1
|
Jaszczuk I, Schlotawa L, Dierks T, Ohlenbusch A, Koppenhöfer D, Babicz M, Lejman M, Radhakrishnan K, Ługowska A. Expanding the genetic cause of multiple sulfatase deficiency: A novel SUMF1 variant in a patient displaying a severe late infantile form of the disease. Mol Genet Metab 2017; 121:252-258. [PMID: 28566233 DOI: 10.1016/j.ymgme.2017.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
Multiple sulfatase deficiency (MSD) is a rare inherited metabolic disease caused by defective cellular sulfatases. Activity of sulfatases depends on post-translational modification catalyzed by formylglycine-generating enzyme (FGE), encoded by the SUMF1 gene. SUMF1 pathologic variants cause MSD, a syndrome presenting with a complex phenotype. We describe the first Polish patient with MSD caused by a yet undescribed pathologic variant c.337G>A [p.Glu113Lys] (i.e. p.E113K) in heterozygous combination with the known deletion allele c.519+5_519+8del [p.Ala149_Ala173del]. The clinical picture of the patient initially suggested late infantile metachromatic leukodystrophy, with developmental delay followed by regression of visual, hearing and motor abilities as the most apparent clinical symptoms. Transient signs of ichthyosis and minor dysmorphic features guided the laboratory workup towards MSD. Since MSD is a rare disease and there is a variable clinical spectrum, we thoroughly describe the clinical outcome of our patient. The FGE-E113K variant, expressed in cell culture, correctly localized to the endoplasmic reticulum but was retained intracellularly in contrast to the wild type FGE. Analysis of FGE-mediated activation of steroid sulfatase in immortalized MSD cells revealed that FGE-E113K exhibited only approx. 15% of the activity of wild type FGE. Based on the crystal structure we predict that the exchange of glutamate-113 against lysine should induce a strong destabilization of the secondary structure, possibly affecting the folding for correct disulfide bridging between C235-C346 as well as distortion of the active site groove that could affect both the intracellular stability as well as the activity of FGE. Thus, the novel variant of the SUMF1 gene obviously results in functionally impaired FGE protein leading to a severe late infantile type of MSD.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- University Children Hospital, Paediatric Haematology, Oncology and Transplantology Department, Lublin, Poland
| | - Lars Schlotawa
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Thomas Dierks
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Andreas Ohlenbusch
- University Medical Center Goettingen, Children's Hospital, Department of Child Neurology, Goettingen, Germany
| | | | - Mariusz Babicz
- University Children Hospital, Paediatric Haematology, Oncology and Transplantology Department, Cytogenetic Laboratory, Lublin, Poland
| | - Monika Lejman
- University Children Hospital, Paediatric Haematology, Oncology and Transplantology Department, Cytogenetic Laboratory, Lublin, Poland
| | | | - Agnieszka Ługowska
- Institute of Psychiatry and Neurology, Department of Genetics, Warsaw, Poland.
| |
Collapse
|
2
|
Wagner MW, Poretti A, Benson JE, Huisman TAGM. Neuroimaging Findings in Pediatric Genetic Skeletal Disorders: A Review. J Neuroimaging 2017; 27:162-209. [PMID: 28000960 DOI: 10.1111/jon.12413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic skeletal disorders (GSDs) are a heterogeneous group characterized by an intrinsic abnormality in growth and (re-)modeling of cartilage and bone. A large subgroup of GSDs has additional involvement of other structures/organs beside the skeleton, such as the central nervous system (CNS). CNS abnormalities have an important role in long-term prognosis of children with GSDs and should consequently not be missed. Sensitive and specific identification of CNS lesions while evaluating a child with a GSD requires a detailed knowledge of the possible associated CNS abnormalities. Here, we provide a pattern-recognition approach for neuroimaging findings in GSDs guided by the obvious skeletal manifestations of GSD. In particular, we summarize which CNS findings should be ruled out with each GSD. The diseases (n = 180) are classified based on the skeletal involvement (1. abnormal metaphysis or epiphysis, 2. abnormal size/number of bones, 3. abnormal shape of bones and joints, and 4. abnormal dynamic or structural changes). For each disease, skeletal involvement was defined in accordance with Online Mendelian Inheritance in Man. Morphological CNS involvement has been described based on extensive literature search. Selected examples will be shown based on prevalence of the diseases and significance of the CNS involvement. CNS involvement is common in GSDs. A wide spectrum of morphological abnormalities is associated with GSDs. Early diagnosis of CNS involvement is important in the management of children with GSDs. This pattern-recognition approach aims to assist and guide physicians in the diagnostic work-up of CNS involvement in children with GSDs and their management.
Collapse
Affiliation(s)
- Matthias W Wagner
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jane E Benson
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thierry A G M Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Case of multiple sulfatase deficiency and ocular albinism: a diagnostic odyssey. Can J Neurol Sci 2016; 41:626-31. [PMID: 25373814 DOI: 10.1017/cjn.2014.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Multiple sulfatase deficiency (MSD) is a rare autosomal recessive inborn error of lysosomal metabolism. The clinical phenotypic spectrum encompasses overlapping features of variable severity and is suggestive of individual single sulfatase deficiencies (i.e., metachromatic leukodystrophy, mucopolysaccharidosis, and X-linked ichthyosis). CASE REPORT We describe a 3-year-old male with severe hypotonia, developmental regression and progressive neurodegeneration, coarse facial features, nystagmus (from ocular albinism), and dysmyelinating motor sensory neuropathy. Ethics approval was obtained from the Western University Ontario. RESULTS Extensive investigative work-up identified deficiencies of multiple sulfatases: heparan sulfate sulfamidase: 6.5 nmoles/mg/protein/17 hour (reference 25.0-75.0), iduronate-2-sulfate sulfatase: 9 nmol/mg/protein/4 hour (reference 31-110), and arylsulfatase A: 3.8 nmoles/hr/mg protein (reference 22-50). The identification of compound heterozygous pathogenic mutations in the SUMF1 gene c.836 C>T (p.A279V) and c.1045C>T (p.R349W) confirmed the diagnosis of MSD. CONCLUSION The complex clinical manifestations of MSD and the unrelated coexistence of ocular albinism as in our case can delay diagnosis. Genetic counselling should be provided to all affected families.
Collapse
|
4
|
The Effect of Multiple Sulfatase Deficiency (MSD) on Dental Development: Can We Use the Teeth as an Early Diagnostic Tool? JIMD Rep 2016. [PMID: 27344646 DOI: 10.1007/8904_2015_523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Multiple sulfatase deficiency (MSD) is a rare autosomal recessive inborn error of metabolism due to reduced catalytic activity of the different sulfatase. Affected individuals show neurologic deterioration with mental retardation, skeletal anomalies, organomegaly, and skin changes as in X-linked ichthyosis. The only organ that was not examined in MSD patients is the dentition. OBJECTIVES To evaluate the effect of the metabolic error on dental development in a patient with the intermediate severe late-infantile form of MSD (S155P). METHODS Histological and chemical study were performed on three deciduous and five permanent teeth from MSD patient and pair-matched normal patients. RESULTS Tooth germ size and enamel thickness were reduced in both deciduous and permanent MSD teeth, and the scalloping feature of the DEJ was missing in MSD teeth causing enamel to break off from the dentin. The mineral components in the enamel and dentin were different. CONCLUSIONS The metabolic error insults the teeth in the stage of organogenesis in both the deciduous and permanent dentition. The end result is teeth with very sharp cusp tips, thin hypomineralized enamel, and exposed dentin due to the break off of enamel. These findings are different from all other types of MPS syndromes.Clinically the phenotype of intermediate severe late-infantile form of MSD appeared during the third year of life. In children of parents that are carriers, we can diagnose the disease as early as birth using X-ray radiograph of the anterior upper region or as early as 6-8 months when the first deciduous tooth erupt and consider very early treatment to ameliorate the symptoms.
Collapse
|
5
|
Miskin C, Melvin JJ, Legido A, Wenger DA, Harasink SM, Khurana DS. A Patient With Atypical Multiple Sulfatase Deficiency. Pediatr Neurol 2016; 57:98-100. [PMID: 26825355 DOI: 10.1016/j.pediatrneurol.2015.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/30/2015] [Accepted: 10/22/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Multiple sulfatase deficiency is an autosomal recessive lysosomal storage disorder characterized by the absence of several sulfatases and resulting from mutations in the gene encoding the human C (alpha)-formylglycine-generating enzyme. There have been a variety of biochemical and clinical presentations reported in this disorder. PATIENT DESCRIPTION We present a 4-year-old girl with clinical findings of microcephaly, spondylolisthesis and neurological regression without ichthyosis, coarse facies, and organomegaly. RESULTS The child's magnetic resonance imaging demonstrated confluent white matter abnormalities involving the periventricular and deep cerebral white matter with the U-fibers relatively spared. Biochemical testing showing low arylsulfatase A levels were initially thought to be consistent with a diagnosis of metachromatic leukodystrophy. The diagnosis of multiple sulfatase deficiency was pursued when genetic testing for metachromatic leukodystrophy was negative. CONCLUSION This child illustrates the clinical heterogeneity of multiple sulfatase deficiency and that this disorder can occur without the classic clinical features.
Collapse
Affiliation(s)
- Chandrabhaga Miskin
- Section of Neurology, St Christopher's Hospital for Children, Philadelphia, Pennsylvania; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Joseph J Melvin
- Section of Neurology, St Christopher's Hospital for Children, Philadelphia, Pennsylvania; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Agustin Legido
- Section of Neurology, St Christopher's Hospital for Children, Philadelphia, Pennsylvania; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - David A Wenger
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sue Moyer Harasink
- Section of Neurology, St Christopher's Hospital for Children, Philadelphia, Pennsylvania; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Divya S Khurana
- Section of Neurology, St Christopher's Hospital for Children, Philadelphia, Pennsylvania; Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Suarez-Guerrero JL, Gómez Higuera PJI, Arias Flórez JS, Contreras-García GA. [Mucopolysaccharidosis: clinical features, diagnosis and management]. ACTA ACUST UNITED AC 2015; 87:295-304. [PMID: 26613630 DOI: 10.1016/j.rchipe.2015.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 07/24/2015] [Indexed: 10/22/2022]
Abstract
The mucopolysaccharidoses (MPS) are a group of rare (orphan) diseases, characterised by a deficiency of enzymes involved in the metabolism of glycosaminoglycans (GAGs) at lysosomal level. When there is a deficiency of a particular enzyme there is an accumulation of GAGs in the cells resulting in progressive cellular damage, which can affect multiple organ systems and lead to organ failure. Diagnosis is based on knowledge of the clinical manifestations, performing biochemical analyses to identify the type of GAG that is accumulating, and confirm the type of disorder with the corresponding enzymatic determination. Their identification is essential to initiate early treatment, taking into account that multidisciplinary management and enzyme replacement therapy is available for MPS I (Hurler syndrome), MPS II (Hunter syndrome), MPS IV (Morquio syndrome), and MPS VI (Maroteaux-Lamy syndrome. In this review, an analysis is made of each of these syndromes, as well as their diagnosis and treatment.
Collapse
Affiliation(s)
- Jorge Luis Suarez-Guerrero
- UIS-HUS, Grupo de investigación en Genética Humana, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | | | | | - Gustavo Adolfo Contreras-García
- Grupo de investigación en Genética Humana, Universidad Industrial de Santander, Departamento de Pediatría-Hospital Universitario de Santander, Bucaramanga, Colombia
| |
Collapse
|
7
|
Garavelli L, Santoro L, Iori A, Gargano G, Braibanti S, Pedori S, Melli N, Frattini D, Zampini L, Galeazzi T, Padella L, Pepe S, Wischmeijer A, Rosato S, Ivanovski I, Iughetti L, Gelmini C, Bernasconi S, Superti-Furga A, Ballabio A, Gabrielli O. Multiple sulfatase deficiency with neonatal manifestation. Ital J Pediatr 2014; 40:86. [PMID: 25516103 PMCID: PMC4299397 DOI: 10.1186/s13052-014-0086-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
Multiple Sulfatase Deficiency (MSD; OMIM 272200) is a rare autosomal recessive inborn error of metabolism caused by mutations in the sulfatase modifying factor 1 gene, encoding the formylglycine-generating enzyme (FGE), and resulting in tissue accumulation of sulfatides, sulphated glycosaminoglycans, sphingolipids and steroid sulfates. Less than 50 cases have been published so far. We report a new case of MSD presenting in the newborn period with hypotonia, apnoea, cyanosis and rolling eyes, hepato-splenomegaly and deafness. This patient was compound heterozygous for two so far undescribed SUMF1 mutations (c.191C > A; p.S64X and c.818A > G; p.D273G).
Collapse
Affiliation(s)
- Livia Garavelli
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Alexandra Iori
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. .,Department of Medical and Surgical Sciences of Childhood and Adult, University of Modena and Reggio Emilia, Modena, Italy.
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Silvia Braibanti
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Simona Pedori
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Nives Melli
- Neonatal Intensive Care Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Daniele Frattini
- Pediatric Neurology Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | | | | | - Stefano Pepe
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Anita Wischmeijer
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy. .,Department of Medical Genetics, Policlinico Sant'Orsola-Malpighi, University of Bologna, Bologna, Italy.
| | - Simonetta Rosato
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Ivan Ivanovski
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of Childhood and Adult, University of Modena and Reggio Emilia, Modena, Italy.
| | - Chiara Gelmini
- Clinical Genetics Unit, Obstetric and Pediatric Department, Istituto di Ricovero e Cura a Carattere Scientifico, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy.
| | | | - Andrea Superti-Furga
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131, Naples, Italy. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, 77030, USA. .,Medical Genetics, Department of Translational Medicine, Federico II University, Via Pansini 5, 80131, Naples, Italy.
| | | |
Collapse
|
8
|
Simpson CL, Wojciechowski R, Oexle K, Murgia F, Portas L, Li X, Verhoeven VJM, Vitart V, Schache M, Hosseini SM, Hysi PG, Raffel LJ, Cotch MF, Chew E, Klein BEK, Klein R, Wong TY, van Duijn CM, Mitchell P, Saw SM, Fossarello M, Wang JJ, DCCT/EDIC Research Group, Polašek O, Campbell H, Rudan I, Oostra BA, Uitterlinden AG, Hofman A, Rivadeneira F, Amin N, Karssen LC, Vingerling JR, Döring A, Bettecken T, Bencic G, Gieger C, Wichmann HE, Wilson JF, Venturini C, Fleck B, Cumberland PM, Rahi JS, Hammond CJ, Hayward C, Wright AF, Paterson AD, Baird PN, Klaver CCW, Rotter JI, Pirastu M, Meitinger T, Bailey-Wilson JE, Stambolian D. Genome-wide meta-analysis of myopia and hyperopia provides evidence for replication of 11 loci. PLoS One 2014; 9:e107110. [PMID: 25233373 PMCID: PMC4169415 DOI: 10.1371/journal.pone.0107110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Refractive error (RE) is a complex, multifactorial disorder characterized by a mismatch between the optical power of the eye and its axial length that causes object images to be focused off the retina. The two major subtypes of RE are myopia (nearsightedness) and hyperopia (farsightedness), which represent opposite ends of the distribution of the quantitative measure of spherical refraction. We performed a fixed effects meta-analysis of genome-wide association results of myopia and hyperopia from 9 studies of European-derived populations: AREDS, KORA, FES, OGP-Talana, MESA, RSI, RSII, RSIII and ERF. One genome-wide significant region was observed for myopia, corresponding to a previously identified myopia locus on 8q12 (p = 1.25×10(-8)), which has been reported by Kiefer et al. as significantly associated with myopia age at onset and Verhoeven et al. as significantly associated to mean spherical-equivalent (MSE) refractive error. We observed two genome-wide significant associations with hyperopia. These regions overlapped with loci on 15q14 (minimum p value = 9.11×10(-11)) and 8q12 (minimum p value 1.82×10(-11)) previously reported for MSE and myopia age at onset. We also used an intermarker linkage- disequilibrium-based method for calculating the effective number of tests in targeted regional replication analyses. We analyzed myopia (which represents the closest phenotype in our data to the one used by Kiefer et al.) and showed replication of 10 additional loci associated with myopia previously reported by Kiefer et al. This is the first replication of these loci using myopia as the trait under analysis. "Replication-level" association was also seen between hyperopia and 12 of Kiefer et al.'s published loci. For the loci that show evidence of association to both myopia and hyperopia, the estimated effect of the risk alleles were in opposite directions for the two traits. This suggests that these loci are important contributors to variation of refractive error across the distribution.
Collapse
Affiliation(s)
- Claire L. Simpson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Robert Wojciechowski
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Konrad Oexle
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Federico Murgia
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Schache
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Pirro G. Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tien Yin Wong
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | | | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Seang Mei Saw
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maurizio Fossarello
- Dipartimento di Scienze Chirurgiche, Clinica Oculistica Universita' degli studi di Cagliari, Cagliari, Italy
| | - Jie Jin Wang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - DCCT/EDIC Research Group
- The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Ozren Polašek
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, Netherlands Genomics Initiative, The Hague, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Angela Döring
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Goran Bencic
- Department of Ophthalmology, Hospital “Sestre Milosrdnice”, Zagreb, Croatia
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina Venturini
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh, United Kingdom
| | - Phillippa M. Cumberland
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
| | - Jugnoo S. Rahi
- MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
- Ulverscroft Vision Research Group, Institute of Child Health, University College London, London, United Kingdom
| | - Chris J. Hammond
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, and DCCT/EDIC Research Group, The Diabetes Control and Complications Trial and Follow-up Study, The Biostatistics Center, The George Washington University, Rockville, Maryland, United States of America
| | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joan E. Bailey-Wilson
- National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Schlotawa L, Radhakrishnan K, Baumgartner M, Schmid R, Schmidt B, Dierks T, Gärtner J. Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency. Eur J Hum Genet 2013; 21:1020-3. [PMID: 23321616 DOI: 10.1038/ejhg.2012.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/01/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022] Open
Abstract
Multiple sulfatase deficiency (MSD) is a rare inborn error of metabolism affecting posttranslational activation of sulfatases by the formylglycine generating enzyme (FGE). Due to mutations in the encoding SUMF1 gene, FGE's catalytic capacity is impaired resulting in reduced cellular sulfatase activities. Both, FGE protein stability and residual activity determine disease severity and have previously been correlated with the clinical MSD phenotype. Here, we report a patient with a late infantile severe course of disease. The patient is compound heterozygous for two so far undescribed SUMF1 mutations, c.156delC (p.C52fsX57) and c.390A>T (p.E130D). In patient fibroblasts, mRNA of the frameshift allele is undetectable. In contrast, the allele encoding FGE-E130D is expressed. FGE-E130D correctly localizes to the endoplasmic reticulum and has a very high residual molecular activity in vitro (55% of wildtype FGE); however, it is rapidly degraded. Thus, despite substantial residual enzyme activity, protein instability determines disease severity, which highlights that potential MSD treatment approaches should target protein folding and stabilization mechanisms.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Schlotawa L, Ennemann EC, Radhakrishnan K, Schmidt B, Chakrapani A, Christen HJ, Moser H, Steinmann B, Dierks T, Gärtner J. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. Eur J Hum Genet 2011; 19:253-61. [PMID: 21224894 DOI: 10.1038/ejhg.2010.219] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Krug M, Oji V, Traupe H, Berneburg M. Ichthyoses - Part 1: Differential diagnosis of vulgar ichthyoses and therapeutic options. J Dtsch Dermatol Ges 2009; 7:511-9. [PMID: 19192163 DOI: 10.1111/j.1610-0387.2008.06969.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ichthyoses are a group of genetic disorders with defective cornification, clinically characterized by scaling of the skin. Additionally, distinctive cutaneous inflammation can often be observed. For most of the patients these diseases lead to a significant restriction in quality of life. The diagnostic criteria include clinical and histological findings, often confirmed by specialized tests. Because many of the ichthyoses are extremely rare, their accurate diagnosis is often carried out in specialized centers. We summarize isolated vulgar and congenital ichthyoses both with and without associated symptoms and focus on the common genetic changes and their clinical phenotype. Specific therapies are still not available for most of these genetic disorders. The use of different topical agents (e. g. urea, retinoids and salicylic acid) and baths followed by mechanical keratolysis (sometimes in combination with systemic retinoids) reduce symptoms. Patients with uncommon congenital ichthyoses often benefit from interdisciplinary management which involves specialized dermatological centers. In this first part of the paper the vulgar ichthyoses as well as the diagnostic and therapeutic options are discussed. The second part focuses on the congenital ichthyoses and their differential diagnosis.
Collapse
Affiliation(s)
- Markus Krug
- Department of Dermatology, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
12
|
Dierks T, Schlotawa L, Frese MA, Radhakrishnan K, von Figura K, Schmidt B. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann–Pick C1 disease — Lysosomal storage disorders caused by defects of non-lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:710-25. [DOI: 10.1016/j.bbamcr.2008.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/11/2008] [Accepted: 11/24/2008] [Indexed: 12/11/2022]
|
13
|
Yiş U, Pepe S, Kurul SH, Ballabio A, Cosma MP, Dirik E. Multiple sulfatase deficiency in a Turkish family resulting from a novel mutation. Brain Dev 2008; 30:374-7. [PMID: 18509892 DOI: 10.1016/j.braindev.2007.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Multiple sulfatase deficiency (MSD) is an inherited lysosomal storage disease that affects post-translational activation of all of the sulfatases. Since biochemical and clinical findings are variable, the diagnosis is difficult in most of the cases. Missense, nonsense, microdeletion and splicing mutations in SUMF1 gene were found in all of the MSD patients analyzed. Here, we present clinical findings of two consanguineous patients with multiple sulfatase deficiency. They were found to be homozygous for a novel missense mutation c.739G > C causing a p.G247R amino acid substitution in the SUMF1 protein.
Collapse
Affiliation(s)
- Uluç Yiş
- Dokuz Eylül University School of Medicine, Department of Pediatrics, Division of Child Neurology, 35340, ĺzmir, Turkey.
| | | | | | | | | | | |
Collapse
|
14
|
Zafeiriou DI, Vargiami E, Papadopoulou K, Dimitriou E, Mavridou I, Santamaria R, Canals I, Michelakakis H. Serial magnetic resonance imaging and neurophysiological studies in multiple sulphatase deficiency. Eur J Paediatr Neurol 2008; 12:190-4. [PMID: 17881260 DOI: 10.1016/j.ejpn.2007.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 07/10/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
We present serial clinical, magnetic resonance imaging (MRI) and neurophysiological findings of a patient with multiple sulphatase deficiency (MSD), who was first admitted at the age of 9 months, because of psychomotor retardation. MRI demonstrated extensive diffuse symmetrical high signal in the deep white matter of both cerebral hemispheres, as well as of the subcortical white matter and the brainstem, while there was additional enlargement of sulci and subdural spaces and mild atrophy. Assay of arylsulphatase A activity in white blood cell homogenates at the age of 29 months disclosed a marked deficiency of the enzyme, compatible with the diagnosis of early-infantile metachromatic leukodystrophy. During the course of a later admission, the presence of ichthyosis pointed out to the possible diagnosis of MSD; further assays of sulphatases in plasma, leukocytes as well as in cultured fibroblasts, combined with an abnormal excretion of mucopolysaccharides and sulphatides in urine confirmed the diagnosis. Molecular analysis identified a homozygous disease-causing mutation (R349W) of the SUMF1 gene. Serial neurophysiological and MRI studies demonstrated the progressive nature of the disorder (regarding both central and peripheral nervous system), correlating with the clinical deterioration (spastic quadriplegia, optic atrophy and epilepsy) with subsequent death at the age of 4 years.
Collapse
|
15
|
Abstract
We describe the difficulty in recognizing multiple sulfatase deficiency (MSD; Online Mendelian Inheritance in Man [OMIM] database No. 272200) in an infant. MSD is a rare autosomal recessive disorder that affects the posttranslational activation of various sulfatase enzymes. It is both biochemically and clinically variable. Currently, there are 12 known sulfatases in humans, and the clinical presentation of MSD is a unique composite of those individual enzyme defects. Here we report a black girl who presented with bilateral broad thumbs and great toes, both with angulation deformities at birth. Rubinstein-Taybi syndrome (OMIM No. 180849) was considered initially. The detection of inclusion bodies in her white blood cells at 37 months of age led to the appropriate diagnostic workups for lysosomal storage diseases. Elevation of urine mucopolysaccharides provided additional clues, and the fibroblast enzyme assays finally established the diagnosis. Broad thumbs and great toes are rare features of MSD, and to the best of our knowledge such a bilateral congenital anomaly with angulation deformities has never been reported before to be associated with MSD.
Collapse
Affiliation(s)
- Roberto P Santos
- Department of Pediatrics, State University of New York-Upstate Medical University, Syracuse, New York, USA.
| | | |
Collapse
|