1
|
Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 2014; 23:122-9. [PMID: 24378775 DOI: 10.1097/01.mnh.0000441053.81339.61] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Locally produced peptide hormones kinins, such as bradykinin, are thought to oppose many of the prohypertensive actions of the renin-angiotensin-aldosterone system. In the kidney, bradykinin, via stimulation of B2 receptors (B2R), favors natriuresis mostly due to the inhibition of tubular Na reabsorption. Recent experimental evidence identifies the epithelial Na channel (ENaC) as a key end effector of bradykinin actions in the distal tubular segments. The focus of this review is the physiological relevance and molecular details of the bradykinin signal to ENaC. RECENT FINDINGS The recent epidemiological GenSalt study demonstrated that genetic variants of the gene encoding B2R show significant associations with the salt sensitivity of blood pressure. Bradykinin was shown to have an inhibitory effect on the distal nephron sodium transport via stimulation of B2 receptor-phospholipase C (B2R-PLC) cascade to decrease ENaC open probability. Genetic ablation of bradykinin receptors in mice led to an augmented ENaC function, particularly during elevated sodium intake, likely contributing to the salt-sensitive hypertensive phenotype. Furthermore, augmentation of bradykinin signaling in the distal nephron was demonstrated to be an important component of the natriuretic and antihypertensive effects of angiotensin converting enzyme inhibition. SUMMARY Salt-sensitive inhibition of ENaC activity by bradykinin greatly advances our understanding of the molecular mechanisms that are responsible for shutting down distal tubule sodium reabsorption during volume expanded conditions to avoid salt-sensitive hypertension.
Collapse
|
2
|
Hao S, Hernandez A, Quiroz-Munoz M, Cespedes C, Vio CP, Ferreri NR. PGE(2) EP(3) receptor downregulates COX-2 expression in the medullary thick ascending limb induced by hypertonic NaCl. Am J Physiol Renal Physiol 2014; 307:F736-46. [PMID: 25080527 DOI: 10.1152/ajprenal.00204.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We tested the hypothesis that inhibition of EP3 receptors enhances cyclooxygenase (COX)-2 expression in the thick ascending limb (TAL) induced by hypertonic stimuli. COX-2 protein expression in the outer medulla increased approximately twofold in mice given free access to 1% NaCl in the drinking water for 3 days. The increase was associated with an approximate threefold elevation in COX-2 mRNA accumulation and an increase in PGE2 production by isolated medullary (m)TAL tubules from 77.3 ± 8.4 to 165.7 ± 10.8 pg/mg protein. Moreover, administration of NS-398 abolished the increase in PGE2 production induced by 1% NaCl. EP3 receptor mRNA levels also increased approximately twofold in the outer medulla of mice that ingested 1% NaCl. The selective EP3 receptor antagonist L-798106 increased COX-2 mRNA by twofold in mTAL tubules, and the elevation in COX-2 protein induced by 1% NaCl increased an additional 50% in mice given L-798106. COX-2 mRNA in primary mTAL cells increased twofold in response to media made hypertonic by the addition of NaCl (400 mosmol/kg H2O). L-798106 increased COX-2 mRNA twofold in isotonic media and fourfold in cells exposed to 400 mosmol/kg H2O. PGE2 production by mTAL cells increased from 79.3 ± 4.6 to 286.7 ± 6.3 pg/mg protein after challenge with 400 mosmol/kg H2O and was inhibited in cells transiently transfected with a lentivirus short hairpin RNA construct targeting exon 5 of COX-2 to silence COX-2. Collectively, the data suggest that local hypertonicity in the mTAL is associated with an increase in COX-2 expression concomitant with elevated EP3 receptor expression, which limits COX-2 activity in this segment of the nephron.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| | - Alejandra Hernandez
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Mariana Quiroz-Munoz
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos Cespedes
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Carlos P Vio
- Department of Physiology, Center for Aging and Regeneration, CARE Chile UC, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York; and
| |
Collapse
|
3
|
Abstract
The mammalian kidney has an intrinsic ability to repair after significant injury. However, this process is inefficient: patients are at high risk for the loss of kidney function in later life. No therapy exists to treat established acute kidney injury (AKI) per se: strategies to promote endogenous repair processes and retard associated fibrosis are a high priority. Whole-organ gene expression profiling has been used to identify repair responses initiated with AKI, and factors that may promote the transition from AKI to chronic kidney disease. Transcriptional profiling has shown molecular markers and potential regulatory pathways of renal repair. Activation of a few key developmental pathways has been reported during repair. Whether these are comparable networks with similar target genes with those in earlier nephrogenesis remains unclear. Altered microRNA profiles, persistent tubular injury responses, and distinct late inflammatory responses highlight continuing kidney pathology. Additional insights into injury and repair processes will be gained by study of the repair transcriptome and cell-specific translatome using high-resolution technologies such as RNA sequencing and translational profiling tailored to specific cellular compartments within the kidney. An enhanced understanding holds promise for both the identification of novel therapeutic targets and biomarker-based evaluation of the damage-repair process.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA.
| |
Collapse
|
4
|
Katori M, Majima M. Renal (tissue) kallikrein-kinin system in the kidney and novel potential drugs for salt-sensitive hypertension. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:59-109. [PMID: 25130040 DOI: 10.1007/978-3-319-06683-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large variety of antihypertensive drugs, such as angiotensin converting enzyme inhibitors, diuretics, and others, are prescribed to hypertensive patients, with good control of the condition. In addition, all individuals are generally believed to be salt sensitive and, thus, severe restriction of salt intake is recommended to all. Nevertheless, the physiological defense mechanisms in the kidney against excess salt intake have not been well clarified. The present review article demonstrated that the renal (tissue) kallikrein-kinin system (KKS) is ideally situated within the nephrons of the kidney, where it functions to inhibit the reabsorption of NaCl through the activation of bradykinin (BK)-B2 receptors localized along the epithelial cells of the collecting ducts (CD). Kinins generated in the CD are immediately inactivated by two kidney-specific kinin-inactivating enzymes (kininases), carboxypeptidase Y-like exopeptidase (CPY), and neutral endopeptidase (NEP). Our work demonstrated that ebelactone B and poststatin are selective inhibitors of these kininases. The reduced secretion of the urinary kallikrein is linked to the development of salt-sensitive hypertension, whereas potassium ions and ATP-sensitive potassium channel blockers ameliorate salt-sensitive hypertension by accelerating the release of renal kallikrein. On the other hand, ebelactone B and poststatin prolong the life of kinins in the CD after excess salt intake, thereby leading to the augmentation of natriuresis and diuresis, and the ensuing suppression of salt-sensitive hypertension. In conclusion, accelerators of the renal kallikrein release and selective renal kininase inhibitors are both novel types of antihypertensive agents that may be useful for treatment of salt-sensitive hypertension.
Collapse
|
5
|
Sex differences in kidney gene expression during the life cycle of F344 rats. Biol Sex Differ 2013; 4:14. [PMID: 23902594 PMCID: PMC3844475 DOI: 10.1186/2042-6410-4-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/06/2013] [Indexed: 02/03/2023] Open
Abstract
Background The kidney functions in key physiological processes to filter blood and regulate blood pressure via key molecular transporters and ion channels. Sex-specific differences have been observed in renal disease incidence and progression, as well as acute kidney injury in response to certain drugs. Although advances have been made in characterizing the molecular components involved in various kidney functions, the molecular mechanisms responsible for sex differences are not well understood. We hypothesized that the basal expression levels of genes involved in various kidney functions throughout the life cycle will influence sex-specific susceptibilities to adverse renal events. Methods Whole genome microarray gene expression analysis was performed on kidney samples collected from untreated male and female Fischer 344 (F344) rats at eight age groups between 2 and 104 weeks of age. Results A combined filtering approach using statistical (ANOVA or pairwise t test, FDR 0.05) and fold-change criteria (>1.5 relative fold change) was used to identify 7,447 unique differentially expressed genes (DEGs). Principal component analysis (PCA) of the 7,447 DEGs revealed sex-related differences in mRNA expression at early (2 weeks), middle (8, 15, and 21 weeks), and late (104 weeks) ages in the rat life cycle. Functional analysis (Ingenuity Pathway Analysis) of these sex-different genes indicated over-representation of specific pathways and networks including renal tubule injury, drug metabolism, and immune cell and inflammatory responses. The mRNAs that code for the qualified urinary protein kidney biomarkers KIM-1, Clu, Tff3, and Lcn2 were also observed to show sex differences. Conclusions These data represent one of the most comprehensive in-life time course studies to be published, assessing sex differences in global gene expression in the F344 rat kidney. PCA and Venn analyses reveal specific periods of sexually dimorphic gene expression which are associated with functional categories (xenobiotic metabolism and immune cell and inflammatory responses) of key relevance to acute kidney injury and chronic kidney disease, which may underlie sex-specific susceptibility. Analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.
Collapse
|
6
|
Mamenko M, Zaika O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin. Hypertension 2012; 60:1234-41. [PMID: 23033373 DOI: 10.1161/hypertensionaha.112.200469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensitive distal nephron. Under normal sodium intake (0.32% Na(+)), ENaC open probability (P(o)) was modestly elevated in B1R, B2R(-/-) mice compared with wild-type mice. This difference is augmented during elevated Na(+) intake (2.00% Na(+)) and negated during Na(+) restriction (<0.01% Na(+)). Saturation of systemic mineralocorticoid status with deoxycorticosterone acetate similarly increased ENaC activity in both mouse strains, suggesting that the effect of BK on ENaC is independent of aldosterone. It is accepted that angiotensin-converting enzyme represents the major pathway of BK degradation. Systemic inhibition of angiotensin-converting enzyme with captopril (30 mg/kg of body weight for 7 days) significantly decreases ENaC activity and P(o) in wild-type mice, but this effect is diminished in B1R, B2R(-/-) mice. At the cellular level, acute captopril (100 μmol/L) treatment sensitized BK signaling cascade and greatly potentiated the inhibitory effect of 100 nmol/L of BK on ENaC. We concluded that BK cascade has its own specific role in blunting ENaC activity, particularly under conditions of elevated sodium intake. Augmentation of BK signaling in the aldosterone-sensitive distal nephron inhibits ENaC-mediated Na(+) reabsorption, contributing to the natriuretic and antihypertensive effects of angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
7
|
Vio CP, Quiroz-Munoz M, Cuevas CA, Cespedes C, Ferreri NR. Prostaglandin E2 EP3 receptor regulates cyclooxygenase-2 expression in the kidney. Am J Physiol Renal Physiol 2012; 303:F449-57. [PMID: 22622465 DOI: 10.1152/ajprenal.00634.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is constitutively expressed and highly regulated in the thick ascending limb (TAL). As COX-2 inhibitors (Coxibs) increase COX-2 expression, we tested the hypothesis that a negative feedback mechanism involving PGE(2) EP3 receptors regulates COX-2 expression in the TAL. Sprague-Dawley rats were treated with a Coxib [celecoxib (20 mg·kg(-1)·day(-1)) or rofecoxib (10 mg·kg(-1)·day(-1))], with or without sulprostone (20 μg·kg(-1)·day(-1)). Sulprostone was given using two protocols, namely, previous to Coxib treatment (prevention effect; Sulp7-Coxib5 group) and 5 days after initiation of Coxib treatment (regression effect; Coxib10-Sulp5 group). Immunohistochemical and morphometric analysis revealed that the stained area for COX-2-positive TAL cells (μm(2)/field) increased in Coxib-treated rats (Sham: 412 ± 56.3, Coxib: 794 ± 153.3). The Coxib effect was inhibited when sulprostone was used in either the prevention (285 ± 56.9) or regression (345 ± 51.1) protocols. Western blot analysis revealed a 2.1 ± 0.3-fold increase in COX-2 protein expression in the Coxib-treated group, an effect abolished by sulprostone using either the prevention (1.2 ± 0.3-fold) or regression (0.6 ± 0.4-fold vs. control, P < 0.05) protocols. Similarly, the 6.4 ± 0.6-fold increase in COX-2 mRNA abundance induced by Coxibs (P < 0.05) was inhibited by sulprostone; prevention: 0.9 ± 0.3-fold (P < 0.05) and regression: 0.6 ± 0.1 (P < 0.05). Administration of a selective EP3 receptor antagonist, L-798106, also increased the area for COX-2-stained cells, COX-2 mRNA accumulation, and protein expression in the TAL. Collectively, the data suggest that COX-2 levels are regulated by a novel negative feedback loop mediated by PGE(2) acting on its EP3 receptor in the TAL.
Collapse
Affiliation(s)
- Carlos P Vio
- Dept. of Physiology, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | |
Collapse
|
8
|
Megalin/LRP2 expression is induced by peroxisome proliferator-activated receptor -alpha and -gamma: implications for PPARs' roles in renal function. PLoS One 2011; 6:e16794. [PMID: 21311715 PMCID: PMC3032793 DOI: 10.1371/journal.pone.0016794] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/12/2011] [Indexed: 12/13/2022] Open
Abstract
Background Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. Methodology/Principal Findings Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. Conclusions PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired.
Collapse
|
9
|
Quantitative assay for bradykinin in rat plasma by liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal 2011; 54:557-61. [DOI: 10.1016/j.jpba.2010.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
|
10
|
Katori M, Majima M. A Novel Category of Anti-Hypertensive Drugs for Treating Salt-Sensitive Hypertension on the Basis of a New Development Concept. Pharmaceuticals (Basel) 2010; 3:59-109. [PMID: 27713243 PMCID: PMC3991021 DOI: 10.3390/ph3010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/20/2022] Open
Abstract
Terrestrial animals must conserve water and NaCl to survive dry environments. The kidney reabsorbs 95% of the sodium filtered from the glomeruli before sodium reaches the distal connecting tubules. Excess sodium intake requires the renal kallikrein-kinin system for additional excretion. Renal kallikrein is secreted from the distal connecting tubule cells of the kidney, and its substrates, low molecular kininogen, from the principal cells of the cortical collecting ducts (CD). Formed kinins inhibit reabsorption of NaCl through bradykinin (BK)-B₂ receptors, localized along the CD. Degradation pathway of BK by kinin-destroying enzymes in urine differs completely from that in plasma, so that ACE inhibitors are ineffective. Urinary BK is destroyed mainly by a carboxypeptidase-Y-like exopeptidase (CPY) and partly by a neutral endopeptidase (NEP). Inhibitors of CPY and NEP, ebelactone B and poststatin, respectively, were found. Renal kallikrein secretion is accelerated by potassium and ATP-sensitive potassium (KATP) channel blockers, such as PNU-37883A. Ebelactone B prevents DOCA-salt hypertension in rats. Only high salt intake causes hypertension in animals deficient in BK-B2 receptors, tissue kallikrein, or kininogen. Hypertensive patients, and spontaneously hypertensive rats, excrete less kallikrein than normal subjects, irrespective of races, and become salt-sensitive. Ebelactone B, poststatin, and KATP channel blockers could become novel antihypertensive drugs by increase in urinary kinin levels. Roles of kinin in cardiovascular diseases were discussed.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | - Masataka Majima
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| |
Collapse
|
11
|
Varoni MV, Palomba D, Demontis MP, Gianorso S, Pais GL, Anania V. Role of the brain renin-angiotensin system in blood pressure regulation. Vet Res Commun 2007; 31 Suppl 1:343-6. [PMID: 17682910 DOI: 10.1007/s11259-007-0062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M V Varoni
- Department of Animal Biology - Section of Pharmacology - Faculty of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP. Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol 2007; 293:F269-78. [PMID: 17507599 DOI: 10.1152/ajprenal.00279.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recovery of renal function is a well-characterized feature of models of acute renal failure; however, more recent studies have reported a predisposition to chronic renal disease. This study sought to determine the susceptibility to sodium-dependent hypertension following recovery from ischemic acute renal failure. Following ischemia-reperfusion (I/R) injury, rats were allowed to recover for 35 days on a 0.4% salt diet, then were switched to 4.0% salt diet for an additional 28 days. Blood pressure was significantly increased in postischemic rats switched to high-sodium diet at day 35 (19 ± 9 mmHg) compared with postischemic rats maintained on low-sodium diet. Plasma renin activity and creatinine clearance were not affected by I/R injury. The ischemic injury combined with transfer to 4.0% salt diet resulted in marked renal hypertrophy characterized by interstitial cellular deposition, tubular dilation, and enhanced rates of albumin excretion. Glomerular structure was altered in post-I/R rats switched to high-sodium diet but not in those maintained on low-sodium diets. When rats were acclimated to high-sodium diet before I/R injury, the early injury was similar to that observed in animals acclimated to low-sodium diet, and these animals progressed rapidly toward chronic kidney disease, as evidenced by advancement of albuminuria. These data suggest that the recovery from acute I/R injury is not complete, compromises Na homeostasis, and predisposes hypertension and secondary renal disease.
Collapse
|
13
|
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling. ACTA ACUST UNITED AC 2007; 3:208-21. [PMID: 17389890 DOI: 10.1038/ncpneph0444] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/16/2007] [Indexed: 11/09/2022]
Abstract
The pathogenesis of arterial hypertension often involves a rise in systemic vascular resistance (vasoconstriction and vascular remodeling) and impairment of salt excretion in the kidney (inappropriate salt retention despite elevated blood pressure). Experimental and clinical evidence implicate an imbalance between endogenous vasoconstrictor and vasodilator systems in the development and maintenance of hypertension. Kinins (bradykinin and lys-bradykinin) are endogenous vasodilators and natriuretic peptides known best for their ability to antagonize angiotensin-induced vasoconstriction and sodium retention. In humans, angiotensin-converting enzyme inhibitors, a potent class of antihypertensive agents, lower blood pressure at least partially by favoring enhanced kinin accumulation in plasma and target tissues. The beneficial actions of kinins in renal and cardiovascular disease are largely mediated by nitric oxide and prostaglandins, and extend beyond their recognized role in lowering blood pressure to include cardioprotection and nephroprotection. This article is a review of exciting, recently generated genetic, biochemical and clinical data from studies that have examined the importance of the tissue kallikrein-kinin system in protection from hypertension, vascular remodeling and renal fibrosis. Development of novel therapeutic approaches to bolster kinin activity in the vascular wall and in specific compartments in the kidney might be a highly effective strategy for the treatment of hypertension and its complications, including cardiac hypertrophy and renal failure.
Collapse
Affiliation(s)
- Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol University, Bristol, UK.
| | | | | |
Collapse
|
14
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
15
|
Hus-Citharel A, Iturrioz X, Corvol P, Marchetti J, Llorens-Cortes C. Tyrosine kinase and mitogen-activated protein kinase/extracellularly regulated kinase differentially regulate intracellular calcium concentration responses to angiotensin II/III and bradykinin in rat cortical thick ascending limb. Endocrinology 2006; 147:451-63. [PMID: 16210376 DOI: 10.1210/en.2005-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cortical thick ascending limb (CTAL) coexpresses angiotensin (Ang) II/Ang III receptor type 1A (AT(1A)-R) and bradykinin (BK) receptor type 2 (B2-R). In several cell types, these two receptors share the same signaling pathways, although their physiological functions are often opposite. In CTAL, little is known about the intracellular transduction events leading to the final physiological response induced by these two peptides. We investigated and compared in this segment the action of Ang II/III and BK on intracellular calcium concentration ([Ca2+]i) response and metabolic CO2 production, an index of Na+ transport, by using inhibitors of protein kinase C (bisindolylmaleimide), Src tyrosine kinase (herbimycin A and PP2), and MAPK/ERK (PD98059 and UO126). Ang II/III and BK (10(-7) mol/liter) released Ca2+ from the same intracellular pools but activated different Ca2+ entry pathways. Ang II/III- or BK-induced [Ca2+]i increases were similarly potentiated by bisindolylmaleimide. Herbimycin A and PP2 decreased similarly the [Ca2+]i responses induced by Ang II/III and BK. In contrast, PD98059 and UO126 affected the effects of BK to a larger extent than those of Ang II/III. Especially, the Ca2+ influx induced by BK was more strongly inhibited than that induced by Ang II/III in the presence of both compounds. The Na+ transport was inhibited by BK and stimulated by Ang II/III. The inhibitory action of BK on Na+ transport was blocked by UO126, whereas the stimulatory response of Ang II/III was potentiated by UO126 but blocked by bisindolylmaleimide. These data suggest that the inhibitory effect of BK on Na+ transport seems to be directly mediated by an increase in Ca2+ influx dependent on MAPK/ERK pathway activation. In contrast, the stimulatory effect of Ang II/III on Na+ transport is more complex and involves PKC and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Annette Hus-Citharel
- Institut National de la Santé et de la Recherche Médicale Unité 691, Collège de France, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
16
|
Basile DP, Fredrich K, Alausa M, Vio CP, Liang M, Rieder MR, Greene AS, Cowley AW. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am J Physiol Renal Physiol 2005; 288:F953-63. [PMID: 15632414 DOI: 10.1152/ajprenal.00329.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recovery from ischemic acute renal failure (ARF) involves a well-described regenerative process; however, recovery from ARF also results in a predisposition to a progressive renal disease that is not well understood. This study sought to identify alterations in renal gene expression in postischemic, recovered animals that might play important roles in this progressive disorder. RNA isolated from sham-operated control rats or rats 35 days after recovery from bilateral ischemia-reperfusion (I/R) injury was compared using a cDNA microarray containing ∼2,000 known rat genes. A reference hybridization strategy was utilized to define a 99.9% interval and to identify 16 genes that were persistently altered after recovery from I/R injury (12 were upregulated and 4 were downregulated). Real-time PCR verified the altered expression of six of eight genes that had been positively identified. Several genes that were identified had not previously been evaluated within the context of ARF. S100A4, a specific marker of fibroblasts, was identified in a population of interstitial cells that were present postischemic injury. S100A4-positive cells were also identified in tubular cells at earlier time points postischemia. Genes associated with calcification, including osteopontin and matrix Gla protein, were also enhanced postischemic injury. Several proinflammatory genes were identified, including complement C4, were enhanced in postischemic tissues. Conversely, renal kallikrein expression was specifically reduced in the postischemic kidney. In summary, genes with known inflammatory, remodeling, and vasoactive activities were identified in rat kidneys after recovery from ARF, some of which may play a role in altering long-term renal function after recovery from ARF.
Collapse
Affiliation(s)
- David P Basile
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Varoni MV, Palomba D, Gianorso S, Anania V. Cadmium as an environmental factor of hypertension in animals: new perspectives on mechanisms. Vet Res Commun 2003; 27 Suppl 1:807-10. [PMID: 14535527 DOI: 10.1023/b:verc.0000014277.06785.6f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- M V Varoni
- Department of Animal Biology, Section of Pharmacology, Faculty of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy.
| | | | | | | |
Collapse
|
18
|
Ardiles LG, Figueroa CD, Mezzano SA. Renal kallikrein-kinin system damage and salt sensitivity: insights from experimental models. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S2-8. [PMID: 12969120 DOI: 10.1046/j.1523-1755.64.s86.2.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The importance of tubulointerstitial injury in the pathophysiology of human essential hypertension, and particularly salt sensitivity, is increasingly recognized. Since the renal kallikrein-kinin system (KKS) is located in the tubulointerstitial region of the kidney it is reasonable to expect that injury to this area, whatever the cause, may impair KKS production and compromise its role in blood pressure regulation. In this review we discuss evidence of injury in the renal kallikrein-producing structures in three different experimental models characterized by prominent tubulointerstitial lesions: subtotal nephrectomy; inhibition of nitric oxide synthase; and overload proteinuria. These three experimental models have in common the development of important tubulointerstitial damage and salt-sensitive hypertension expressed after the initial injury has ceased. In these three models, reduced KKS activity may contribute to the establishment of a pathophysiologic state characterized by unopposed hyperactivity of the renin-angiotensin system, resulting in salt retention.
Collapse
Affiliation(s)
- Leopoldo G Ardiles
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile.
| | | | | |
Collapse
|
19
|
Vío CP, Jeanneret VA. Local induction of angiotensin-converting enzyme in the kidney as a mechanism of progressive renal diseases. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S57-63. [PMID: 12969129 DOI: 10.1046/j.1523-1755.64.s86.11.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiotensin Converting Enzyme (ACE) or Kininase II has a pivotal role determining the local activity of the renin angiotensin and kallikrein kinin systems. Angiotensin II (Ang II), a main hormone of the renin system, has a well established participation as a renal injury agent in models of renal disease with tubulointerstitial fibrosis. Although, since its discovery, ACE has been known to convert Ang I to Ang II, and to inactivate bradykinin (BK), only recently has been emerged evidence for a role of BK with renal protective and antifibrotic effects opposing Ang II. Pertinent to the tubulointerstitial injury, where infiltration and proliferation of macrophages and fibroblast occur, ACE also regulates the levels of the natural hemoregulatory peptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Owing the importance of tissue ACE, its distribution was studied in several models of renal injury. The results showed increased ACE in proximal tubules and ACE induction in the cell infiltrated tubulointerstitium (macrophages and myofibroblasts) of injured kidneys from hypokalemic, Goldblatt hypertensive, Ang II and phenylefrine infused rats, and in both human diabetic and membranous nephropathies. ACE, in addition to Ang II generation, may play a pathogenic role through the hydrolysis of BK and Ac-SDKP. Thus, local increase in ACE can be a novel mechanism involved in tubulointerstitial renal injury, providing, from an anatomical ground, a pathological basis for the putative deleterious effect of ACE in the diseased kidneys, and the beneficial effect of ACE inhibition.
Collapse
Affiliation(s)
- Carlos P Vío
- Department of Physiology, Pontificia Universidad Catolica de Chile, Santiago, Chile.
| | | |
Collapse
|