, 2705, Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
34
|
Tarozzi A, Marchesi A, Hrelia S, Angeloni C, Andrisano V, Fiori J, Cantelli-Forti G, Hrelia P. Protective Effects of Cyanidin-3-O-β-glucopyranoside Against UVA-induced Oxidative Stress in Human Keratinocytes¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-06-14-ra-200.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Ferreira L, Villar E, Muñoz-Barroso I. Gangliosides and N-glycoproteins function as Newcastle disease virus receptors. Int J Biochem Cell Biol 2004; 36:2344-56. [PMID: 15313478 DOI: 10.1016/j.biocel.2004.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/07/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The interaction of enveloped viruses with cell surface receptors is the first step in the viral cycle and an important determinant of viral host range. Although it is established that the paramyxovirus Newcastle Disease Virus binds to sialic acid-containing glycoconjugates the exact nature of the receptors has not yet been determined. Accordingly, here we attempted to characterize the cellular receptors for Newcastle disease virus. Treatment of cells with tunicamycin, an inhibitor of protein N-glycosylation, blocked fusion and infectivity, while the inhibitor of O-glycosylation benzyl-N-acetyl-alpha-D-galactosamide had no effect. Additionally, the inhibitor of glycolipid biosynthesis 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol blocked viral fusion and infectivity. These results suggest that N-linked glycoproteins and glycolipids would be involved in viral entry but not O-linked glycoproteins. The ganglioside content of COS-7 cells was analyzed showing that GD1a was the major ganglioside component; the presence of GM1, GM2 and GM3 was also established. In a thin-layer chromatographic binding assay, we analyzed the binding of the virus to different gangliosides, detecting the interaction with monosialogangliosides such as GM3, GM2 and GM1; disialogangliosides such as GD1a and GD1b, and trisialogangliosides such as GT1b. Unlike with other viruses, our results seem to point to the absence of a specific pattern of gangliosides that interact with Newcastle disease virus. In conclusion, our results suggest that Newcastle disease virus requires different sialic acid-containing compounds, gangliosides and glycoproteins for entry into the target cell. We propose that gangliosides would act as primary receptors while N-linked glycoproteins would function as the second receptor critical for viral entry.
Collapse
Affiliation(s)
- Laura Ferreira
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental Lab. 108, Plaza Doctores de la Reina s/n, 37007 Salamanca, Spain
| | | | | |
Collapse
|
36
|
Mimeault M, Bonenfant D, Batra SK. New advances on the functions of epidermal growth factor receptor and ceramides in skin cell differentiation, disorders and cancers. Skin Pharmacol Physiol 2004; 17:153-66. [PMID: 15258446 DOI: 10.1159/000078818] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 04/22/2004] [Indexed: 12/19/2022]
Abstract
Recent advances in understanding of the biological functions of the epidermal growth factor and epidermal growth factor receptor (EGF-EGFR) system and ceramide production for the maintenance of skin integrity and barrier function are reported. In particular, the opposite roles of EGFR and ceramide cascades in epithelial keratinocyte proliferation, migration and terminal differentiation are described. Moreover, the functions of ceramides in the epidermal permeability barrier are reviewed. The alterations in EGFR signaling and ceramide metabolism, which might be involved in the etiopathogenesis of diverse skin disorders and cancers, are described. New progress in understanding of skin organization, which might provide the basis for the design of new transcutaneous drug delivery techniques as well as for the development of new therapies of skin disorders and cancers, are reported.
Collapse
Affiliation(s)
- M Mimeault
- Department of Biochemistry and Molecular Biology, UNMC/Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-4525, USA.
| | | | | |
Collapse
|
37
|
Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D. GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 2004; 9:946-52. [PMID: 15052275 DOI: 10.1038/sj.mp.4001509] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plaques containing amyloid beta-peptides (Abeta) are a major feature in Alzheimer's disease (AD), and GM1 ganglioside is an important component of cellular plasma membranes and especially enriched in lipid raft. GM1-bound Abeta (GM1/Abeta), found in brains exhibiting early pathological changes of AD including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. However, the role of GM1 in amyloid beta-protein precursor (APP) processing is not yet defined. In this study, we report that exogenous GM1 ganglioside promotes Abeta biogenesis and decreases sAPPalpha secretion in SH-SY5Y and COS7 cells stably transfected with human APP695 cDNA without affecting full-length APP and the sAPPbeta levels. We also observe that GM1 increases extracellular levels of Abeta in primary cultures of mixed rat cortical neurons transiently transfected with human APP695 cDNA. These findings suggest a regulatory role for GM1 in APP processing pathways.
Collapse
Affiliation(s)
- Q Zha
- 1Department of Biochemistry, Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
38
|
Jans R, Atanasova G, Jadot M, Poumay Y. Cholesterol Depletion Upregulates Involucrin Expression in Epidermal Keratinocytes Through Activation of p38. J Invest Dermatol 2004; 123:564-73. [PMID: 15304097 DOI: 10.1111/j.0022-202x.2004.23221.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol has been recently suggested to regulate the early steps of keratinocyte differentiation through lipid rafts. In many cell types, depletion of cholesterol activates signaling proteins like epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), or extracellular signal-regulated kinase (ERK) known to affect cell differentiation. In this study, we explored the effects of cholesterol depletion on the phenotype of cultured keratinocytes, using a treatment with methyl-beta-cyclodextrin (MbetaCD) to extract cholesterol and a treatment with lovastatin to inhibit cholesterol neosynthesis. Analysis of the expression of differentiation marker genes in early differentiating confluent cultures reveals that cholesterol depletion induces downregulation of keratin 14 (K14) and keratin 10 (K10) and upregulation of involucrin. MbetaCD treatment induces phosphorylation of EGFR, HER2, and ERK, but not HER3. Inhibition of EGFR with PD153035 impairs the MbetaCD-induced phosphorylation of EGFR, HER2, and ERK, but does not impair the alteration of K14, K10, or involucrin gene expression, indicating that other signaling proteins regulate this phenomenon. p38 has been suggested to regulate the expression of involucrin during keratinocyte differentiation. We found that MbetaCD treatment induces a prolonged phosphorylation of p38 in general and p38alpha in particular. An inhibition of p38 with PD169316 impairs the upregulation of involucrin mRNAs by a treatment with MbetaCD, but not by a p38delta-activating TPA treatment, which might suggest that cholesterol depletion alters involucrin gene expression through activation of p38alpha/beta.
Collapse
Affiliation(s)
- Ralph Jans
- Département Histologie-Embryologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
39
|
Polte T, Tyrrell RM. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression. Free Radic Biol Med 2004; 36:1566-74. [PMID: 15182858 DOI: 10.1016/j.freeradbiomed.2004.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/03/2004] [Accepted: 04/02/2004] [Indexed: 11/30/2022]
Abstract
Ultraviolet A (UVA) irradiation causes human skin aging and skin cancer at least partially through the activation of matrix metalloproteinases (MMPs). MMP-1, the interstitial collagenase, is responsible for the degradation of collagen and is involved in tumor progression in human skin. The present study uses human skin fibroblast cells (FEK4) to investigate the involvement of lipid peroxidation and the role of peroxides as possible mediators in MMP-1 activation by UVA. Preincubation with the antioxidants butylated hydroxytoluene and Trolox reduced UVA-dependent MMP-1 upregulation, suggesting that peroxidation of membrane lipids is involved. Blocking the iron-driven generation of lipid peroxides and hydroxyl radicals by different iron chelators led to a decrease in UVA-induced MMP-1 mRNA accumulation. Moreover, modulation of glutathione peroxidase activity by use of the specific inhibitor mercaptosuccinate (MS) or by the depletion of glutathione (using buthionine-S, R-sulfoximine, BSO), enhanced the UVA-dependent MMP-1 response. Finally, UVA irradiation generated a significant increase in intracellular peroxide levels which is augmented by pretreatment of the cells with BSO or MS. Our results demonstrate that lipid peroxidation and the production of peroxides are important events in the signalling pathway of MMP-1 activation by UVA.
Collapse
Affiliation(s)
- Tobias Polte
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | |
Collapse
|
40
|
Gniadecki R, Jemec GBE. Lipid raft-enriched stem cell-like keratinocytes in the epidermis, hair follicles and sinus tracts in hidradenitis suppurativa. Exp Dermatol 2004; 13:361-3. [PMID: 15186322 DOI: 10.1111/j.0906-6705.2004.00166.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hidradenitis suppurativa (HS) is a disease, that causes considerable morbidity in patients. A histological hallmark of the disorder is the formation of sinus tracts in the dermis and the subcutis. Biologically, they represent a poorly understood phenomenon involving the infiltrative growth of proliferating non-malignant keratinocytes. Lipid domains in plasma membranes (lipid rafts) play a role in the function of growth factors and are suspected of having a pathogenic role in cell migration and invasive growth. Using HS as a model, the presence of lipid rafts was studied using cholera toxin conjugated with FITC (CTx-FITC) and antibeta1 integrin (CD29)-CyChrome conjugate fluorescence staining of unfixed and acetone-fixed cryostat sections of lesional and paralesional skin samples. The double-labeled skin samples were observed in the confocal laser-scanning fluorescence microscope. Samples were obtained from five patients with HS. The lesional epidermis of HS contained three populations of keratinocytes: CD29(bright)CTx(dim), CD29(dim)CTx(bright) and a third hitherto unseen population containing double-positive CD29(bright)CTx(bright) cells. The CD29(bright)CTx(dim) population resembles the earlier described epidermal stem-like cells, while the CD29(dim)CTx(bright) basal keratinocytes overlap with the transit-amplifying cell pool. The new population of double-positive CD29(bright)CTx(bright) cells was localized on the slopes of the papillas, focally in the suprabasal epidermal layers, in some hair follicles and in the majority of sinus tracts. Such double-positive cells have not previously been encountered by us in normal epidermis and hair follicles. Using HS as a model, it is suggested that the keratinocytes involved in sinus tract formation are CD29(bright)CTx(bright) cells. Owing to the physical proximity of the cells, it is hypothesised that the described CD29(bright)CTx(bright) cells result from an increased expression of CD29 on the CTx(bright) cells. It is likely that the double-positive CD29(bright)CTx(bright) cells emerge due to the influence of local inflammatory cytokines. Sinus tract formation may represent an aberrant epidermal repair response executed by the activated CD29(bright)CTx(bright) keratinocytes capable of non-malignant infiltrative growth in the dermis and subcutis.
Collapse
Affiliation(s)
- Robert Gniadecki
- Department of Dermatology, Bispebjerg Hospital, Copenhagen,Denmark
| | | |
Collapse
|
41
|
Abstract
Oxidative stress underlies a range of pathophysiological conditions. Reactive oxygen species are also generated intracellularly to serve as second messengers and some are linked to caveolae/raft signalling systems. The effect of oxidative stress on caveolin-1 expression, post-translational modifications, membrane trafficking and function are described.
Collapse
Affiliation(s)
- Marie-Odile Parat
- Departments of Anesthesiology Research and Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
42
|
Hand RA, Craven RJ. Hpr6.6 protein mediates cell death from oxidative damage in MCF-7 human breast cancer cells. J Cell Biochem 2003; 90:534-47. [PMID: 14523988 DOI: 10.1002/jcb.10648] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) cause cell death and are associated with a variety of maladies, from trauma and infection to organ degeneration and cancer. Cells mount a complex response to oxidative damage that includes signaling from transmembrane receptors and intracellular kinases. We have analyzed the response to oxidative damage in human breast cancer cells expressing the Hpr6.6 (human membrane progesterone receptor) protein. Although Hpr6.6 is related to a putative progesterone-binding protein, Hpr6.6 is widely expressed in epithelial tissues and shares close homology with a budding yeast damage response protein called Dap1p (damage response protein related to membrane progesterone receptor). We report here that the Hpr6.6 protein regulates the response to oxidative damage in breast cancer cells. Expression of Hpr6.6 in MCF-7 cells sensitized the cells to death following long-term/low dose or short-term/high dose treatment with hydrogen peroxide. Cell death did not occur through a typical apoptotic mechanism and corresponded with hyperphosphorylation of the Akt and IkappaB proteins. However, inhibition of Akt activation and IkappaB degradation had no effect on Hpr6.6-mediated cell death, suggesting that Hpr6.6 regulates cell death through a novel oxidative damage response pathway. Our work indicates a key regulatory function for Hpr6.6 in epithelial tissues exposed to oxidative damage.
Collapse
Affiliation(s)
- Randal A Hand
- Division of Surgical Oncology, Department of Surgery, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
43
|
Abstract
Lipid rafts are dynamic membrane microdomains enriched in cholesterol and sphingolipids and are involved in the regulation of a variety of cellular processes, such as proliferation, apoptosis and cell motility. We have previously described that large lipid raft aggregates are readily detectable on cultured keratinocyte cell line HaCaT by staining with the fluorescein-tagged cholera toxin (CTx-FITC). In this paper we adopted this method for the detection of lipid rafts in human epidermis and keratinocytes in culture. Double labelling of showed the non-overlapping clusters of basal cells in human epidermis: CD29dimCTx-FITCbright cells in the deep rate ridges and CD29brightCTx-FITCdim cells at the tips of dermal papillae. A similar patchy, non-overlapping staining pattern was observed in cultured keratinocytes in vitro. CTx-FITCbright cells are mitotically active whereas a large proportion of CTx-FITCdim cells are quiescent. We conclude that the epidermal stem-like cells, previously shown to occupy the tips of dermal papillae and to exhibit high density of membrane beta1 integrin have a low content of lipid rafts. In contrast, the putative transit amplifying cells in deep rate ridges show enrichment in lipid rafts. Thus, lipid rafts may be a factor controlling the mitotic activity of epidermal keratinocytes and possibly the differentiation of stem cells into the transit amplifying cells.
Collapse
Affiliation(s)
- Robert Gniadecki
- Department of Dermatology D92, Bispebjerg Hospital, Bispebjerg bake 23, University of Copenhagen, DK-2400 Copenhagen NV, Denmark.
| | | |
Collapse
|
44
|
Colarow L, Turini M, Teneberg S, Berger A. Characterization and biological activity of gangliosides in buffalo milk. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1631:94-106. [PMID: 12573454 DOI: 10.1016/s1388-1981(02)00360-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gangliosides (GS) were evaluated in Swiss cow's milk (SCM), Italian buffalo milk (IBM) and its serum, Pakistan buffalo colostrum (PBC), Pakistan buffalo mature milk (PBM), and Pakistan buffalo milk from rice-growing areas (PBR). Dairy GS were obtained from the Folch's upper (hydrophilic) and lower (lipophilic) extraction phases, respectively, and determined as lipid-bound sialic acid (LBSA) by colorimetry. Molar ratios of LBSA in the hydro- and lipophilic GS fractions were 52:48 to 79:21. Mature buffalo milk types had 40-100% more LBSA in the lipophilic GS fraction compared to SCM. Liquid PBC was higher in LBSA (24 nmol/g) compared to mature milk types (8-11 nmol/g). Thin-layer chromatography (TLC) and scanning densitometry showed distinct profiles of hydrophilic and lipophilic GS fractions. Lipophilic GS (but importantly not hydrophilic GS) from IBM and its serum decreased prostaglandin series 2 production by 75-80% in cultured human colonic epithelial cells exposed to tumor necrosis factor alpha (TNFalpha). Hydrophilic GD(3) and lipophilic GM(3) selectively bound rotavirus particles prepared from a rhesus strain and its mutant. A GS fraction in IBM showed a GM(1)-specific binding to cholera toxin subunit B (CTB). IBM serum (IBMS) was a rich source of LBSA (420 nmol/g proteins). In summary, improved methodology led to increased LBSA recovery and isolation of additional and bioactive milk GS. Human and Italian buffalo milk had similar CTB binding, and both had increased polysialo-GS compared to cows milk. The toxin binding properties of buffalo milk GS, and the anti-inflammatory activity of the lipophilized GS fraction could be important for developing innovative food applications, as well as the subject of future research.
Collapse
Affiliation(s)
- Ladislas Colarow
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 26, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
45
|
Trekli MC, Riss G, Goralczyk R, Tyrrell RM. Beta-carotene suppresses UVA-induced HO-1 gene expression in cultured FEK4. Free Radic Biol Med 2003; 34:456-64. [PMID: 12566071 DOI: 10.1016/s0891-5849(02)01303-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ultraviolet region of sunlight causes a significant oxidative stress to human skin cells and modulates expression of a series of genes in dermal fibroblasts and other cell types. The human heme oxygenase 1 (HO-1) gene is strongly activated within the first hours that follow UVA irradiation of normal human dermal fibroblasts (FEK4) and this response is being used as a marker of oxidative stress in cells. It has been shown that the induction of this gene occurs via singlet oxygen ((1)O(2)) produced upon interaction of UVA radiation with an as yet undefined cellular chromophore. Carotenoids, as the most potent singlet oxygen quenchers in nature, are expected to effectively suppress the UVA-induced HO-1 gene activation in human cells. In this study, we measured the suppression of UVA-induced levels of HO-1 mRNA after the addition of a series of six all-trans-beta-carotene concentrations (0.07, 0.2, 0.8, 2.3, 8.0, and 21 microM) to the culture medium of exponentially growing FEK4 cells. The corresponding levels of beta-carotene uptake and apo-carotenal formation were measured following HPLC separation. The results of this study show a concentration-dependent suppression of UVA- (250 kJ/m(2)) induced transcriptional activation of HO-1 in exponentially growing FEK4 cells by beta-carotene. Suppression occurred at concentrations that have been observed in human plasma after dietary supplementation with beta-carotene.
Collapse
Affiliation(s)
- Marika C Trekli
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | |
Collapse
|
46
|
Noonan FP, Dudek J, Merlino G, De Fabo EC. Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. PIGMENT CELL RESEARCH 2003; 16:16-25. [PMID: 12519121 DOI: 10.1034/j.1600-0749.2003.00014.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cutaneous malignant melanoma, the most lethal of the skin cancers, known for its intractability to current therapies, continues to increase in incidence, providing a significant public health challenge. There is a consensus that skin cancer is initiated by sunlight exposure. For non-melanoma skin cancer there is substantial evidence that chronic exposure to the ultraviolet B radiation (UVB) (280-320 nm) portion of the sunlight spectrum is responsible. Experimentally, UVB is mutagenic and chronic UVB exposure can cause non-melanoma skin cancer in laboratory animals. Non-melanoma tumors in animals and in humans show characteristic UVB signature lesions in the tumor suppressor p53 and/or in the patched (PTCH) gene. An action spectrum or wavelength dependence for squamous cell carcinoma in the mouse shows a major peak of efficacy in the UVB. For malignant melanoma, however, the situation is unclear and the critical direct target(s) of sunlight in initiating melanoma and even the wavelengths responsible are as yet unidentified. This lack of information is in major part a result of a paucity of animal models for melanoma which recapitulate the role of sunlight in initiating this disease. The epidemiology of melanoma differs significantly from non-melanoma skin cancer. Intense sporadic sunlight exposure in childhood, probably exacerbated by additional adult exposure, is associated with elevated melanoma risk. Melanoma is also a disease of gene-environment interactions with underlying genetic factors playing a significant role. These major differences indicate that extrapolation from information for non-melanoma skin cancer to melanoma is unlikely to be useful. We summarize in this review the experimental information available on the role of UV radiation in melanoma and give an overview of animal melanoma models. A new model derived by neonatal UV irradiation of hepatocyte growth factor/scatter factor (HGF/SF) transgenic mice is described which recapitulates the etiology, the histopathology and molecular pathogenesis of human disease. It is anticipated that the HGF/SF transgenic model will provide a means to access the mechanism(s) by which sunlight initiates this lethal disease and provide an appropriate vehicle for derivation of appropriate therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Frances P Noonan
- Laboratory of Photobiology and Photoimmunology, Department of Environmental and Occupational Health, School of Public Health and Health Services, The George Washington University School of Medicine, Washington, DC, USA.
| | | | | | | |
Collapse
|
47
|
Wang XQ, Sun P, Paller AS. Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J Biol Chem 2002; 277:47028-34. [PMID: 12354760 DOI: 10.1074/jbc.m208257200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although caveolin-1 is thought to facilitate the interaction of receptors and signaling components, its role in epidermal growth factor receptor (EGFR) signaling remains poorly understood. Ganglioside GM3 inhibits EGFR autophosphorylation and may thus affect the interaction of caveolin-1 and the EGFR. We report here that endogenous overexpression of GM3 leads to the clustering of GM3 on the cell membrane of the keratinocyte-derived SCC12 cell line and promotes co-immunoprecipitation of caveolin-1 and GM3 with the EGFR. Overexpression of GM3 does not affect EGFR distribution but shifts caveolin-1 to the detergent-soluble, EGFR-containing region; consistently, caveolin-1 is retained in the detergent-insoluble membrane when ganglioside is depleted. GM3 overexpression inhibits EGFR tyrosine phosphorylation and receptor dimerization and concurrently increases both the content and tyrosine phosphorylation of EGFR-associated caveolin-1, providing evidence that tyrosine phosphorylation of caveolin-1 inhibits EGFR signaling. Consistently, depletion of ganglioside both increases EGFR phosphorylation and prevents the EGF-induced tyrosine phosphorylation of caveolin-1. GM3 also induces delayed serine phosphorylation of EGFR-unassociated caveolin-1, suggesting a role for serine phosphorylation of caveolin-1 in regulating EGFR signaling. These studies suggest that GM3 modulates the caveolin-1/EGFR association and is critical for the EGF-induced tyrosine phosphorylation of caveolin-1 that is associated with its inhibition of EGFR activation.
Collapse
Affiliation(s)
- Xiao-Qi Wang
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|