1
|
Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19:e0294926. [PMID: 38166023 PMCID: PMC10760924 DOI: 10.1371/journal.pone.0294926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024] Open
Abstract
Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Gil RB, Ortiz A, Sanchez-Niño MD, Markoska K, Schepers E, Vanholder R, Glorieux G, Schmitt-Kopplin P, Heinzmann SS. Increased urinary osmolyte excretion indicates chronic kidney disease severity and progression rate. Nephrol Dial Transplant 2018; 33:2156-2164. [DOI: 10.1093/ndt/gfy020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ryan B Gil
- Helmholtz Center Munich, German Research Center for Environment Health, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | | | | | | | - Eva Schepers
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, Ghent, Belgium
| | - Raymond Vanholder
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, Ghent, Belgium
| | - Philippe Schmitt-Kopplin
- Helmholtz Center Munich, German Research Center for Environment Health, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University Munich, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Silke S Heinzmann
- Helmholtz Center Munich, German Research Center for Environment Health, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| |
Collapse
|
3
|
Cano M, Calonge ML, Ilundáin AA. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2172-9. [DOI: 10.1016/j.bbamem.2015.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 11/30/2022]
|
4
|
Xu X, Urban JPG, Tirlapur UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthritis Cartilage 2010; 18:433-9. [PMID: 19840877 DOI: 10.1016/j.joca.2009.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 09/30/2009] [Accepted: 09/05/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE With the development of engineered cartilage, the determination of the appropriate culture conditions is vital in order to maximize extracellular matrix synthesis. As osmolarity could affect the fate of chondrocytes, the purpose of this study was to determine the effects of osmolarity on chondrocytes during relatively long-term culture. DESIGN Bovine articular chondrocytes were cultured in alginate beads in a biocarbonate free system at 280, 380 and 550 mOsm at pH 7.4 for up to 12 days, respectively. Cell volume, intracellular pH (pH(i)), cell number, glucosaminoglycan (GAG) and collagen retention were measured at day 5 and 12. Cell viability and volume were monitored over the 12 days of culture. RESULTS By day 5 and 12, compared to the cell volume at 380 mOsm, around 20% (P<0.01) swelling and 15% (P<0.05) shrinkage were observed when the cells were cultured at 280 and 550 mOsm. The pH(i) over the 12 days of culture varied with osmolarity of the culture medium. In comparison with fresh cells, pH(i) became slightly more acidic by 0.15 pH units at 280 mOsm at day 5. However, by day 12, an alkalization of pH(i), by 0.2 pH units, was noted. A higher proliferation rate was seen at 280 mOsm than at other osmolarities while less GAG was produced. CONCLUSIONS Chronic exposure to anisotonic conditions results in cell swelling at 280 mOsm and shrinkage at 550 mOsm. The osmolarity of 280 mOsm appears to encourage proliferation of chondrocytes, but inhibits matrix production.
Collapse
Affiliation(s)
- X Xu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
5
|
Neuhofer W, Beck FX. Survival in Hostile Environments: Strategies of Renal Medullary Cells. Physiology (Bethesda) 2006; 21:171-80. [PMID: 16714475 DOI: 10.1152/physiol.00003.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cells in the renal medulla exist in a hostile milieu characterized by wide variations in extracellular solute concentrations, low oxygen tensions, and abundant reactive oxygen species. This article reviews the strategies adopted by these cells to allow them to survive and fulfill their functions under these extreme conditions.
Collapse
|
6
|
Yang HT, Chen YH, Chiu WC, Huang SY. Effects of consecutive high-dose alcohol administration on the utilization of sulfur-containing amino acids by rats. J Nutr Biochem 2006; 17:45-50. [PMID: 16084077 DOI: 10.1016/j.jnutbio.2005.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 01/19/2023]
Abstract
In this study, we attempted to evaluate changes in sulfur-containing amino acid (SCAA) metabolism after short-term high-dose alcohol ingestion. At the beginning of the study, six animals were sacrificed as the baseline group and then other animals in the experiment were consecutively gavaged with alcohol (30%, 3 g/kg) for 7 days. Animals (n=6 each) were subsequently sacrificed at the time points of Days 1 (Group E1), 3 (Group E3) and 7 (Group E7). Blood samples and selected tissues were collected at each time interval. SCAA, pyridoxal phosphate (PLP) and glutathione (GSH) levels were analyzed. Results showed that taurine levels of tissues (brain, liver, heart and kidneys) all declined after the ethanol intervention and continued to decrease in selected tissues except the brain during the experiment. Furthermore, the trends of plasma taurine and PLP contents were highly correlated (r=.98, P=.045). A similar utilization pattern of plasma taurine and PLP indicated that transsulfuration preferred taurine production to GSH synthesis. The trend of plasma taurine levels being positively correlated with PLP levels reveals that dramatic transsulfuration occurred to meet the urgent demand for taurine by brain cells. In conclusion, we reported that continual alcohol ingestion alters SCAA utilization, especially by depletion of taurine and hypotaurine and by elevation of S-adenosyl homocysteine in the selected organs.
Collapse
Affiliation(s)
- Hui-Ting Yang
- School of Pharmaceutical Science, Taipei Medical University, Taiwan
| | | | | | | |
Collapse
|
7
|
Kempson SA, Montrose MH. Osmotic regulation of renal betaine transport: transcription and beyond. Pflugers Arch 2005; 449:227-34. [PMID: 15452713 DOI: 10.1007/s00424-004-1338-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cells in the kidney inner medulla are routinely exposed to high extracellular osmolarity during normal operation of the urinary concentrating mechanism. One adaptation critical for survival in this environment is the intracellular accumulation of organic osmolytes to balance the osmotic stress. Betaine is an important osmolyte that is accumulated via the betaine/gamma-aminobutyric acid transporter (BGT1) in the basolateral plasma membrane of medullary epithelial cells. In response to hypertonic stress, there is transcriptional activation of the BGT1 gene, followed by trafficking and membrane insertion of BGT1 protein. Transcriptional activation, triggered by changes in ionic strength and water content, is an early response that is a key regulatory step and has been studied in detail. Recent studies suggest there are additional post-transcriptional regulatory steps in the pathway leading to upregulation of BGT1 transport, and that additional proteins are required for membrane insertion. Reversal of this adaptive process, upon removal of hypertonic stress, involves a rapid efflux of betaine through specific release pathways, a reduction in betaine influx, and a slower downregulation of BGT1 protein abundance. There is much more to be learned about many of these steps in BGT1 regulation.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Medical Sciences Bldg., Room 309, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | |
Collapse
|
8
|
Abstract
The countercurrent system in the medulla of the mammalian kidney provides the basis for the production of urine of widely varying osmolalities, but necessarily entails extreme conditions for medullary cells, i.e., high concentrations of solutes (mainly NaCl and urea) in antidiuresis, massive changes in extracellular solute concentrations during the transitions from antidiuresis to diuresis and vice versa, and low oxygen tension. The strategies used by medullary cells to survive in this hostile milieu include accumulation of organic osmolytes and heat shock proteins, the extensive use of the glycolysis for energy production, and a well-orchestrated network of signaling pathways coordinating medullary circulation and tubular work.
Collapse
Affiliation(s)
- Wolfgang Neuhofer
- Department of Physiology, University of Munich, D-80336 Munich, Germany.
| | | |
Collapse
|
9
|
Abstract
Change in the intracellular concentration of osmolytes or the extracellular tonicity results in a rapid transmembrane water flow in mammalian cells until intracellular and extracellular tonicities are equilibrated. Most cells respond to the osmotic cell swelling by activation of volume-sensitive flux pathways for ions and organic osmolytes to restore their original cell volume. Taurine is an important organic osmolyte in mammalian cells, and taurine release via a volume-sensitive taurine efflux pathway is increased and the active taurine uptake via the taurine specific taurine transporter TauT decreased following osmotic cell swelling. The cellular signaling cascades, the second messengers profile, the activation of specific transporters, and the subsequent time course for the readjustment of the cellular content of osmolytes and volume vary from cell type to cell type. Using Ehrlich ascites tumor cells, NIH3T3 mouse fibroblasts and HeLa cells as biological systems, it is revealed that phospholipase A2-mediated mobilization of arachidonic acid from phospholipids and subsequent oxidation of the fatty acid via lipoxygenase systems to potent eicosanoids are essential elements in the signaling cascade that is activated by cell swelling and leads to release of osmolytes. The cellular signaling cascade and the activity of the volume-sensitive taurine efflux pathway are modulated by elements of the cytoskeleton, protein tyrosine kinases/phosphatases, GTP-binding proteins, Ca2+/calmodulin, and reactive oxygen species and nucleotides. Serine/threonine phosphorylation of the active taurine uptake system TauT or a putative regulator, as well as change in the membrane potential, are important elements in the regulation of TauT activity. A model describing the cellular sequence, which is activated by cell swelling and leads to activation of the volume-sensitive efflux pathway, is presented at the end of the review.
Collapse
Affiliation(s)
- Ian Henry Lambert
- The August Krogh Institute, Biochemical Department, Universitetsparken 13, DK-2100, Copenhagen O, Denmark.
| |
Collapse
|
10
|
Bissonnette P, Coady MJ, Lapointe JY. Expression of the sodium-myo-inositol cotransporter SMIT2 at the apical membrane of Madin-Darby canine kidney cells. J Physiol 2004; 558:759-68. [PMID: 15181167 PMCID: PMC1665025 DOI: 10.1113/jphysiol.2004.064311] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 06/02/2004] [Indexed: 11/08/2022] Open
Abstract
Myo-inositol is a compatible osmolyte used by cells which are challenged by variations in extracellular osmolarity, as in the renal medulla. In order to accumulate large quantities of this polyol, cells rely on Na(+)-dependent transporters such as SMIT1. We have recently identified a second Na(+)-myo-inositol cotransporter, SMIT2, which presents transport characteristics corresponding to those recently described for the apical membrane of renal proximal tubules. In order to further characterize this transport system, we transfected Madin-Darby canine kidney (MDCK) cells with rabbit SMIT2 cDNA and selected a stable clone with a high expression level. The accumulation of radiolabelled myo-inositol by this cell line is 20-fold larger than that seen in native MDCK cells. The affinity for myo-inositol of MDCK cells transfected with SMIT2 is slightly lower (K(m)= 334 microm) than that found in voltage-clamped Xenopus laevis oocytes expressing SMIT2 (K(m)= 120 microm). Transport studies performed using semipermeable filters showed complete apical targeting of the SMIT2 transporter. This apical localization of SMIT2 was confirmed by transport studies on purified rabbit renal brush border membrane vesicles (BBMVs). Using a purified antibody against SMIT2, we were also able to detect the SMIT2 protein (molecular mass = 66 kDa) in Western blots of BBMVs purified from SMIT2-transfected MDCK cells. SMIT2 activity was also shown to be stimulated 5-fold when submitted to 24 h hypertonic treatment (+200 mosmol l(-1)). The SMIT2-MDCK cell line thus appears to be a promising model for studying SMIT2 biochemistry and regulation.
Collapse
Affiliation(s)
- Pierre Bissonnette
- Dép. physiologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada, H3C3J7.
| | | | | |
Collapse
|
11
|
Eladari D, Chambrey R, Pezy F, Podevin RA, Paillard M, Leviel F. pH dependence of Na+/myo-inositol cotransporters in rat thick limb cells. Kidney Int 2002; 62:2144-51. [PMID: 12427139 DOI: 10.1046/j.1523-1755.2002.00690.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To balance medullary interstitium hypertonicity generated by transepithelial NaCl absorption, medullary thick ascending limb (MTAL) cells accumulate myo-inositol (MI). Expression of Na+-MI cotransporter (SMIT) mRNA in TAL is correlated with the NaCl absorption rate. Our present study aimed to determine the plasma membrane location and functional properties of the Na+-MI cotransporter in MTAL cells. METHODS Preparation of basolateral (BLMV) and luminal (LMV) membrane vesicles were simultaneously isolated from purified rat MTAL suspension, and uptake of [3H]myo-inositol ([3H]MI) was used to assess Na+-MI cotransport activity. RESULTS In the presence of an inside-negative membrane potential, imposing an inwardly-directed Na+-gradient versus tetramethylammonium (TMA) stimulated the initial [3H]MI uptake in BLMV and LMV. Phlorizin inhibited Na+ gradient-dependent initial [3H]MI uptake in both preparations, with IC50 values of 565 and 29 micromol/L in BLMV and LMV, respectively. 2-0,C-methylene myo-inositol (MMI), a competitive inhibitor of MI transport, only inhibited the BLMV Na+-MI cotransporter. Phlorizin-sensitive Na+ gradient-dependent initial [3H]MI uptake showed Michaelis-Menten kinetics in both preparations, with similar Vmax but different Km values of 51 and 107 micromol/L in BLMV and LMV, respectively. Finally, BLMV but not LMV Na+-MI cotransporter exhibited a marked pH dependence with sigmoidal patterns of activation, as intravesicular pH (pHi) was decreased from 8.0 to 6.0 at extravesicular pH (pHe) 8.0, and as pHe was increased from 6.0 to 8.0 at pHi 6.0. Maximal activation was observed at pHi 6.5 and pHe 7.5. CONCLUSIONS In rat MTAL cells, Na+-MI cotransporter activity is present in both BLM and LM, and has markedly different functional properties, indicating the presence of distinct transporters. Basolateral Na+-MI cotransporter activity is maximal at physiological pH values of MTAL cells and interstitium, and a powerful modulation of the transporter activity may be exerted by pHe and pHi.
Collapse
Affiliation(s)
- Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale, Unité 356, Université Pierre et Marie Curie, Institut Fédératif de Recherche 58 and Hôpital Européen Georges Pompidou, Assistance-Publique, Hôpitaux de Paris, Paris, France
| | | | | | | | | | | |
Collapse
|