1
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Keenan CR, Radojicic D, Li M, Radwan A, Stewart AG. Heterogeneity in mechanisms influencing glucocorticoid sensitivity: the need for a systems biology approach to treatment of glucocorticoid-resistant inflammation. Pharmacol Ther 2015; 150:81-93. [PMID: 25596317 DOI: 10.1016/j.pharmthera.2015.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) have impressive anti-inflammatory and immunosuppressive effects and show a diversity of actions across a variety of cell phenotypes. Implicit in efforts to optimize GCs as anti-inflammatory agents for any or all indications is the notion that the relevant mechanism(s) of action of GCs are fully elucidated. However, recent advances in understanding GC signalling mechanisms have revealed remarkable complexity and contextual dependence, calling into question whether the mechanisms of action are sufficiently well-described to embark on optimization. In the current review, we address evidence for differences in the mechanism of action in different cell types and contexts, and discuss contrasts in mechanisms of glucocorticoid insensitivity, with a focus on asthma and Chronic Obstructive Pulmonary Disease (COPD). Given this complexity, we consider the potential breadth of impact and selectivity of strategies directed to reversing the glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Christine R Keenan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danica Radojicic
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Meina Li
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asmaa Radwan
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
3
|
Fang Q, Schulte NA, Kim H, Kobayashi T, Wang X, Miller-Larsson A, Wieslander E, Toews ML, Liu X, Rennard SI. Effect of budesonide on fibroblast-mediated collagen gel contraction and degradation. J Inflamm Res 2013; 6:25-33. [PMID: 23576875 PMCID: PMC3617814 DOI: 10.2147/jir.s35136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background The balance between production and degradation of extracellular matrix is crucial in maintaining normal tissue structure. This study was designed to investigate the effect of budesonide on fibroblast-mediated tissue repair and remodeling. Methods Using human fetal lung fibroblasts in a three-dimensional collagen gel culture system, we investigated the effect of budesonide (1-1000 nM) on collagen gel contraction and degradation in the presence or absence of Inflammatory cytokines (interleukin-1β and tumor necrosis factor α; 5 ng/mL each) and, in order to activate latent proteases, serine protease trypsin 0.25 μg/mL. The effects of budesonide on metalloproteinase production and activation were also investigated. Results Inflammatory cytokines significantly inhibited collagen gel contraction mediated by lung fibroblasts. Budesonide counteracted the effect of cytokines in a concentration-dependent manner (to 50%, P< 0.01). Budesonide 100 nM almost completely inhibited the release and mRNA expression of metalloproteinase-1, metalloproteinase-3, and metalloproteinase-9 induced by the cytokines (P< 0.05). Exposure to the cytokines plus trypsin increased collagen degradation and conversion of the metalloproteinases to lower molecular weight forms corresponding to their active forms. Budesonide blocked both enhanced collagen degradation (P< 0.01) and suppressed trypsin-mediated conversion of cytokine-induced metalloproteinase-9 and metalloproteinase-3 to lower molecular weight forms. Similar effects were observed with dexamethasone 1 μM, suggesting a class effect. Conclusion These findings demonstrate that budesonide directly modulates contraction of collagen gels and can decrease collagen degradation under Inflammatory conditions. The mechanism of this effect is through suppressing gene expression, release, and activation of metalloproteinases. By modulating the release and activity of metalloproteinases, inhaled budesonide may be able to modify airway tissue repair and remodeling.
Collapse
Affiliation(s)
- Qiuhong Fang
- Pulmonary and Critical Care Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China ; Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Rieder F, Georgieva M, Schirbel A, Artinger M, Zügner A, Blank M, Brenmoehl J, Schölmerich J, Rogler G. Prostaglandin E2 inhibits migration of colonic lamina propria fibroblasts. Inflamm Bowel Dis 2010; 16:1505-13. [PMID: 20803697 DOI: 10.1002/ibd.21255] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Migration of colonic lamina propria fibroblasts (CLPF) is an important mechanism during wound healing in inflammatory bowel disease (IBD). The concentration of prostaglandin E2 (PGE2) is increased in the intestinal mucosa of IBD patients. We therefore investigated the role of PGE2 in CLPF migration. METHODS Primary cultures of CLPF were isolated from healthy controls and Crohn's disease patients. Migration assays were performed in the Boyden chamber and scratch assays. EP receptors, PGE2, intracellular cyclic adenosine monophosphate (cAMP), expression and distribution of F-actin, alpha-smooth muscle actin (SMA), and myosin light chain (MLC) were determined by immunoblotting, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS All four EP receptor subtypes were present on CLPF. PGE2 and agonists to the EP2 and EP4 receptor reduced the migration of CLPF. Blockade of the EP2 and the EP4 receptor inhibited the effect of PGE2 on CLPF migration. An increase in intracellular cAMP reduced CLPF migration. PGE2 increased the concentrations of cAMP in CLPF, with abrogation after addition of EP2 and EP4 receptor antagonists. PGE2 and forskolin decreased the expression of alpha-SMA and F-actin and reduced cell polarization and lamellipodium formation in a scratch assay. In addition, forskolin reduced the phosphorylation of MLC (pMLC) and led to lack of accumulation of pMLC in the leading edge of CLPF. CONCLUSIONS PGE2 reduced the migration of CLPF via elevation of intracellular cAMP. Potential mechanisms are changes in expression of cytoskeletal proteins, failure of CLPF to polarize, and a decreased amount of pMLC. This might be a possible reason for the impairment of intestinal wound healing in IBD.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J, Nagase T. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp Lung Res 2010; 36:12-24. [PMID: 20128678 DOI: 10.3109/01902140903042589] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, epithelial-mesenchymal transition (EMT) has been reported to contribute to tissue fibrosis through enhanced transforming growth factor (TGF)-beta1 signaling. Tumor necrosis factor (TNF)-alpha has also been implicated in tissue fibrosis. Therefore, the authors investigated whether TNF-alpha affected TGF-beta1-induced EMT. Cultured alveolar epithelial cells (A549 cells) were stimulated with TGF-beta1 (5 ng/mL), with/without TNF-alpha (10 ng/mL). TGF-beta1 induced EMT of A549 cells, with loss of E-cadherin and acquisition of vimentin. Combination of TNF-alpha with TGF-beta1 enhanced EMT, causing morphological changes, while quantitative polymerase chain reaction (PCR) showed suppression of E-cadherin mRNA and expression of vimentin mRNA. In addition, the gel contraction method revealed that cells that had undergone EMT acquired cell contractility, which is a feature of mesenchymal cells. Stimulation with TGF-beta1 induced cell contraction, as did TNF-alpha. Moreover, costimulation with TGF-beta1 and TNF-alpha enhanced the cell contraction. Although IFN-gamma suppressed spontaneous cell contraction, it did not suppress cell contraction, which was induced by TGF-beta1. In conclusion, TNF-alpha enhances not only EMT but also cell contraction induced by TGF-beta1. EMT might contribute to tissue fibrosis through induction of cell contraction.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
The preclinical pharmacology of roflumilast--a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2010; 23:235-56. [PMID: 20381629 DOI: 10.1016/j.pupt.2010.03.011] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 01/02/2023]
Abstract
After more than two decades of research into phosphodiesterase 4 (PDE4) inhibitors, roflumilast (3-cyclopropylmethoxy-4-difluoromethoxy-N-[3,5-di-chloropyrid-4-yl]-benzamide) may become the first agent in this class to be approved for patient treatment worldwide. Within the PDE family of 11 known isoenzymes, roflumilast is selective for PDE4, showing balanced selectivity for subtypes A-D, and is of high subnanomolar potency. The active principle of roflumilast in man is its dichloropyridyl N-oxide metabolite, which has similar potency as a PDE4 inhibitor as the parent compound. The long half-life and high potency of this metabolite allows for once-daily, oral administration of a single, 500-microg tablet of roflumilast. The molecular mode of action of roflumilast--PDE4 inhibition and subsequent enhancement of cAMP levels--is well established. To further understand its functional mode of action in chronic obstructive pulmonary disease (COPD), for which roflumilast is being developed, a series of in vitro and in vivo preclinical studies has been performed. COPD is a progressive, devastating condition of the lung associated with an abnormal inflammatory response to noxious particles and gases, particularly tobacco smoke. In addition, according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD), significant extrapulmonary effects, including comorbidities, may add to the severity of the disease in individual patients, and which may be addressed preferentially by orally administered remedies. COPD shows an increasing prevalence and mortality, and its treatment remains a high, unmet medical need. In vivo, roflumilast mitigates key COPD-related disease mechanisms such as tobacco smoke-induced lung inflammation, mucociliary malfunction, lung fibrotic and emphysematous remodelling, oxidative stress, pulmonary vascular remodelling and pulmonary hypertension. In vitro, roflumilast N-oxide has been demonstrated to affect the functions of many cell types, including neutrophils, monocytes/macrophages, CD4+ and CD8+ T-cells, endothelial cells, epithelial cells, smooth muscle cells and fibroblasts. These cellular effects are thought to be responsible for the beneficial effects of roflumilast on the disease mechanisms of COPD, which translate into reduced exacerbations and improved lung function. As a multicomponent disease, COPD requires a broad therapeutic approach that might be achieved by PDE4 inhibition. However, as a PDE4 inhibitor, roflumilast is not a direct bronchodilator. In summary, roflumilast may be the first-in-class PDE4 inhibitor for COPD therapy. In addition to being a non-steroid, anti-inflammatory drug designed to target pulmonary inflammation, the preclinical pharmacology described in this review points to a broad functional mode of action of roflumilast that putatively addresses additional COPD mechanisms. This enables roflumilast to offer effective, oral maintenance treatment for COPD, with an acceptable tolerability profile and the potential to favourably affect the extrapulmonary effects of the disease.
Collapse
|
7
|
Parekh A, Sandulache VC, Singh T, Cetin S, Sacks MS, Dohar JE, Hebda PA. Prostaglandin E2 differentially regulates contraction and structural reorganization of anchored collagen gels by human adult and fetal dermal fibroblasts. Wound Repair Regen 2009; 17:88-98. [PMID: 19152655 DOI: 10.1111/j.1524-475x.2008.00445.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Contraction and remodeling of granulation tissue by fibroblasts is a crucial component of dermal wound healing. Postnatal wounds heal with imperfect repair and scar formation, whereas tissue repair in fetal wounds is regenerative. Prostaglandin E2 (PGE2) modulates the behavior of fibroblasts in the wound bed. This study was designed to investigate the mechanism by which PGE2 regulates an in vitro model of granulation tissue, anchored collagen gels, by human adult and fetal dermal fibroblasts. We hypothesized that PGE2 differentially regulates contraction and remodeling of anchored collagen gels by these fibroblast phenotypes. These results indicate that once tension was generated, fetal fibroblasts exerted lower contractile forces resulting in less collagen contraction. This coincided with less prominent stress fibers, yet fetal fibroblasts were able to substantially remodel the collagen architecture. This mechanism was differentially modulated by PGE2 and was mimicked with a PGE2 receptor agonist, indicating a cyclic adenosine monophosphate (cAMP)-dependent mechanism through the EP2 receptor. However, direct up-regulation of cAMP led to decreases in contraction and remodeling by both fibroblast phenotypes indicating an altered signaling pathway. Therefore, targeting cAMP via the EP2 receptor could potentially decrease adult fibroblast contractile forces to the levels of the fetal fibroblast phenotype in order to decrease dermal scarring.
Collapse
Affiliation(s)
- Aron Parekh
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Huang SK, Peters-Golden M. Eicosanoid lipid mediators in fibrotic lung diseases: ready for prime time? Chest 2008; 133:1442-1450. [PMID: 18574287 DOI: 10.1378/chest.08-0306] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recognition of a pivotal role for eicosanoids in both normal and pathologic fibroproliferation is long overdue. These lipid mediators have the ability to regulate all cell types and nearly all pathways relevant to fibrotic lung disorders. Abnormal fibroproliferation is characterized by an excess of profibrotic leukotrienes and a deficiency of antifibrotic prostaglandins. The relevance of an eicosanoid imbalance is pertinent to diseases involving the parenchymal, airway, and vascular compartments of the lung, and is supported by studies conducted both in humans and animal models. Given the lack of effective alternatives, and the existing and emerging options for therapeutic targeting of eicosanoids, such treatments are ready for prime time.
Collapse
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI.
| |
Collapse
|
9
|
Lee JI, Lee SY, Kim JW. Effect of Nitric Oxide on the Migration and Fibroblast-mediated Contraction of Collagen Gels. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2008. [DOI: 10.3341/jkos.2008.49.4.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jeong Il Lee
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Soo Yoon Lee
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
10
|
Parekh A, Sandulache VC, Lieb AS, Dohar JE, Hebda PA. Differential regulation of free-floating collagen gel contraction by human fetal and adult dermal fibroblasts in response to prostaglandin E2 mediated by an EP2/cAMP-dependent mechanism. Wound Repair Regen 2007; 15:390-8. [PMID: 17537126 DOI: 10.1111/j.1524-475x.2007.00241.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In contrast to fetal wound healing, dermal adult wound healing results in imperfect repair and scar formation. Fibroblasts are responsible for the contraction and remodeling of the wound matrix, which is influenced by inflammatory mediators including prostaglandin E2 (PGE2). This study addresses the mechanism by which PGE2 regulates contraction of collagen gels by human fetal and adult dermal fibroblasts. We hypothesized that the intrinsic phenotypic properties of the two types of fibroblasts and their responses to PGE2 alter their contraction properties and contribute to different wound healing outcomes. Contraction was evaluated using free-floating fibroblast-populated collagen gels that contract by migratory forces. PGE2 was found to differentially inhibit collagen gel contraction by fetal and adult fibroblasts. This effect was mimicked by a specific PGE2 receptor agonist as well as by two pharmacological agents, indicating a cyclic adenosine monophosphate-dependent signaling pathway mediated through the EP2 receptor. Our results indicate that fetal fibroblast contraction is maintained by a more stable actin cytoskeleton. Therefore, the migratory phenotype may be sufficient for physical remodeling of the wound matrix leading to regenerative repair. Maintenance of this phenotype in the later stages of wound healing could potentially be achieved by targeting cyclic adenosine monophosphate via the EP2 receptor.
Collapse
Affiliation(s)
- Aron Parekh
- Pittsburgh Tissue Engineering Initiative; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
11
|
Sandulache VC, Parekh A, Li-Korotky HS, Dohar JE, Hebda PA. Prostaglandin E2 differentially modulates human fetal and adult dermal fibroblast migration and contraction: implication for wound healing. Wound Repair Regen 2007; 14:633-43. [PMID: 17014677 DOI: 10.1111/j.1743-6109.2006.00156.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclooxygenase-2 is up-regulated shortly after dermal injury and it has been shown to have important activity during the repair process. Its main product in the skin, prostaglandin E2 (PGE2), modulates both inflammatory and fibrotic processes during wound healing and partially dictates the overall outcome of wound healing. PGE2 signaling has been shown to be altered during fetal wound healing. This study was designed to examine the mechanism(s) by which PGE2 regulates fibroblast migration and contraction and to determine whether these mechanisms are conserved in fetal-derived dermal fibroblasts. Fetal and adult dermal fibroblasts express all four PGE2 receptors. PGE2 inhibits fetal and adult fibroblast migration in a dose-dependent manner through the EP2/EP4-cAMP-protein kinase A pathway. However, fetal fibroblasts appear to be refractory to this effect, requiring a 10-fold higher concentration of PGE2 to achieve a similar degree of inhibition as adult fibroblasts. Inhibition of adult fibroblast migration correlated with disruption of the actin cytoskeleton. In contrast, PGE2 or a cAMP analog did not disrupt the actin cytoskeleton of fetal dermal fibroblasts. These findings were extended using a modified free-floating, fibroblast-populated collagen lattice (FPCL) contraction assay designed to measure fibroblast contraction. PGE2-inhibited FPCL contraction by adult fibroblasts, but fetal fibroblasts exhibited higher rates of FPCL contraction and a blunted response to exogenous modulation by PGE2 or a cyclase activator (forskolin). These findings indicate that fetal dermal fibroblasts are partially refractory to the effects of PGE2, a major inflammatory mediator associated with dermal wound healing. This effect may have significant and specific relevance to the scarless fetal wound-healing phenotype.
Collapse
Affiliation(s)
- Vlad C Sandulache
- Department of Pediatric Otolaryngology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
12
|
Pifferi M, Caramella D, Ragazzo V, De Marco E, Pietrobelli A, Boner AL. Montelukast and airway remodeling in children with chronic persistent asthma: an open study. Pediatr Allergy Immunol 2004; 15:472-3. [PMID: 15482525 DOI: 10.1111/j.1399-3038.2004.00184.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report a 4 yr follow up study of seven asthmatic children with chronic persistent asthma, high-residual volume and low-density areas at high-resolution computerized tomography after treatment with salmeterol and fluticasone. Improvement of lung function with disappearance of low-density areas in six patients after treatment with fluticasone and montelukast was obtained.
Collapse
Affiliation(s)
- Massimo Pifferi
- Department of Pediatrics, University of Pisa, Via Roma 67, 56100 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Wen FQ, Kohyama T, Sköld CM, Zhu YK, Liu X, Romberger DJ, Stoner J, Rennard SI. Glucocorticoids modulate TGF-beta production by human fetal lung fibroblasts. Inflammation 2003; 27:9-19. [PMID: 12772773 DOI: 10.1023/a:1022683010976] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TGF-beta1 is thought to play a central role in pulmonary fibrosis inducing fibroblast differentiation and extracellular matrix synthesis. In human lung fibroblasts, it is still unclear how various TGF-beta isoforms affect TGF-beta production and whether glucocorticoids, commonly used agents to treat fibrotic lung disease, modulate these processes. To this end, human fetal lung fibroblasts (HFLF) were cultured with various concentrations of glucocorticoids (budesonide, dexamethasone or hydrocortisone) with and without TGF-beta1, -beta2, or -beta3. Post-culture media were collected for ELISA assays of TGF-beta1, -beta2, and -beta3. TGF-beta mRNA was assessed by real time RT-PCR. Smad 2, 3, and 4 and AP-1 complex (c-fos and c-Jun) cellular localization were evaluated by immunostaining. TFG-beta2 and -beta3 stimulated TGF-beta1 production significantly (p < 0.01 relative to control). TGF-beta1 stimulated TGF-beta2 production (p < 0.01 relative to control). TGF-beta3 was undetectable. Glucocorticoids significantly inhibited TGF-beta1 and TGF-beta2 production and reduced expression of the up-regulated TGF-beta1 and TGF-beta2 mRNA induced by exogenous TGF-beta1, -beta2, or -beta3 (p < 0.01 for each) but had no effect on Smads. Although c-jun-related nuclear staining was not intensified in TGF-beta-stimulated cells, it was reduced by glucocorticoids. Thus, TGF-beta isoforms may stimulate production of various TGF-beta isoforms in the lung. Glucocorticoids then may block TGF-beta production by modulating mRNA levels and c-Jun.
Collapse
Affiliation(s)
- Fu-Qiang Wen
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5125, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Marchion DC, Pfau JC, Weber PA, Grobe AC, Duran CMG, Cheung DT. An in vitro model of pericardial tissue healing. Biomaterials 2003; 24:89-95. [PMID: 12417182 DOI: 10.1016/s0142-9612(02)00255-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A previous study in our laboratory showed that a flap of fresh autologous pericardium bisecting the aorta of sheep retracted and became fibrotic. Histologic analyses suggested that activated cells within the pericardium contributed to the retraction of the implant. Here we report the development of an in vitro model to investigate the effects of serum on cellular proliferation and cell-mediated tissue contraction. METHODS Sections of living and ethanol-treated sheep pericardium were incubated with 0.5%, 5%, 10%, 20%, and 50% serum in medium for up to 8 days and evaluated for cellular proliferation and tissue contraction. These serum-stimulated events were further evaluated in the presence of Mitomycin C, Cytochalasin B and D, Aphidicolin, AraC, and Cycloheximide. RESULTS Cellular proliferation and cell-mediated tissue contraction were induced by serum in a dose-dependent manner. Expression of PCNA was suppressed in the presence of Cytochalasin B, Cytochalasin D, Aphidicolin, and AraC. Tissue contraction was prevented by Cycloheximide. Mitomycin C inhibited both proliferation and tissue contraction. Ethanol-treated tissue, which was absent of living cells, did not respond to stimulation with serum. CONCLUSIONS An in vitro model was developed to study the responses of cells within pericardial tissues to stimulation by serum. In this model, serum induced cellular proliferation and tissue contraction. Different chemical inhibitors independently modulated these serum-stimulated events. Pre-existing cells within pericardial tissues might respond to stimulus through differential pathways. This model may help to develop methods to make autologous pericardium a clinically useful biomaterial.
Collapse
Affiliation(s)
- Douglas C Marchion
- The International Heart Institute of Montana Foundation, 554 West Broadway, Missoula, MT 59802-4008, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wen FQ, Kohyama T, Sköld CM, Zhu YK, Liu X, Romberger DJ, Stoner J, Rennard SI. Glucocorticoids modulate TGF-beta production. Inflammation 2002; 26:279-90. [PMID: 12546137 DOI: 10.1023/a:1021412601538] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TGF-beta is thought to play a central role in pulmonary fibrosis inducing fibroblast differentiation and extracellular matrix synthesis. In human lung fibroblasts, it is still unclear how various TGB-beta isoforms affect TGF-beta production and whether glucocorticoids, commonly used agents to treat fibrotic lung disease, modulate these processes. To this end, human fetal lung fibroblasts (HFL-1) were cultured with various concentrations of glucocorticoids (budesonide, dexamethasone or hydrocortisone) with and without TFG-beta1, -beta2, and -beta3. TGF-beta mRNA was assessed by real time RT-PCR. Smad 2, 3, and 4 and AP-1 complex (c-fos and c-Jun) cellular localization were evaluated by immunostaining. TGF-beta2 and -beta3 stimulated TGF-beta1 production significantly (p < 0.01 relative to control). TGF-beta1 stimulated TGF-beta2 production (p < 0.01 relative to control). TGF-beta3 was undetectable. Glucocorticoids significantly inhibited TGF-beta1 and -beta2 production and reduced expression of the upregulated TGF-beta1 and -beta2 mRNA induced by exogenous TGF-beta1, -beta2 or -beta3 (p < 0.01 for each) but had no effect on Smads. Although c-jun-related nuclear staining was not intensified in TGF-beta-stimulated cells, it was reduced by glucocorticoids. Thus, TGF-beta isoforms may stimulate production of various TGF-beta isoforms in the lung. Glucocorticoids then may block TGF-beta production by modulating mRNA levels and c-Jun.
Collapse
Affiliation(s)
- Fu-Qiang Wen
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5125, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kohyama T, Liu X, Wen FQ, Zhu YK, Wang H, Kim HJ, Takizawa H, Cieslinski LB, Barnette MS, Rennard SI. PDE4 inhibitors attenuate fibroblast chemotaxis and contraction of native collagen gels. Am J Respir Cell Mol Biol 2002; 26:694-701. [PMID: 12034568 DOI: 10.1165/ajrcmb.26.6.4743] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Therapies that mitigate the fibrotic process may be able to slow progressive loss of function in many lung diseases. Because cyclic adenosine monophosphate is known to regulate fibroblasts, the current study was designed to evaluate the activity of selective phosphodiesterase (PDE) inhibitors on two in vitro fibroblast responses: chemotaxis and contraction of three-dimensional collagen gels. Selective PDE4 inhibitors, rolipram and cilomilast, each inhibited the chemotaxis of human fetal lung fibroblasts (HFL-1) toward fibronectin in the blindwell assay system (control: 100% versus cilomilast [10 microM]: 40.5 +/- 7.3% versus rolipram: [10 microM] 32.1 +/- 2.7% cells/5 high-power fields; P < 0.05, both comparisons). These PDE4 inhibitors also inhibited contraction of three-dimensional collagen gels (control: 100% versus cilomilast: 167.7 +/- 6.9% versus rolipram: 129.9 +/- 1.9% of initial size; P < 0.05, both comparisons). Amrinone, a PDE3 inhibitor, and zaprinast, a PDE5 inhibitor, had no effect in either system. Prostaglandin E(2) (PGE(2)) inhibited both chemotaxis and gel contraction, and the PDE4 inhibitors shifted the PGE(2) concentration-dependence curve to the left in both systems. The inhibition of endogenous PGE(2) production by indomethacin diminished the effects of the PDE4 inhibitors in both chemotaxis and gel contraction, consistent with the concept that the PDE4 inhibitory effects on fibroblasts are related to the presence of cyclic adenosine monophosphate in the cells. In summary, these in vitro results suggest that PDE4 inhibitors may be able to suppress fibroblast activity and, thus, have the potential to block the development of progressive fibrosis.
Collapse
Affiliation(s)
- Tadashi Kohyama
- University of Nebraska Medical Center, Omaha 68198-5125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu X, Kohyama T, Wang H, Zhu YK, Wen FQ, Kim HJ, Romberger DJ, Rennard SI. Th2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1049-56. [PMID: 11943670 DOI: 10.1152/ajplung.00321.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is characterized by chronic inflammation of the airway wall with the presence of activated T helper 2 (Th2) lymphocytes. The current study assessed the ability of Th2 cytokines to modulate fibroblast-mediated contraction of collagen gels to determine if Th2 cytokines could contribute to tissue remodeling by altering mesenchymal cell contraction. Human fetal lung fibroblasts, human adult bronchial fibroblasts and human airway smooth muscle cells were cast into native type I collagen gels and allowed to contract in the presence or absence of IL (interleukin)-4, IL-5, IL-10, or IL-13. IL-4 and IL-13 but not IL-5 and IL-10 augmented collagen gel contraction in a concentration-dependent manner. Neither IL-4 nor IL-13 altered fibroblast production of transforming growth factor-beta or fibronectin. Both, however, decreased fibroblast prostaglandin (PG) E(2) release. Decreased PGE(2) release was associated with a decreased expression of cyclooxygenase 1 and 2 protein and mRNA. Indomethacin completely inhibited PGE(2) release and also augmented contraction. IL-4 and IL-13, however, added together with indomethacin further augmented contraction suggesting both a PGE-dependent and a PGE-independent effect. These findings suggest that IL-4 and IL-13 may modulate airway tissue remodeling and, therefore, could play a role in the altered airway connective tissue which characterizes asthma.
Collapse
Affiliation(s)
- Xiangde Liu
- Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kohyama T, Ertl RF, Valenti V, Spurzem J, Kawamoto M, Nakamura Y, Veys T, Allegra L, Romberger D, Rennard SI. Prostaglandin E(2) inhibits fibroblast chemotaxis. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1257-63. [PMID: 11597918 DOI: 10.1152/ajplung.2001.281.5.l1257] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are the major source of extracellular connective tissue matrix, and the recruitment, accumulation, and stimulation of these cells are thought to play important roles in both normal healing and the development of fibrosis. Prostaglandin E(2) (PGE(2)) can inhibit this process by blocking fibroblast proliferation and collagen production. The aim of this study was to investigate the inhibitory effect of PGE(2) on human plasma fibronectin (hFN)- and bovine bronchial epithelial cell-conditioned medium (BBEC-CM)-induced chemotaxis of human fetal lung fibroblasts (HFL1). Using the Boyden blind well chamber technique, PGE(2) (10(-7) M) inhibited chemotaxis to hFN 40.8 +/- 5.3% (P < 0.05) and to BBEC-CM 49.7 +/- 11.7% (P < 0.05). Checkerboard analysis demonstrated inhibition of both chemotaxis and chemokinesis. The effect of PGE(2) was concentration dependent, and the inhibitory effect diminished with time. Other agents that increased fibroblast cAMP levels, including isoproterenol (10(-5) M), dibutyryl cAMP (10(-5) M), and forskolin (3 x 10(-5) M) had similar effects and inhibited chemotaxis 54.1, 95.3, and 87.0%, respectively. The inhibitory effect of PGE(2) on HFL1 cell chemotaxis was inhibited by the cAMP-dependent protein kinase (PKA) inhibitor KT-5720, which suggests a cAMP-dependent effect mediated by PKA. In summary, PGE(2) appears to inhibit fibroblast chemotaxis, perhaps by modulating the rate of fibroblast migration. Such an effect may contribute to regulation of the wound healing response after injury.
Collapse
Affiliation(s)
- T Kohyama
- Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, Omaha, Nebraska 68198-5125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wen FQ, Sköld CM, Liu XD, Ertl RF, Zhu YK, Kohyama T, Wang H, Rennard SI. Glucocorticoids and TGF-beta1 synergize in augmenting fibroblast mediated contraction of collagen gels. Inflammation 2001; 25:109-17. [PMID: 11321357 DOI: 10.1023/a:1007170622699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
TGF-beta plays a central role in the initiation and progression of pulmonary fibrosis. Glucocorticoids are frequently used to treat fibrotic diseases, but beneficial effects are often modest. Both TGF-beta and glucocorticoids have been reported to increase fibroblast contraction of native collagen gels, a model of fibrotic tissue remodeling. Therefore, we sought to determine how glucocorticoids interact with TGF-beta in this system. In this study, human fetal lung fibroblasts (HFL-1) were pretreated with or without TGF-beta for 72 h before they were cast into type I collagen gels. Various concentrations of glucocorticoids (budesonide or hydrocortisone) were added at the time of casting. Gel size was then monitored at different times after gel release. The surrounding media were collected for the assay of prostaglandin E2 (PGE2) and the cell lysates were analyzed for cyclooxygenase (COX) expression by immunoblot. Glucocorticoids alone significantly enhanced fibroblast-mediated contraction of collagen gels (P < 0.01) and dose-dependently inhibited PGE2 release by HFL-1 fibroblasts. TGF-beta significantly augmented gel contraction but also induced a 30% increase in PGE2 release and increased the expression of COX-1. Glucocorticoids inhibited TGF-beta1 induced-PGE2 release, and enhanced TGF-beta augmented gel contraction without significantly affecting TGF-beta augmented COX-1 expression. Indomethacin, a COX inhibitor, increased TGF-beta augmented gel contraction but had no further effect when added together with glucocorticoids. Thus, glucocorticoids can synergize with TGF-beta in augmenting fibroblast mediated collagen gel contraction through the inhibition of PGE2 production. Such interactions between glucocorticoids and TGF-beta may account, in part, for the lack of response of fibrotic diseases to glucocorticoids.
Collapse
Affiliation(s)
- F Q Wen
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha 68198-5125, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kraft M, Lewis C, Pham D, Chu HW. IL-4, IL-13, and dexamethasone augment fibroblast proliferation in asthma. J Allergy Clin Immunol 2001; 107:602-6. [PMID: 11295646 DOI: 10.1067/mai.2001.113760] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND IL-4 and IL-13 have been shown to be critical for expression of the asthma phenotype in a murine model and may modulate human fibroblast function. OBJECTIVE We hypothesized that IL-4 and IL-13 would increase airway fibroblast proliferation and reduce the ability of dexamethasone to decrease this proliferation. METHODS Six subjects with severe asthma, 5 subjects with mild asthma, and 5 healthy subjects underwent bronchoscopy with endobronchial biopsy. Biopsy specimens were placed in Dulbecco modified Eagle medium and cultured, and only fibro-blasts from the first and second passages were evaluated. Cells were incubated with IL-4 (50 ng/mL), IL-13 (10 ng/mL), and the combination for 48 hours in the presence and absence of dexamethasone, 10(-7) mol/L, and 10(-8) mol/L. Fibroblasts were also incubated with IFN-gamma at 50 ng/mL to assess the response of a T(H)1 cytokine on proliferation. RESULTS Fibroblast proliferation, determined by (3)H-thymidine incorporation, was significantly increased by IL-4 in subjects with mild asthma as compared with IL-4 in subjects with severe asthma and healthy subjects (P =.003), IL-13 (P =.011), and the combination (P =.004). Dexamethasone also increased proliferation in the group with mild asthma as compared with the group with severe asthma and the healthy group (10(-7) mol/L, P =.02; 10(-8) mol/L, P =.02). IFN-gamma did not significantly alter airway fibroblast proliferation. CONCLUSION IL-4, IL-13, and dexamethasone all significantly increased fibroblast proliferation in subjects with mild asthma.
Collapse
Affiliation(s)
- M Kraft
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, 1400 Jackson St., Denver, CO 80206, USA
| | | | | | | |
Collapse
|
21
|
Bugalho de Almeida A. Inflamação e doença pulmonar obstrutiva crónica**Trabalho realizado no âmbito do II Mestrado de Patologia Respiratória da Faculdade de Ci_ncias Médicas da Universidade Nova de Lisboa (Director mestrado: Prof. Doutor Ramiro Ávila). REVISTA PORTUGUESA DE PNEUMOLOGIA 2001. [DOI: 10.1016/s0873-2159(15)30814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Liu XD, Skold CM, Umino T, Spurzem JR, Romberger DJ, Rennard SI. Sodium nitroprusside augments human lung fibroblast collagen gel contraction independently of NO-cGMP pathway. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1032-8. [PMID: 10781435 DOI: 10.1152/ajplung.2000.278.5.l1032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) relaxes vascular smooth muscle in part through an accumulation of cGMP in the target cells. We hypothesized that a similar effect may also exist on collagen gel contraction mediated by human fetal lung (HFL1) fibroblasts, a model of wound contraction. To evaluate this, HFL1 cells were cultured in three-dimensional type I collagen gels and floated in serum-free DMEM with and without various NO donors. Gel size was measured with an image analyzer. Sodium nitroprusside (SNP, 100 microM) significantly augmented collagen gel contraction by HFL1 cells (78.5 +/- 0.8 vs. 58.3 +/- 2. 1, P < 0.01), whereas S-nitroso-N-acetylpenicillamine, 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride, NONOate, and N(G)-monomethyl-L-arginine did not affect the contraction. Sodium ferricyanide, sodium nitrate, or sodium nitrite was not active. The augmentory effect of SNP could not be blocked by 1H-[1,2, 4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, whereas it was partially reversed by 8-(4-chlorophenylthio) (CPT)-cGMP. To further explore the mechanisms by which SNP acted, fibronectin and PGE(2) production were measured by immunoassay after 2 days of gel contraction. SNP inhibited PGE(2) production and increased fibronectin production by HFL1 cells in a concentration-dependent manner. CPT-cGMP had opposite effects on fibronectin and PGE(2) production. Addition of exogenous PGE(2) blocked SNP-augmented contraction and fibronectin production by HFL1 cells. Therefore, SNP was able to augment human lung fibroblast-mediated collagen gel contraction, an effect that appears to be independent of NO production and not mediated through cGMP. Decreased PGE(2) production and augmented fibronectin production may have a role in this effect. These data suggest that human lung fibroblasts in three-dimensional type I collagen gels respond distinctly to SNP by mechanisms unrelated to the NO-cGMP pathway.
Collapse
Affiliation(s)
- X D Liu
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sumi Y, Muramatsu H, Hata K, Ueda M, Muramatsu T. Secretory leukocyte protease inhibitor is a novel inhibitor of fibroblast-mediated collagen gel contraction. Exp Cell Res 2000; 256:203-12. [PMID: 10739667 DOI: 10.1006/excr.2000.4815] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultured epithelial cells, including those from the oral epithelium, have been successfully applied in the promotion of scarless wound healing. Factors released from the epithelial cells are thought to contribute significantly to the beneficial effects. In the conditioned medium of human oral epithelial cells, we found a factor that inhibited fibroblast-mediated collagen gel contraction, an in vitro model of wound healing and scar formation. Biochemical analysis identified the factor to be human secretory leukocyte protease inhibitor (SLPI). Fibroblasts transfected with SLPI cDNA showed reduced gel-contracting activity. SLPI purified from the conditioned medium inhibited gel contraction in a dose-dependent manner, and anti-SLPI antibody counteracted this activity. Upon SLPI treatment, human skin fibroblasts in collagen gel became shorter in length and were inhibited in pseudopodia extension. Furthermore, after SLPI treatment, alpha(1)-integrin immunoreactivity decreased, and cyclic AMP levels increased. Excessive gel contraction was observed when fibroblasts treated with TGF-beta1 and fibroblasts from hypertrophic and from keloid scar tissue were cultured in collagen gel. SLPI was also effective in inhibiting gel contraction in the above three models of scar formation. These results suggest that SLPI may be useful in promoting scarless wound healing.
Collapse
Affiliation(s)
- Y Sumi
- Department of Biochemistry, Nagoya University School of Medicine, 65 Tsurumai-cho, Nagoya, 466-8550, Japan
| | | | | | | | | |
Collapse
|
24
|
Abstract
COPD is characterized by chronic inflammation and injury of both the airways and the parenchymal structures of the lung. These processes are associated with ongoing repair. Whether repair leads to restoration of normal tissue architecture or to altered tissue structure with loss of function depends on complex interrelationships of a variety of interacting mediators. The possibility that repair processes can be modulated by exogenous agents raises the possibility that therapeutic strategies aimed at repair can be effective. Such strategies offer tremendous promise both for slowing the relentlessly progressive natural history which most often characterizes COPD and, possibly, for restoring lung function. Rennard SI. Inflammation and repair processes in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- S I Rennard
- Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA.
| |
Collapse
|