1
|
Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine. Vaccine 2012; 30:3876-84. [PMID: 22512976 DOI: 10.1016/j.vaccine.2012.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/20/2012] [Accepted: 04/01/2012] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (H. pylori) is the most important etiological agent of chronic active gastritis, peptic ulcer disease and gastric cancer. The aim of this study was to evaluate the efficacy of alkyl hydroperoxide reductase (AhpC) and mannosylated AhpC (mAhpC) as candidate vaccines in the C57BL/6J mouse model of H. pylori infection. Recombinant AhpC was cloned, over-expressed and purified in an unmodified form and was also engineered to incorporate N and C-terminal mannose residues when expressed in the yeast Pichia pastoris. Mice were immunized systemically and mucosally with AhpC and systemically with mAhpC prior to challenge with H. pylori. Serum IgG responses to AhpC were determined and quantitative culture was used to determine the efficacy of vaccination strategies. Systemic prophylactic immunization with AhpC/alum and mAhpC/alum conferred protection against infection in 55% and 77.3% of mice, respectively. Mucosal immunization with AhpC/cholera toxin did not protect against infection and elicited low levels of serum IgG in comparison with systemic immunization. These data support the use of AhpC as a potential vaccine candidate against H. pylori infection.
Collapse
|
2
|
O’Reilly N, Bergin D, Reeves E, McElvaney N, Kavanagh K. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol 2012; 166:753-60. [DOI: 10.1111/j.1365-2133.2011.10746.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Alkylhydroperoxide reductase of Helicobacter pylori as a biomarker for gastric patients with different pathological manifestations. Biochimie 2011; 93:1115-23. [DOI: 10.1016/j.biochi.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/17/2011] [Indexed: 12/25/2022]
|
4
|
Zárate-Aquino C, Torres-Marcial J, Ortiz-Herrera M, Romero-Ramírez H, Santos-Argumedo L, López-Corella E, Coria-Jiménez R. Identification of Helicobacter pylori strain cagPAI+ and cagPAI- Antigens by IgG antibodies from sera of experimentally colonized meriones unguiculatus (Mongolian gerbils). Helicobacter 2011; 16:200-9. [PMID: 21585605 DOI: 10.1111/j.1523-5378.2011.00831.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mongolian gerbils that are experimentally infected with Helicobacter pylori develop a chronic inflammation that is similar to natural infections in humans. The aim of this study was to compare the antigens of H. pylori cagPAI+ and cagPAI- strains that are expressed during Meriones unguiculatus colonization. MATERIALS AND METHODS We identified H. pylori cagPAI+ and cagPAI- strain antigens via Western blotting of samples from Mongolian gerbils that were subjected to unique, mixed, and sequential bacterial infections. RESULTS The antigens from the J99/CG3 (cagPAI+) strain had a lower molecular weight than the antigens from the 251F/CG3 (cagPAI-) strain. There were fewer identified antigens in the single unique infections compared with the mixed and sequential infections. The number of recognized antigens that had a frequency of recognition >60% was higher for the simultaneous and sequential infection groups compared with the single infection group. A 57-kDa antigen was present in >60% of the samples and four of the five experimental groups. Antigens specific to each bacterial strain were identified; the 190- and 158-kDa antigens appear to be specific for cagPAI-, and the 70-kDa antigen appears to be specific for cagPAI+. CONCLUSIONS In this study, we identified antigens that are common and specific to the H. pylori cagPAI+ and cagPAI- strains.
Collapse
Affiliation(s)
- Carmen Zárate-Aquino
- Laboratory of Experimental Bacteriology, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
5
|
Immune reactions against elongation factor 2 kinase: specific pathogenesis of gastric ulcer from Helicobacter pylori infection. Clin Dev Immunol 2009; 2009:850623. [PMID: 19636416 PMCID: PMC2712636 DOI: 10.1155/2009/850623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/13/2009] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (H. pylori) infection is a definite causative factor for gastric ulcers (GUs). In the present study we detected a specific antigen of gastric epithelial cells (HGC-27) using cell ELISA, which was recognized by the sera of GU patients (n = 20) but not in patients with chronic gastritis (CG; n = 20) or in healthy volunteers (HC; n = 10). This antigen was over-expressed by a stressful (heat-stressed) environment, and was identified as elongation factor 2 kinase (EF-2K) by western blotting. The GU patients' lymphocytes stimulated by H. pylori specifically disrupted heat-stressed HGC-27 cells in a cytotoxic assay. In flow cytometry, the effector cells (lymphocytes) from GU patients were significantly differentiated to T helper type 1 lymphocyte (Th1) and cytotoxic T lymphocyte (CTL) as opposed to those from CG patients. The target cells (HGC-27) expressed EF-2K and MHC-class I together with costimulatory molecules from heat stress. This antigen specific immune mechanism could have a prominent role in the pathogenesis of GU.
Collapse
|
6
|
Loke MF, Lui SY, Ng BL, Gong M, Ho B. Antiadhesive property of microalgal polysaccharide extract on the binding of Helicobacter pylori to gastric mucin. ACTA ACUST UNITED AC 2007; 50:231-8. [PMID: 17521357 DOI: 10.1111/j.1574-695x.2007.00248.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The emergence of antibiotic-resistant Helicobacter pylori is of concern in the treatment of H. pylori-associated gastroduodenal diseases. As the organism was reported to bind gastric mucin, we used porcine gastric mucin as substrate to assess the antiadhesive property of polysaccharides derived from Spirulina (PS), a commercially available microalga, against the binding of H. pylori to gastric mucin. Results show that polysaccharides prevented H. pylori from binding to gastric mucin optimally at pH 2.0, without affecting the viability of either bacteria or gastric epithelial cells, thus favouring its antiadhesive action in a gastric environment. Using ligand overlay analysis, polysaccharide was demonstrated to bind H. pylori alkyl hydroperoxide reductase (AhpC) and urease, which have shown here to possess mucin-binding activity. An in vivo study demonstrated that bacteria load was reduced by >90% in BALB/c mice treated with either Spirulina or polysaccharides. It is thus suggested that polysaccharides may function as a potential antiadhesive agent against H. pylori colonization of gastric mucin.
Collapse
Affiliation(s)
- Mun Fai Loke
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
7
|
Serrano C, Diaz MI, Valdivia A, Godoy A, Peña A, Rollan A, Kirberg A, Hebel E, Fierro J, Klapp G, Venegas A, Harris PR. Relationship between Helicobacter pylori virulence factors and regulatory cytokines as predictors of clinical outcome. Microbes Infect 2007; 9:428-34. [PMID: 17336120 PMCID: PMC3821925 DOI: 10.1016/j.micinf.2006.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/27/2006] [Accepted: 12/27/2006] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori infection is highly prevalent in Chile (73%). Usually a minority of infected patients develops complications such as ulcers and gastric cancer that have been associated with the presence of virulence factors (cagA, vacA) and host T helper response (Th1/Th2). Our aim was to evaluate the relationship between strain virulence and host immune response, using a multiple regression approach for the development of a model based on data collected from H. pylori infected patients in Chile. We analyzed levels of selected cytokines determined by ELISA (interleukin (IL)-12, IL-10, interferon (IFN)-gamma and IL-4) and the presence of cagA and vacA alleles polymorphisms determined by PCR in antral biopsies of 41 patients referred to endoscopy. By multiple regression analysis we established a correlation between bacterial and host factors using clinical outcome (gastritis and duodenal ulcer) as dependent variables. The selected model was described by: clinical outcome=0.867491 (cagA)+0.0131847 (IL-12/IL-10)+0.0103503 (IFN-gamma/IL-4) and it was able to explain over 90% of clinical outcomes observations (R(2)=96.4). This model considers that clinical outcomes are better explained by the interaction of host immune factors and strain virulence as a complex and interdependent mechanism.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, Santiago, Chile
| | - Maria Ines Diaz
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Alejandra Valdivia
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Alex Godoy
- Department of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, Santiago, Chile
| | - Alfredo Peña
- Department of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, Santiago, Chile
| | - Antonio Rollan
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 361, Santiago, Chile
| | - Arturo Kirberg
- Hospital Regional de Iquique, Heroes de la Concepción 502, Iquique, Chile
| | - Eduardo Hebel
- Department of Pediatrics, Universidad de la Frontera, Hospital Regional de Temuco, Manuel Montt 115, Temuco, Chile
| | - Jaqueline Fierro
- Department of Pediatrics, Universidad de la Frontera, Hospital Regional de Temuco, Manuel Montt 115, Temuco, Chile
| | - Gerardo Klapp
- Hospital Regional Dr. Lautaro Navarro Avaria, Angamos 180, Punta Arenas, Chile
| | - Alejandro Venegas
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | - Paul R. Harris
- Department of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Lira 85, Santiago, Chile
- Correspondence: Paul R. Harris, M.D., 391 Marcoleta, CIM, Santiago, Chile, Zip code 6510273; phone: (562)354-8177; fax:(562)638-4307;
| |
Collapse
|
8
|
Pyndiah S, Lasserre JP, Ménard A, Claverol S, Prouzet-Mauléon V, Mégraud F, Zerbib F, Bonneu M. Two-dimensional blue native/SDS gel electrophoresis of multiprotein complexes from Helicobacter pylori. Mol Cell Proteomics 2006; 6:193-206. [PMID: 17092930 DOI: 10.1074/mcp.m600363-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The study of protein interactions constitutes an important domain to understand the physiology and pathogenesis of microorganisms. The two-dimensional blue native/SDS-PAGE was initially reported to analyze membrane protein complexes. In this study, both cytoplasmic and membrane complexes of a bacterium, the strain J99 of the gastric pathogen Helicobacter pylori, were analyzed by this method. It was possible to identify 34 different proteins grouped in 13 multiprotein complexes, 11 from the cytoplasm and two from the membrane, either previously reported partially or totally in the literature. Besides complexes involved in H. pylori physiology, this method allowed the description of interactions involving known pathogenic factors such as (i) urease with the heat shock protein GroEL or with the putative ketol-acid reductoisomerase IlvC and (ii) the cag pathogenicity island CagA protein with the DNA gyrase GyrA as well as insight on the partners of TsaA, a peroxide reductase/stress-dependent molecular chaperone. The two-dimensional blue native/SDS-PAGE combined with mass spectrometry is a potential tool to study the differences in complexes isolated in various situations and also to study the interactions between bacterial and eucaryotic cell proteins.
Collapse
|
9
|
Chitlaru T, Gat O, Gozlan Y, Ariel N, Shafferman A. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 2006; 188:3551-71. [PMID: 16672610 PMCID: PMC1482852 DOI: 10.1128/jb.188.10.3551-3571.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 02/19/2006] [Indexed: 12/17/2022] Open
Abstract
The secretomes of a virulent Bacillus anthracis strain and of avirulent strains (cured of the virulence plasmids pXO1 and pXO2), cultured in rich and minimal media, were studied by a comparative proteomic approach. More than 400 protein spots, representing the products of 64 genes, were identified, and a unique pattern of protein relative abundance with respect to the presence of the virulence plasmids was revealed. In minimal medium under high CO(2) tension, conditions considered to simulate those encountered in the host, the presence of the plasmids leads to enhanced expression of 12 chromosome-carried genes (10 of which could not be detected in the absence of the plasmids) in addition to expression of 5 pXO1-encoded proteins. Furthermore, under these conditions, the presence of the pXO1 and pXO2 plasmids leads to the repression of 14 chromosomal genes. On the other hand, in minimal aerobic medium not supplemented with CO(2), the virulent and avirulent B. anthracis strains manifest very similar protein signatures, and most strikingly, two proteins (the metalloproteases InhA1 and NprB, orthologs of gene products attributed to the Bacillus cereus group PlcR regulon) represent over 90% of the total secretome. Interestingly, of the 64 identified gene products, at least 31 harbor features characteristic of virulence determinants (such as toxins, proteases, nucleotidases, sulfatases, transporters, and detoxification factors), 22 of which are differentially regulated in a plasmid-dependent manner. The nature and the expression patterns of proteins in the various secretomes suggest that distinct CO(2)-responsive chromosome- and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | | | | | | | | |
Collapse
|
10
|
Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH. The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci U S A 2006; 103:2552-7. [PMID: 16481626 PMCID: PMC1413804 DOI: 10.1073/pnas.0510770103] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori, an oxygen-sensitive microaerophilic bacterium, contains many antioxidant proteins, among which alkylhydroperoxide reductase (AhpC) is the most abundant. The function of AhpC is to protect H. pylori from a hyperoxidative environment by reduction of toxic organic hydroperoxides. We have found that the sequence of AhpC from H. pylori is more homologous to mammalian peroxiredoxins than to eubacterial AhpC. We have also found that the protein structure of AhpC could shift from low-molecular-weight oligomers with peroxide-reductase activity to high-molecular-weight complexes with molecular-chaperone function under oxidative stresses. Time-course study by following the quaternary structural change of AhpC in vivo revealed that this enzyme changes from low-molecular-weight oligomers under normal microaerobic conditions or short-term oxidative shock to high-molecular-weight complexes after severe long-term oxidative stress. This study revealed that AhpC of H. pylori acts as a peroxide reductase in reducing organic hydroperoxides and as a molecular chaperone for prevention of protein misfolding under oxidative stress.
Collapse
Affiliation(s)
- Ming-Hong Chuang
- *Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Wan-Lin Lo
- *Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; and
- The Scripps Research Institute, La Jolla, CA 92037
- **To whom correspondence may be addressed. E-mail:
or
| | - Shyh-Horng Chiou
- *Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- **To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
11
|
Brzozowski T, Konturek PC, Mierzwa M, Drozdowicz D, Bielanski W, Kwiecien S, Konturek SJ, Stachura J, Pawlik WW, Hahn EG. Effect of probiotics and triple eradication therapy on the cyclooxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils. Helicobacter 2006; 11:10-20. [PMID: 16423085 DOI: 10.1111/j.0083-8703.2006.00373.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Helicobacter pylori infection in Mongolian gerbils is an established experimental model of gastric carcinogenesis that mimics H. pylori-positive patients developing gastric ulcer and gastric cancer, but the effect of probiotic therapy on functional aspects of this infection remains unknown. METHODS We compared the effects of intragastric inoculation of gerbils with H. pylori strain (cagA+ vacA+, 5 x 10(6) colony forming units/ml) with or without triple therapy including omeprazole, amoxicillin, and tinidazol or probiotic bacteria Lacidofil. Histology of glandular mucosa, the viable H. pylori, and density of H. pylori colonization were evaluated. The gastric blood flow was measured by H2-gas clearance method; the plasma gastrin and gastric luminal somatostatin were determined by RIA and expression of cyclooxygenase (COX)-2 and apoptotic Bax and Bcl-2 proteins were evaluated by Western blot. RESULTS The gastric H. pylori infection was detected in all animals by histology and H. pylori culture. Basal gastric acid was significantly reduced in H. pylori-infected animals but not in those with triple therapy or Lacidofil. Early lesions were seen already 4 weeks upon H. pylori inoculation and consisted of chronic gastritis and glandular atypia associated with typical regenerative hyperplasia and increased mitotic activity and formation of apoptotic bodies. The H. pylori infection was accompanied by the fall in gastric blood flow, the marked increase in plasma gastrin, the significant fall in gastric somatostatin levels and Bcl-2 protein expression, and the rise in expression of COX-2 and Bax proteins. These mucosal changes were counteracted by the triple therapy and Lacidofil. CONCLUSIONS H. pylori infection in gerbils, associated with regenerative hyperplasia of glandular structure, results in the suppression of gastric secretion, overexpression of COX-2, and enhancement in apoptosis and impairment of both, gastric blood flow and gastrin-somatostatin link that were reversed by anti-H. pylori triple therapy and attenuated by probiotics.
Collapse
Affiliation(s)
- Tomasz Brzozowski
- Department of Physiology Jagiellonian University School of Medicine, Cracow, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nurgalieva ZZ, Conner ME, Opekun AR, Zheng CQ, Elliott SN, Ernst PB, Osato M, Estes MK, Graham DY. B-cell and T-cell immune responses to experimental Helicobacter pylori infection in humans. Infect Immun 2005; 73:2999-3006. [PMID: 15845507 PMCID: PMC1087341 DOI: 10.1128/iai.73.5.2999-3006.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute antibody and T-cell immune response to Helicobacter pylori infection in humans has not been studied systematically. Serum from H. pylori-naive volunteers challenged with H. pylori and cured after 4 or 12 weeks was tested by enzyme-linked immunosorbent assays for anti-H. pylori-specific immunoglobulin M (IgM) and IgA established using bacterial lysates from homologous (the infecting strain) and heterologous H. pylori. Proteins recognized by IgM antibody were identified by mass spectrometry of immunoreactive bands separated by two-dimensional gel electrophoresis. Mucosal T-cell subsets (CD4, CD8, CD3, and CD30 cells) were assessed by immunohistochemistry. All 18 infected volunteers developed H. pylori-specific IgM responses to both homologous or heterologous H. pylori antigens. H. pylori antigens reacted with IgM antibody at 4 weeks postinfection. IgM Western blotting showed immunoreactivity of postinfection serum samples to multiple H. pylori proteins with molecular weights ranging between 9,000 (9K) to 150K with homologous strains but only a 70K band using heterologous antigens. Two-dimensional electrophoresis demonstrated that production of H. pylori-specific IgM antibodies was elicited by H. pylori flagellins A and B, urease B, ABC transporter binding protein, heat shock protein 70 (DnaK), and alkyl hydroperoxide reductase. Mucosal CD3, CD4, and CD8 T-cell numbers increased following infection. IgM antibody responses were detected to a range of homologous H. pylori antigens 2 to 4 weeks postchallenge. The majority of H. pylori proteins were those involved in motility and colonization and may represent targets for vaccine development.
Collapse
|
13
|
Abstract
The acceptance of Helicobacter pylori as a major human pathogen has necessitated the development of animal models to help elucidate the pathogenic mechanisms of this bacterium and aid in the development of improved strategies for the treatment of gastric disease. Appropriate models, utilising a range of animal species, have been developed to examine factors such as the influence of host responses and bacterial factors in disease development and the success of new therapeutic regimens, including vaccination, to cure infection.
Collapse
Affiliation(s)
- Jani L O'Rourke
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|