1
|
Adam RJ, Williams AC, Kriegel AJ. Comparison of the Surgical Resection and Infarct 5/6 Nephrectomy Rat Models of Chronic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F639-F654. [PMID: 35379002 DOI: 10.1152/ajprenal.00398.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5/6 nephrectomy rat remnant kidney model is commonly employed to study chronic kidney disease (CKD). This model requires removal of one whole kidney and two-thirds of the other. The two most common ways of producing the remnant kidney are surgical resection of poles, known as the polectomy (Pol) model, or ligation of upper and lower renal arterial branches, resulting in pole infarction (Inf). These models have much in common, but also major phenotypic differences, and thus respectively model unique aspects of human CKD. The purpose of this review is to summarize phenotypic similarities and differences between these two models and their relation to human CKD, while emphasizing their vascular phenotype. In this article we review studies that have evaluated arterial blood pressure, the renin-angiotensin-aldosterone-system (RAAS), autoregulation, nitric oxide, single nephron physiology, angiogenic and anti-angiogenic factors, and capillary rarefaction in these two models. Phenotypic similarities: both models spontaneously develop hallmarks of human CKD including uremia, fibrosis, capillary rarefaction, and progressive renal function decline. They both undergo whole-organ hypertrophy, hyperfiltration of functional nephrons, reduced renal expression of angiogenic factor VEGF, increased renal expression of the anti-angiogenic thrombospondin-1, impaired renal autoregulation, and abnormal vascular nitric oxide physiology. Key phenotypic differences: the Inf model develops rapid-onset, moderate-to-severe systemic hypertension, and the Pol model early normotension followed by mild-to-moderate hypertension. The Inf rat has a markedly more active renin-angiotensin-aldosterone-system. Comparison of these two models facilitates understanding of how they can be utilized for studying CKD pathophysiology (e.g., RAAS dependent or independent pathology).
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Affiliation(s)
- Karen A Griffin
- From the Hines VA Hospital, IL; and Loyola University Medical Center, Maywood, IL.
| |
Collapse
|
3
|
Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system. Br J Nutr 2016; 116:1491-1501. [PMID: 27753426 DOI: 10.1017/s0007114516003536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.
Collapse
|
4
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
The Role of Systemic Blood Pressure in the Progression of Chronic Kidney Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2015. [DOI: 10.1007/s12170-015-0450-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Bidani AK, Griffin KA, Williamson G, Wang X, Loutzenhiser R. Protective importance of the myogenic response in the renal circulation. Hypertension 2009; 54:393-8. [PMID: 19546375 DOI: 10.1161/hypertensionaha.109.133777] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anil K Bidani
- Loyola University Medical Center, 2160 South First Ave, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Antihypertensive therapy remains the most effective strategy for slowing the progression of chronic kidney disease (CKD). However, in proteinuric nephropathies, calcium channel blockers (CCBs) are less effective than other antihypertensives unless normotension is achieved. This is because the glomerular capillaries, rather than larger vessels, are the primary site of hypertensive injury in proteinuric nephropathies. CCBs impair renal autoregulation, which protects glomerular capillaries against the transmission of systemic pressures. CCBs' renoprotective inferiority in the comparator group likely accounts for the greater renoprotection observed with renin-angiotensin system blockade rather than blood pressure (BP)-independent renoprotective superiority. Nevertheless, CKD patients are at greater absolute risk for cardiovascular events rather than end-stage renal disease. Therefore, if the needed BP reductions cannot be achieved with other agents, it may be appropriate to use CCBs because of their antihypertensive effectiveness, provided care is taken to ensure normotension and to closely monitor proteinuria and renal disease progression.
Collapse
|
8
|
Abstract
Substantial evidence indicates that hypertension is a major contributor to the development of end-stage renal disease in most patients. However, such risk ranges from being fairly low in essential hypertension to a marked increase in susceptibility to hypertensive injury in patients with chronic kidney disease, including diabetic nephropathy. Studies in experimental animal models using blood pressure radiotelemetry have provided significant insights into the quantitative relationships between blood pressure and renal damage and the importance of protective renal autoregulatory capacity as a determinant of such differences in susceptibility to hypertensive injury. Moreover, such investigations have also emphasized the predominant importance of achieving normotension per se over the selection of particular antihypertensive regimens, including renin-angiotensin system blockade, in slowing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola University Medical Center and Edward Hines VA Hospital, Maywood, IL 60153, USA.
| |
Collapse
|
9
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
10
|
Bidani AK, Picken M, Hacioglu R, Williamson G, Griffin KA. Spontaneously reduced blood pressure load in the rat streptozotocin-induced diabetes model: potential pathogenetic relevance. Am J Physiol Renal Physiol 2006; 292:F647-54. [PMID: 16968892 PMCID: PMC1794259 DOI: 10.1152/ajprenal.00017.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rat streptozotocin (STZ)-induced diabetes model is widely used to investigate the pathogenesis of diabetic nephropathy. However, overt nephropathy is inexplicably slow to develop in this model compared with renal mass reduction (RMR) models. To examine whether blood pressure (BP) differences correlated with the time course of glomerulosclerosis (GS), BP was measured continuously throughout the course by radiotelemetry in control (n = 17), partially insulin-treated STZ-diabetes (average blood glucose 364 +/- 15 mg/dl; n = 15), and two normotensive RMR models (systolic BP <140 mmHg)--uninephrectomy (UNX; n = 16) and 3/4 RMR by surgical excision [right nephrectomy + excision of both poles of left kidney (RK-NX); n = 12] in Sprague-Dawley rats. Proteinuria and GS were assessed at approximately 16-20 wk (all groups) and at 36-40 wk (all groups except RK-NX). At 16 wk, significantly greater proteinuria and GS had developed in the RK-NX group compared with the other three groups (not different from each other). By 36-40 wk, substantial proteinuria and GS had also developed in the UNX group, but both the control and the STZ-diabetic rats exhibited comparable modest proteinuria and minimal GS. Systolic BP (mmHg) was significantly reduced in the STZ-diabetic rats (116 +/- 1.1) compared with both control (124 +/- 1.0) and RMR (128 +/- 1.2 and 130 +/- 3.0) groups (P < 0.01). Similarly, "BP load" as estimated by BP power spectral analysis was also lower in the STZ-diabetic rats. Given the known protective effects of BP reductions on the progression of diabetic nephropathy, it is likely that this spontaneous reduction in ambient BP contributes to the slow development of GS in the STZ-diabetes model compared with the normotensive RMR models.
Collapse
Affiliation(s)
- Anil K Bidani
- Department of Internal Medicine, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
11
|
Griffin KA, Bidani AK. Progression of renal disease: renoprotective specificity of renin-angiotensin system blockade. Clin J Am Soc Nephrol 2006; 1:1054-65. [PMID: 17699327 DOI: 10.2215/cjn.02231205] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent guidelines for management of patients with chronic kidney disease recommend both lower optimal BP targets and agents that block the renin-angiotensin system (RAS) for specific additional BP-independent renoprotection. Although there are other compelling rationales to use RAS blockade in patients with chronic kidney disease, including its antihypertensive effectiveness and ability to counteract the adverse effects of diuretics, a critical review of the available scientific evidence suggests that the specificity of renoprotection that is provided by RAS blockade has been greatly overemphasized. Little evidence of truly BP-independent renoprotection is observed in experimental animal models when ambient BP is assessed adequately by chronic continuous BP radiotelemetry. Although the clinical trial evidence is somewhat stronger, nevertheless, even when interpreted favorably, the absolute magnitude of the BP-independent component of the renoprotection that is observed with RAS blockade is much smaller than what is due to its antihypertensive effects.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
12
|
Loutzenhiser R, Griffin K, Williamson G, Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1153-67. [PMID: 16603656 PMCID: PMC1578723 DOI: 10.1152/ajpregu.00402.2005] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
When the kidney is subjected to acute increases in blood pressure (BP), renal blood flow (RBF) and glomerular filtration rate (GFR) are observed to remain relatively constant. Two mechanisms, tubuloglomerular feedback (TGF) and the myogenic response, are thought to act in concert to achieve a precise moment-by-moment regulation of GFR and distal salt delivery. The current view is that this mechanism insulates renal excretory function from fluctuations in BP. Indeed, the concept that renal autoregulation is necessary for normal renal function and volume homeostasis has long been a cornerstone of renal physiology. This article presents a very different view, at least regarding the myogenic component of this response. We suggest that its primary purpose is to protect the kidney against the damaging effects of hypertension. The arguments advanced take into consideration the unique properties of the afferent arteriolar myogenic response that allow it to protect against the oscillating systolic pressure and the accruing evidence that when this response is impaired, the primary consequence is not a disturbed volume homeostasis but rather an increased susceptibility to hypertensive injury. It is suggested that redundant and compensatory mechanisms achieve volume regulation, despite considerable fluctuations in distal delivery, and the assumed moment-by-moment regulation of renal hemodynamics is questioned. Evidence is presented suggesting that additional mechanisms exist to maintain ambient levels of RBF and GFR within normal range, despite chronic alterations in BP and severely impaired acute responses to pressure. Finally, the implications of this new perspective on the divergent roles of the myogenic response to pressure vs. the TGF response to changes in distal delivery are considered, and it is proposed that in addition to TGF-induced vasoconstriction, vasodepressor responses to reduced distal delivery may play a critical role in modulating afferent arteriolar reactivity to integrate the regulatory and protective functions of the renal microvasculature.
Collapse
|
13
|
Loutzenhiser R, Griffin KA, Bidani AK. Systolic blood pressure as the trigger for the renal myogenic response: protective or autoregulatory? Curr Opin Nephrol Hypertens 2006; 15:41-9. [PMID: 16340665 DOI: 10.1097/01.mnh.0000199011.41552.de] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The ability of the kidney to autoregulate renal blood flow and glomerular filtration rate has long been viewed as existing to prevent fluctuations in blood pressure from causing parallel fluctuations in renal function and distal delivery of filtrate. This review, however, points out that the primary consequence of the loss of this autoregulatory capacity is not a disturbance in volume regulation, but rather an increased susceptibility to hypertensive injury. Moreover, the kinetic requirements for renal protection indicate that current views of dynamic autoregulation cannot explain how the kidney is normally protected against acute elevations in systolic blood pressure. RECENT FINDINGS Recent findings suggest that the kinetics of the myogenic mechanism of the afferent arteriole are uniquely suited to protect against acute elevations in the systolic blood pressure, in that this vessel not only senses this rapidly oscillating blood pressure component, but that its response is exclusively dependent on this signal. SUMMARY These new findings are consistent with recent data indicating that it is the systolic blood pressure elevations that most closely correlate with target organ damage. The fact that the myogenic mechanism is also a necessary component of renal autoregulation may explain the strong linkage between autoregulatory impairment and increased susceptibility to hypertensive injury.
Collapse
Affiliation(s)
- Rodger Loutzenhiser
- Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|
14
|
Palmer BF. Disturbances in Renal Autoregulation and the Susceptibility to Hypertension-Induced Chronic Kidney Disease. Am J Med Sci 2004; 328:330-43. [PMID: 15599329 DOI: 10.1016/s0002-9629(15)33943-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The risk of developing chronic kidney disease in the setting of hypertension varies among patient populations. Black hypertensive patients have an increased risk of developing hypertension-induced chronic kidney disease even after taking into account socioeconomic factors. There is evidence to suggest that the kidney is intrinsically more susceptible to the damaging effects of hypertension in black patients. This susceptibility can be traced to disturbances in the way the kidney autoregulates. Impaired renal autoregulation may be the renal manifestation of a more widespread abnormality in endothelial function. Other conditions that can impair renal autoregulation and add to the risk of chronic kidney disease include low birth weight, obesity, insulin resistance, hyperuricemia, and hypercholesterolemia. To minimize the risk of chronic kidney disease in patients with impaired renal autoregulatory capability, strict blood pressure control is required. There is indirect evidence that blocking the renin-angiotensin system may improve renal autoregulation.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA.
| |
Collapse
|
15
|
Griffin KA, Bidani AK. Hypertensive renal damage: insights from animal models and clinical relevance. Curr Hypertens Rep 2004; 6:145-53. [PMID: 15010020 DOI: 10.1007/s11906-004-0091-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Investigations using chronic blood pressure (BP) radiotelemetry in conscious animals have provided substantial insights into the pathophysiology of hypertensive renal damage. Normal renal autoregulation protects the renal microvasculature from significant injury in most patients with primary hypertension, unless BP exceeds a certain threshold, when malignant nephrosclerosis develops. However, if autoregulation is impaired, as in chronic renal disease and/or diabetes models, the threshold for renal damage is lowered and glomerulosclerosis (GS) increases linearly with increasing BP. Modest BP reductions are predicted to prevent malignant nephrosclerosis, but prevention of GS in patients with diabetes and chronic renal disease requires that BP be lowered well into the normotensive range, as recognized in the currently recommended BP goals. When BP load is accurately assessed in these experimental models, renal protection is proportional to the achieved BP reductions, and there is little evidence of BP-independent protection, even with agents that block the renin-angiotensin system (RAS). Recent clinical data also suggest that achieving lower BP targets might be vastly more important than the choice of therapeutic regimens. Nevertheless, because aggressive diuretic use is usually necessary to achieve such BP goals, RAS blockade should be included as initial therapy both for antihypertensive synergy and to minimize the potassium and magnesium depletion associated with diuretics.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
16
|
Griffin KA, Picken MM, Bidani AK. Blood pressure lability and glomerulosclerosis after normotensive 5/6 renal mass reduction in the rat. Kidney Int 2004; 65:209-18. [PMID: 14675052 DOI: 10.1111/j.1523-1755.2004.00356.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hypertension plays a major role in the progression of both experimental and clinical chronic renal disease. However, the pathogenesis of the more slowly developing glomerulosclerosis that is seen even in the absence of overt hypertension, both in renal mass reduction models and in humans with chronic renal disease, remains controversial. METHODS The relationship of such glomerulosclerosis to the ambient blood pressure profiles was examined in the normotensive approximately 5/6 surgical excision rat remnant kidney model. Blood pressure was radiotelemetrically monitored at 10-minute intervals for 15 to 16 weeks ( approximately 15,000 blood pressure readings) in untreated rats (N= 13), or those treated with enalapril (N= 8), amlodipine (N= 9), or a combination of hydralazine, reserpine, and hydrochlorothiazide (N= 10). RESULTS Even in these normotensive rats (systolic blood pressure <140 mm Hg), % glomerulosclerosis was significantly correlated with the overall average systolic blood pressure (r= 0.62, P < 0.0001; N= 40). However, much stronger correlations were observed between glomerulosclerosis and the % systolic blood pressure readings >150 mm Hg (r= 0.77, P < 0.0001) and the standard deviation of the average systolic blood pressure (r= 0.87, P < 0.0001). CONCLUSION These data indicate that pressure dependent injury mechanisms continue to contribute to glomerular injury even within the "normotensive" blood pressure range in rats with reduced renal mass. This most likely represents the consequence of the impairment of protective renal autoregulation and enhanced glomerular transmission of the blood pressure fluctuations into the hypertensive range characteristic of the conscious state in both experimental animals and in humans. Such pathophysiology supports the need for more aggressive and around-the-clock blood pressure control in chronic renal disease.
Collapse
Affiliation(s)
- Karen A Griffin
- Department of Internal Medicine, Loyola University Medical Center and Hines VA Hospital, Maywood, Illinois 60153, USA.
| | | | | |
Collapse
|
17
|
Abstract
Unlike the majority of patients with uncomplicated hypertension in whom minimal renal damage develops in the absence of severe blood pressure (BP) elevations, patients with diabetic and nondiabetic chronic kidney disease (CKD) exhibit an increased vulnerability to even moderate BP elevations. Investigations in experimental animal models have revealed that this enhanced susceptibility is a consequence of an impairment of the renal autoregulatory mechanisms that normally attenuate the transmission of elevated systemic pressures to the glomeruli in uncomplicated hypertension. The markedly lower BP threshold for renal damage and the steeper slope of relationship between BP and renal damage in such states necessitates that BP be lowered into the normotensive range to prevent progressive renal damage. When BP is accurately measured using radiotelemetry in animal models, the renal protection provided by renin-angiotensin system (RAS) blockade is proportional to the BP reduction with little evidence of BP-independent protection. A critical evaluation of the clinical data also suggests that the BP-independent renoprotection by RAS blockade has been overemphasized and that achieving lower BP targets is more important than the selection of antihypertensive regimens. However, achievement of such BP goals is difficult in CKD patients without aggressive diuresis, because of their proclivity for salt retention. The effectiveness of RAS blockers in lowering BP in patients who have been adequately treated with diuretics, along with their potassium-sparing and magnesium-sparing effects, provides a more compelling rationale for the use of RAS blockade in the treatment of CKD patients than any putative BP-independent renoprotective superiority.
Collapse
Affiliation(s)
- Anil K Bidani
- Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
18
|
Griffin KA, Hacioglu R, Abu-Amarah I, Loutzenhiser R, Williamson GA, Bidani AK. Effects of calcium channel blockers on “dynamic” and “steady-state step” renal autoregulation. Am J Physiol Renal Physiol 2004; 286:F1136-43. [PMID: 14996672 DOI: 10.1152/ajprenal.00401.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal autoregulation (AR) mechanisms provide the primary protection against transmission of systemic pressures and hypertensive renal damage. However, the relative merits of the “step” change vs. “dynamic” methods for the assessment of AR capacity remain controversial. The effects of 48–72 h of orally administered amlodipine (L-type) and mibefradil (T-type) calcium channel blockers (CCBs) on step and dynamic AR in Sprague-Dawley rats were compared. Both CCBs significantly impaired “steady-state step” AR (autoregulatory indexes = ∼0.5 vs. ∼0.1 in controls, P < 0.05; n = 9–10/group). By contrast, dynamic AR compensation in separate conscious rats ( n = 12) was not significantly altered by either amlodipine ( n = 10) or mibefradil ( n = 6; fractional gain in admittance ∼0.4–0.5 in all groups at frequencies in the range of 0.0025–0.025 Hz). However, both CCBs tended to attenuate the myogenic resonance peak along with shifting it to a significantly slower frequency ( P < 0.001) during dynamic AR, but no consistent effects were observed on the tubuloglomerular feedback resonance peak. While the reasons for the insensitivity of dynamic vs. steady-state step AR capacity estimates to CCBs remain to be established, the present data indicate that dynamic AR methods may have a limited utility for assessing AR capacity but may provide potentially important insights into the operational characteristics of AR control mechanisms. A strong correlation was also observed between the average conductance and the admittance gain at the heart beat frequency ( r = 0.77, P < 0.001), suggesting that such parameters may provide additional and possibly more meaningful indexes of BP transmission in conscious animals during dynamic AR.
Collapse
Affiliation(s)
- Karen A Griffin
- Loyola Univ. Medical Ctr., 2160 South First Ave., Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|