1
|
Holiel HA, Fawzi SA, Al-Atabany W. Pre-processing visual scenes for retinal prosthesis systems: A comprehensive review. Artif Organs 2024; 48:1223-1250. [PMID: 39023279 DOI: 10.1111/aor.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Retinal prostheses offer hope for individuals with degenerative retinal diseases by stimulating the remaining retinal cells to partially restore their vision. This review delves into the current advancements in retinal prosthesis technology, with a special emphasis on the pivotal role that image processing and machine learning techniques play in this evolution. METHODS We provide a comprehensive analysis of the existing implantable devices and optogenetic strategies, delineating their advantages, limitations, and challenges in addressing complex visual tasks. The review extends to various image processing algorithms and deep learning architectures that have been implemented to enhance the functionality of retinal prosthetic devices. We also illustrate the testing results by demonstrating the clinical trials or using Simulated Prosthetic Vision (SPV) through phosphene simulations, which is a critical aspect of simulating visual perception for retinal prosthesis users. RESULTS Our review highlights the significant progress in retinal prosthesis technology, particularly its capacity to augment visual perception among the visually impaired. It discusses the integration between image processing and deep learning, illustrating their impact on individual interactions and navigations within the environment through applying clinical trials and also illustrating the limitations of some techniques to be used with current devices, as some approaches only use simulation even on sighted-normal individuals or rely on qualitative analysis, where some consider realistic perception models and others do not. CONCLUSION This interdisciplinary field holds promise for the future of retinal prostheses, with the potential to significantly enhance the quality of life for individuals with retinal prostheses. Future research directions should pivot towards optimizing phosphene simulations for SPV approaches, considering the distorted and confusing nature of phosphene perception, thereby enriching the visual perception provided by these prosthetic devices. This endeavor will not only improve navigational independence but also facilitate a more immersive interaction with the environment.
Collapse
Affiliation(s)
- Heidi Ahmed Holiel
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
| | - Sahar Ali Fawzi
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| | - Walid Al-Atabany
- Medical Imaging and Image Processing Research Group, Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt
- Biomedical Engineering Department, Helwan University, Helwan, Egypt
| |
Collapse
|
2
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Leong F, Rahmani B, Psaltis D, Moser C, Ghezzi D. An actor-model framework for visual sensory encoding. Nat Commun 2024; 15:808. [PMID: 38280912 PMCID: PMC10821921 DOI: 10.1038/s41467-024-45105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024] Open
Abstract
A fundamental challenge in neuroengineering is determining a proper artificial input to a sensory system that yields the desired perception. In neuroprosthetics, this process is known as artificial sensory encoding, and it holds a crucial role in prosthetic devices restoring sensory perception in individuals with disabilities. For example, in visual prostheses, one key aspect of artificial image encoding is to downsample images captured by a camera to a size matching the number of inputs and resolution of the prosthesis. Here, we show that downsampling an image using the inherent computation of the retinal network yields better performance compared to learning-free downsampling methods. We have validated a learning-based approach (actor-model framework) that exploits the signal transformation from photoreceptors to retinal ganglion cells measured in explanted mouse retinas. The actor-model framework generates downsampled images eliciting a neuronal response in-silico and ex-vivo with higher neuronal reliability than the one produced by a learning-free approach. During the learning process, the actor network learns to optimize contrast and the kernel's weights. This methodological approach might guide future artificial image encoding strategies for visual prostheses. Ultimately, this framework could be applicable for encoding strategies in other sensory prostheses such as cochlear or limb.
Collapse
Affiliation(s)
- Franklin Leong
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Babak Rahmani
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Microsoft Research, Cambridge, UK
| | - Demetri Psaltis
- Optics Laboratory, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonics Devices, Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Ophthalmic and Neural Technologies Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation Asile des Aveugles, Lausanne, Switzerland.
| |
Collapse
|
4
|
Meital-Kfir N, Pezaris JS. The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision. Invest Ophthalmol Vis Sci 2023; 64:5. [PMID: 38051263 DOI: 10.1167/iovs.64.15.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Electrical microstimulation techniques used in visual prostheses are designed to restore visual function following acquired blindness. Patterns of induced focal percepts, known as phosphenes, are achieved by applying localized electrical pulses to the visual pathway to bypass the impaired site in order to convey images from the external world. Here, we use a simulation of artificial vision to manipulate relationships between individual phosphenes to observe the effects on object binding and perception. We hypothesize that synchronous phosphene presentation will facilitate object perception as compared to asynchronous presentation. Methods A model system that tracks gaze position of normal, sighted participants to present patterns of phosphenes on a computer screen was used to simulate prosthetic vision. Participants performed a reading task at varying font sizes (1.1-1.4 logMAR) and under varying levels of phosphene temporal noise while reading accuracy and speed were measured. Results Reading performance was significantly affected by temporal noise in phosphene presentation, with increasing desynchronization leading to lower reading scores. A drop in performance was also observed when the total latency between the gaze position and phosphene update was increased without adding temporal noise. Conclusions Object perception (here, text perception) is enhanced with synchronously presented phosphenes as compared to asynchronously presented ones. These results are fundamental for developing an efficient temporal pattern of stimulation and for the creation of high-fidelity prosthetic vision.
Collapse
Affiliation(s)
- Noya Meital-Kfir
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, United States
| | - John S Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Neurosurgery, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Christie B, Sadeghi R, Kartha A, Caspi A, Tenore FV, Klatzky RL, Dagnelie G, Billings S. Sequential epiretinal stimulation improves discrimination in simple shape discrimination tasks only. J Neural Eng 2022; 19. [PMID: 35613043 DOI: 10.1088/1741-2552/ac7326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical stimulation of the retina can elicit flashes of light called phosphenes, which can be used to restore rudimentary vision for people with blindness. Functional sight requires stimulation of multiple electrodes to create patterned vision, but phosphenes tend to merge together in an uninterpretable way. Sequentially stimulating electrodes in human visual cortex has recently demonstrated that shapes could be "drawn" with better perceptual resolution relative to simultaneous stimulation. The goal of this study was to evaluate if sequential stimulation would also form clearer shapes when the retina is the neural target. APPROACH Two human participants with retinitis pigmentosa who had Argus® II retinal prostheses participated in this study. We evaluated different temporal parameters for sequential stimulation in phosphene shape mapping and forced-choice discrimination tasks. For the discrimination tasks, performance was compared between stimulating electrodes simultaneously versus sequentially. MAIN RESULTS Phosphenes elicited by different electrodes were reported as vastly different shapes. Sequential electrode stimulation outperformed simultaneous stimulation in simple discrimination tasks, in which shapes were created by stimulating 3-4 electrodes, but not in more complex discrimination tasks involving 5+ electrodes. For sequential stimulation, the optimal pulse train duration was 200 ms when stimulating at 20 Hz and the optimal gap interval was tied between 0 and 50 ms. Efficacy of sequential stimulation also depended strongly on selecting electrodes that elicited phosphenes with similar shapes and sizes. SIGNIFICANCE An epiretinal prosthesis can produce coherent simple shapes with a sequential stimulation paradigm, which can be used as rudimentary visual feedback. However, success in creating more complex shapes, such as letters of the alphabet, is still limited. Sequential stimulation may be most beneficial for epiretinal prostheses in simple tasks, such as basic navigation, rather than complex tasks such as object identification.
Collapse
Affiliation(s)
- Breanne Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, UNITED STATES
| | - Roksana Sadeghi
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore, Maryland, 21205, UNITED STATES
| | - Arathy Kartha
- Department of Ophthalmology, Johns Hopkins School of Medicine, 1800 Orleans St., Baltimore, Maryland, 21287, UNITED STATES
| | - Avi Caspi
- Jerusalem College of Technology, Ha-Va'ad ha-Le'umi St 21, Jerusalem, 91160, ISRAEL
| | - Francesco V Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, UNITED STATES
| | - Roberta L Klatzky
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES
| | - Gislin Dagnelie
- Department of Ophthalmology, Johns Hopkins School of Medicine, 1800 Orleans St., Baltimore, Maryland, 21287, UNITED STATES
| | - Seth Billings
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland, 20723-6005, UNITED STATES
| |
Collapse
|
6
|
Sharf T, Kalakuntla T, J Lee D, Gokoffski KK. Electrical devices for visual restoration. Surv Ophthalmol 2022; 67:793-800. [PMID: 34487742 PMCID: PMC9241872 DOI: 10.1016/j.survophthal.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022]
Abstract
Given the rising number of patients with blindness from macular, optic nerve, and visual pathway disease, there is considerable interest in the potential of electrical stimulation devices to restore vision. Electrical devices for restoration of visual function can be grouped into three categories: (1) visual prostheses whose goal is to bypass damaged areas and directly activate downstream intact portions of the visual pathway; (2) electric field stimulation whose goal is to activate endogenous transcriptional and molecular signaling pathways to promote neuroprotection and neuro-regeneration; and (3) neuromodulation whose stimulation would resuscitate neural circuits vital to coordinating responses to visual input. In this review, we discuss these three approaches, describe advances made in the different fields, and comment on limitations and potential future directions.
Collapse
Affiliation(s)
- Tamara Sharf
- Keck School of Medicine, University of Southern California, CA, USA
| | - Tej Kalakuntla
- Keck School of Medicine, University of Southern California, CA, USA
| | - Darrin J Lee
- Department of Neurological Surgery, University of Southern California, CA, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, CA, USA.
| |
Collapse
|
7
|
Wang J, Zhu H, Liu J, Li H, Han Y, Zhou R, Zhang Y. The application of computer vision to visual prosthesis. Artif Organs 2021; 45:1141-1154. [PMID: 34318520 DOI: 10.1111/aor.14022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
A visual prosthesis is an auxiliary device for patients with blinding diseases that cannot be treated with conventional surgery or drugs. It converts captured images into corresponding electrical stimulation patterns, according to which phosphenes are generated through the action of internal electrodes on the visual pathway to form visual perception. However, due to some restrictions such as the few implantable electrodes that the biological tissue can accommodate, the induced perception is far from ideal. Therefore, an important issue in visual prosthesis research is how to detect and present useful information in low-resolution prosthetic vision to improve the visual function of the wearer. In recent years, with the development and broad application of computer vision methods, researchers have investigated the possibility of their utilization in visual prostheses by simulating prosthetic visual percepts. Through the optimization of visual perception by image processing, the efficiency of visual prosthesis devices can be further improved to better meet the needs of prosthesis wearers. In this article, recent works on prosthetic vision centering on implementing computer vision methods are reviewed. Differences, strengths, and weaknesses of the mentioned methods are discussed. The development directions of optimizing prosthetic vision and improving methods of visual perception are analyzed.
Collapse
Affiliation(s)
- Jing Wang
- School of Information, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Fishery Information, Ministry of Agriculture, Shanghai, China
| | - Haiyi Zhu
- School of Information, Shanghai Ocean University, Shanghai, China
| | - Jianyun Liu
- School of Information, Shanghai Ocean University, Shanghai, China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yanling Han
- School of Information, Shanghai Ocean University, Shanghai, China
| | - Ruyan Zhou
- School of Information, Shanghai Ocean University, Shanghai, China
| | - Yun Zhang
- School of Information, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Fishery Information, Ministry of Agriculture, Shanghai, China
| |
Collapse
|
8
|
Moleirinho S, Whalen AJ, Fried SI, Pezaris JS. The impact of synchronous versus asynchronous electrical stimulation in artificial vision. J Neural Eng 2021; 18. [PMID: 33900206 DOI: 10.1088/1741-2552/abecf1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Visual prosthesis devices designed to restore sight to the blind have been under development in the laboratory for several decades. Clinical translation continues to be challenging, due in part to gaps in our understanding of critical parameters such as how phosphenes, the electrically-generated pixels of artificial vision, can be combined to form images. In this review we explore the effects that synchronous and asynchronous electrical stimulation across multiple electrodes have in evoking phosphenes. Understanding how electrical patterns influence phosphene generation to control object binding and perception of visual form is fundamental to creation of a clinically successful prosthesis.
Collapse
Affiliation(s)
- Susana Moleirinho
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| | - Andrew J Whalen
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America.,Boston VA Healthcare System, Boston, MA, United States of America
| | - John S Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
9
|
Gaillet V, Borda E, Zollinger EG, Ghezzi D. A machine-learning algorithm correctly classifies cortical evoked potentials from both visual stimulation and electrical stimulation of the optic nerve. J Neural Eng 2021; 18. [PMID: 33823498 DOI: 10.1088/1741-2552/abf523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 11/12/2022]
Abstract
Objective. Optic nerve's intraneural stimulation is an emerging neuroprosthetic approach to provide artificial vision to totally blind patients. An open question is the possibility to evoke individual non-overlapping phosphenes via selective intraneural optic nerve stimulation. To begin answering this question, first, we aim at showing in preclinical experiments with animals that each intraneural electrode could evoke a distinguishable activity pattern in the primary visual cortex.Approach. We performed both patterned visual stimulation and patterned electrical stimulation in healthy rabbits while recording evoked cortical activity with an electrocorticogram array in the primary visual cortex. Electrical stimulation was delivered to the optic nerve with the intraneural array OpticSELINE. We used a support vector machine algorithm paired to a linear regression model to classify cortical responses originating from visual stimuli located in different portions of the visual field and electrical stimuli from the different electrodes of the OpticSELINE.Main results. Cortical activity induced by visual and electrical stimulation could be classified with nearly 100% accuracy relative to the specific location in the visual field or electrode in the array from which it originated. For visual stimulation, the accuracy increased with the separation of the stimuli and reached 100% for separation higher than 7°. For electrical stimulation, at low current amplitudes, the accuracy increased with the distance between electrodes, while at higher current amplitudes, the accuracy was nearly 100% already for the shortest separation.Significance. Optic nerve's intraneural stimulation with the OpticSELINE induced discernible cortical activity patterns. These results represent a necessary condition for an optic nerve prosthesis to deliver vision with non-overlapping phosphene. However, clinical investigations will be required to assess the translation of these results into perceptual phenomena.
Collapse
Affiliation(s)
- Vivien Gaillet
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique fédérale de Lausanne, Geneva 1202, Switzerland
| | - Eleonora Borda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique fédérale de Lausanne, Geneva 1202, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique fédérale de Lausanne, Geneva 1202, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique fédérale de Lausanne, Geneva 1202, Switzerland
| |
Collapse
|
10
|
Sanchez-Garcia M, Martinez-Cantin R, Bermudez-Cameo J, Guerrero JJ. Influence of field of view in visual prostheses design: Analysis with a VR system. J Neural Eng 2020; 17:056002. [PMID: 32947270 DOI: 10.1088/1741-2552/abb9be] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Visual prostheses are designed to restore partial functional vision in patients with total vision loss. Retinal visual prostheses provide limited capabilities as a result of low resolution, limited field of view and poor dynamic range. Understanding the influence of these parameters in the perception results can guide prostheses research and design. APPROACH In this work, we evaluate the influence of field of view with respect to spatial resolution in visual prostheses, measuring the accuracy and response time in a search and recognition task. Twenty-four normally sighted participants were asked to find and recognize usual objects, such as furniture and home appliance in indoor room scenes. For the experiment, we use a new simulated prosthetic vision system that allows simple and effective experimentation. Our system uses a virtual-reality environment based on panoramic scenes. The simulator employs a head-mounted display which allows users to feel immersed in the scene by perceiving the entire scene all around. Our experiments use public image datasets and a commercial head-mounted display. We have also released the virtual-reality software for replicating and extending the experimentation. MAIN RESULTS Results show that the accuracy and response time decrease when the field of view is increased. Furthermore, performance appears to be correlated with the angular resolution, but showing a diminishing return even with a resolution of less than 2.3 phosphenes per degree. SIGNIFICANCE Our results seem to indicate that, for the design of retinal prostheses, it is better to concentrate the phosphenes in a small area, to maximize the angular resolution, even if that implies sacrificing field of view.
Collapse
Affiliation(s)
- Melani Sanchez-Garcia
- Instituto de Investigación en Ingeniería de Aragón, (I3A). Universidad de Zaragoza, Spain
| | | | | | | |
Collapse
|
11
|
Nowik K, Langwińska-Wośko E, Skopiński P, Nowik KE, Szaflik JP. Bionic eye review – An update. J Clin Neurosci 2020; 78:8-19. [DOI: 10.1016/j.jocn.2020.05.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/03/2020] [Indexed: 01/26/2023]
|
12
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
13
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Ho E, Boffa J, Palanker D. Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses. J Vis 2019; 19:22. [PMID: 31770773 PMCID: PMC6880846 DOI: 10.1167/19.13.22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.
Collapse
Affiliation(s)
- Elton Ho
- Department of Physics, Stanford University, Stanford, CA, USA
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Jack Boffa
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Gaillet V, Cutrone A, Artoni F, Vagni P, Mega Pratiwi A, Romero SA, Lipucci Di Paola D, Micera S, Ghezzi D. Spatially selective activation of the visual cortex via intraneural stimulation of the optic nerve. Nat Biomed Eng 2019; 4:181-194. [DOI: 10.1038/s41551-019-0446-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2019] [Indexed: 01/22/2023]
|
16
|
Abstract
Visual prostheses serve to restore visual function following acquired blindness. Acquired blindness (as opposed to congenital blindness) has many causes, including diseases such as retinitis pigmentosa, glaucoma, and macular degeneration, or trauma such as caused by automobile accident or blast damage from explosions. Many of the blindness-causing diseases target the retina or other ocular structure. Often, despite the loss of sensitivity to light, the remainder of the visual pathway is still functional, enabling electrical devices to deliver effective and meaningful visual information to the brain via arrays of electrodes. These arrays can be placed in any part of the early visual pathway, such as the retina, optic nerve, lateral geniculate nucleus, or visual cortex. A camera or other imaging source is used to drive electrical stimulation of remaining healthy cells or structures to create artificial vision and provide restoration of function. In this review, each approach to visual prostheses is described, including advantages and disadvantages as well as assessments of the current state of the art. Most of the work to-date has been targeting stimulation of (a) the retina, with three devices approved for general use and two more in clinical testing; (b) the lateral geniculate nucleus, with efforts still in the pre-clinical stage; and (c) the cortex, with three devices in clinical testing and none currently approved for general use despite the longest history of investigation of the three major approaches. Each class of device has different medical indications, and different levels of invasiveness required for implantation. All contemporary devices deliver relatively poor vision. There has been remarkable progress since the first proof-of-concept demonstration that used stimulation of the primary visual cortex, with the field exploring all viable options for restoration of function. Much of the progress has been recent, driven by advances in microelectronics and biocompatibility. With three devices currently approved for general use in various parts of the world, and a handful of additional devices well along in the pipeline toward approval, prospects for wide deployment of a device-based therapy to treat acquired blindness are good.
Collapse
|
17
|
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics 2019; 16:134-143. [PMID: 30194614 PMCID: PMC6361050 DOI: 10.1007/s13311-018-0660-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Loss of vision alters the day to day life of blind individuals and may impose a significant burden on their family and the economy. Cortical visual prosthetics have been shown to have the potential of restoring a useful degree of vision via stimulation of primary visual cortex. Due to current advances in electrode design and wireless power and data transmission, development of these prosthetics has gained momentum in the past few years and multiple sites around the world are currently developing and testing their designs. In this review, we briefly outline the visual prosthetic approaches and describe the history of cortical visual prosthetics. Next, we focus on the state of the art of cortical visual prosthesis by briefly explaining the design of current devices that are either under development or in the clinical testing phase. Lastly, we shed light on the challenges of each design and provide some potential solutions.
Collapse
Affiliation(s)
- Soroush Niketeghad
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Fernandez E. Development of visual Neuroprostheses: trends and challenges. Bioelectron Med 2018; 4:12. [PMID: 32232088 PMCID: PMC7098238 DOI: 10.1186/s42234-018-0013-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Visual prostheses are implantable medical devices that are able to provide some degree of vision to individuals who are blind. This research field is a challenging subject in both ophthalmology and basic science that has progressed to a point where there are already several commercially available devices. However, at present, these devices are only able to restore a very limited vision, with relatively low spatial resolution. Furthermore, there are still many other open scientific and technical challenges that need to be solved to achieve the therapeutic benefits envisioned by these new technologies. This paper provides a brief overview of significant developments in this field and introduces some of the technical and biological challenges that still need to be overcome to optimize their therapeutic success, including long-term viability and biocompatibility of stimulating electrodes, the selection of appropriate patients for each artificial vision approach, a better understanding of brain plasticity and the development of rehabilitative strategies specifically tailored for each patient.
Collapse
Affiliation(s)
- Eduardo Fernandez
- Institute of Bioengineering, University Miguel Hernández and CIBER-BBN, Avda de la Universidad, s/n, 03202 Alicante, Elche Spain.,2John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| |
Collapse
|
19
|
Optimization of Visual Information Presentation for Visual Prosthesis. Int J Biomed Imaging 2018; 2018:3198342. [PMID: 29731769 PMCID: PMC5872628 DOI: 10.1155/2018/3198342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.
Collapse
|
20
|
Zhao Y, Geng X, Li Q, Jiang G, Gu Y, Lv X. Recognition of a Virtual Maze Scene Using Simulated Prosthetic Vision. Artif Organs 2017; 42:560-568. [PMID: 29266315 DOI: 10.1111/aor.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022]
Abstract
A real-time psychological physics experimental platform was built to aid in discovering the best real-time image processing strategy for the limited number of electrodes, and in providing the most useful prosthetic implant visual information. A number of maze pathfinder tasks were performed at low resolution to simulate use by blind individuals in performing daily visual activities. In this study, simple (5 rows × 5 columns), medium (8 × 8), and complex (11 × 11) maze models were created in 3DMAX. The models were constructed by using Unity to build virtual scenes for real-time pixel processing, including binarization, color inversion, and matching to templates with three different resolutions (16 × 16, 24 × 24, 32 × 32). Subjects completed maze pathfinding tasks using 45° and 60° views of the labyrinth at the 32 × 32 resolution to determine the optimal viewing angle. The time required to find the maze entrance and complete the maze were analyzed along with the rate of maze completion (accuracy) at various resolutions. In the first experiment, the average time required to find the entrance and the average maze pathfinding duration were significantly longer at 60°. Therefore, the 45° view provided the best perspective. In the second experiment, the angle was fixed to 45°. As the maze difficulty increased, the average time needed to find the maze entrance decreased, but the average time required to complete the maze increased. When the difficulty of the maze was fixed, the time required to find the maze entrance and solve the maze decreased when the resolution increased. The accuracy with which the maze path was identified increased as well. The average maze pathfinding time at 24 × 24 was significantly less than at 16 × 16. A similar trend was observed when the average maze pathfinding times at 32 × 32 and 24 × 24 were compared. At 32 × 32, the average pathfinding accuracy was 100%. This indicates that 32 × 32 is an effective resolution for maze pathfinding.
Collapse
Affiliation(s)
- Ying Zhao
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiulin Geng
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Qi Li
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Guangqi Jiang
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yu Gu
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.,School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xiaoqi Lv
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.,School of Computer Engineering and Science, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Central nervous system microstimulation: Towards selective micro-neuromodulation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
|
23
|
Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Rev Biomed Eng 2017; 10:136-161. [PMID: 28328511 DOI: 10.1109/rbme.2017.2683520] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.
Collapse
|
24
|
Abstract
Sensory neuroprostheses for restoration of vision are a technical approach for treatment of previously untreatable blindness. These systems consist of a technical sensor such as a camera and an implanted multi-electrode array within the visual system. The image information from the sensor is processed with specially designed integrated circuits in such a way that the stimulation pulses can be determined and presented to the implanted multi-electrode matrix. Energy supply and the transfer of the stimulus pulse information is realized either via direct cable connections within the site of the implant or by telemetric inductive links. Currently, two retinal implant systems are approved in the European Union (EU) to be used in blind patients with retinitis pigmentosa. With both systems basic visual functions can be restored. The complication rate is relatively low given the complexity of the surgical procedure. Other systems are still under development but approval studies by several manufacturers and consortia are already in preparation.
Collapse
Affiliation(s)
- P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
25
|
Hébert C, Cottance M, Degardin J, Scorsone E, Rousseau L, Lissorgues G, Bergonzo P, Picaud S. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:77-84. [DOI: 10.1016/j.msec.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 01/17/2023]
|
26
|
Nguyen HT, Tangutooru SM, Rountree CM, Kantzos AJK, Tarlochan F, Yoon WJ, Troy JB. Thalamic Visual Prosthesis. IEEE Trans Biomed Eng 2016; 63:1573-80. [DOI: 10.1109/tbme.2016.2567300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Abstract
Retinitis pigmentosa and age-related macular degeneration are both incurable eye diseases that lead to blindness due to photoreceptor degeneration. Electrically stimulating the remaining intact nerve cells may generate some useful vision for patients afflicted with these diseases. Various types of retinal prostheses, sub- and epi-retinal electrode arrays, as well as subretinal microphotodiode arrays are considered from a materials and biocompatibility point of view. Other, more innovative approaches to restoring vision, such as microfluidic pumps and activated nanosystems that deliver neurotransmitters in a controlled way and photodynamic therapy are being developed. This article discusses materials aspects of retinal prostheses that are currently in use or under development.
Collapse
Affiliation(s)
- Carmen Scholz
- Department of Chemistry, University of Alabama in Huntsville 301 Sparkman Drive, MSB 333, Huntsville, AL 35899, USA,
| |
Collapse
|
28
|
Walter P. Sehprothesen. SPEKTRUM DER AUGENHEILKUNDE 2016. [DOI: 10.1007/s00717-016-0299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Brandli A, Luu CD, Guymer RH, Ayton LN. Progress in the clinical development and utilization of vision prostheses: an update. Eye Brain 2016; 8:15-25. [PMID: 28539798 PMCID: PMC5398739 DOI: 10.2147/eb.s70822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vision prostheses, or "bionic eyes", are implantable medical bionic devices with the potential to restore rudimentary sight to people with profound vision loss or blindness. In the past two decades, this field has rapidly progressed, and there are now two commercially available retinal prostheses in the US and Europe, and a number of next-generation devices in development. This review provides an update on the development of these devices and a discussion on the future directions for the field.
Collapse
Affiliation(s)
- Alice Brandli
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Department of Surgery (Ophthalmology), The University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Barnes N, Scott AF, Lieby P, Petoe MA, McCarthy C, Stacey A, Ayton LN, Sinclair NC, Shivdasani MN, Lovell NH, McDermott HJ, Walker JG. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering. J Neural Eng 2016; 13:036013. [DOI: 10.1088/1741-2560/13/3/036013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Zapf MPH, Boon MY, Lovell NH, Suaning GJ. Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study. J Neural Eng 2016; 13:026022. [PMID: 26902525 DOI: 10.1088/1741-2560/13/2/026022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The prospective efficacy of peripheral retinal prostheses for guiding orientation and mobility in the absence of residual vision, as compared to an implant for the central visual field (VF), was evaluated using simulated prosthetic vision (SPV). APPROACH Sighted volunteers wearing a head-mounted display performed an obstacle circumvention task under SPV. Mobility and orientation performance with three layouts of prosthetic vision were compared: peripheral prosthetic vision of higher visual acuity (VA) but limited VF, of wider VF but limited VA, as well as centrally restricted prosthetic vision. Learning curves using these layouts were compared fitting an exponential model to the mobility and orientation measures. MAIN RESULTS Using peripheral layouts, performance was superior to the central layout. Walking speed with both higher-acuity and wider-angle layouts was 5.6% higher, and mobility errors reduced by 46.4% and 48.6%, respectively, as compared to the central layout. The wider-angle layout yielded the least number of collisions, 63% less than the higher-acuity and 73% less than the central layout. Using peripheral layouts, the number of visual-scanning related head movements was 54.3% (higher-acuity) and 60.7% (wider-angle) lower, as compared to the central layout, and the ratio of time standing versus time walking was 51.9% and 61.5% lower, respectively. Learning curves did not differ between layouts, except for time standing versus time walking, where both peripheral layouts achieved significantly lower asymptotic values compared to the central layout. SIGNIFICANCE Beyond complementing residual vision for an improved performance, peripheral prosthetic vision can effectively guide mobility in the later stages of retinitis pigmentosa (RP) without residual vision. Further, the temporal dynamics of learning peripheral and central prosthetic vision are similar. Therefore, development of a peripheral retinal prosthesis and early implantation to alleviate VF constriction in RP should be considered to extend the target group and the time of benefit for potential retinal prosthesis implantees.
Collapse
Affiliation(s)
- Marc Patrick H Zapf
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney 2052, Australia
| | | | | | | |
Collapse
|
32
|
Ghezzi D. Retinal prostheses: progress toward the next generation implants. Front Neurosci 2015; 9:290. [PMID: 26347602 PMCID: PMC4542462 DOI: 10.3389/fnins.2015.00290] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022] Open
Abstract
In the last decade, various clinical trials proved the capability of visual prostheses, in particular retinal implants, to restore a useful form of vision. These encouraging results promoted the emerging of several strategies for neuronal stimulation aiming at the restoration of sight. Besides the traditional approach based on electrical stimulation through metal electrodes in the different areas of the visual path (e.g., the visual cortex, the lateral geniculate nucleus, the optic nerve, and the retina), novel concepts for neuronal stimulation have been mostly exploited as building blocks of the next generation of retinal implants. This review is focused on critically discussing recent major advancements in the field of retinal stimulation with particular attention to the findings in the application of novel concepts and materials. Last, the major challenges in the field and their clinical implications will be outlined.
Collapse
Affiliation(s)
- Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
33
|
Properties of electrically evoked potentials activated by optic nerve stimulation with penetrating electrodes of different modes in rabbits. Graefes Arch Clin Exp Ophthalmol 2015; 253:2171-80. [DOI: 10.1007/s00417-015-3121-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022] Open
|
34
|
Brunton EK, Winther-Jensen B, Wang C, Yan EB, Hagh Gooie S, Lowery AJ, Rajan R. In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. FRONTIERS IN NEUROENGINEERING 2015; 8:5. [PMID: 26029097 PMCID: PMC4429246 DOI: 10.3389/fneng.2015.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 11/13/2022]
Abstract
Electrodes for cortical stimulation need to deliver current to neural tissue effectively and safely. We have developed electrodes with a novel annular geometry for use in cortical visual prostheses. Here, we explore a critical question on the ideal annulus height to ensure electrical stimulation will be safe and effective. We implanted single electrodes into the motor cortex of anesthetized rats and measured the current required to evoke a motor response to stimulation, and the charge injection capacity (CIC) of the electrodes. We compared platinum iridium (PtIr) electrodes with different annulus heights, with and without a coating of porous titanium nitride (TiN). Threshold charge densities to evoke a motor response ranged from 12 to 36 μC.cm-2.ph-1. Electrodes with larger geometric surface areas (GSAs) required higher currents to evoke responses, but lower charge densities. The addition of a porous TiN coating did not significantly influence the current required to evoke a motor response. The CIC of both electrode types was significantly reduced in vivo compared with in vitro measurements. The measured CIC was 72 and 18 μC.cm-2.ph-1 for electrodes with and without a TiN coating, respectively. These results support the use of PtIr annular electrodes with annulus heights greater than 100 μm (GSA of 38, 000 μm2). However, if the electrodes are coated with porous TiN the annulus height can be reduced to 40 μm (GSA of 16,000 μm2).
Collapse
Affiliation(s)
- Emma K Brunton
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Electrical and Computer Systems Engineering, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | | | - Chun Wang
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Edwin B Yan
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Saman Hagh Gooie
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Arthur J Lowery
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Electrical and Computer Systems Engineering, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| |
Collapse
|
35
|
Brunton EK, Winther-Jensen B, Wang C, Yan EB, Hagh Gooie S, Lowery AJ, Rajan R. In vivo comparison of the charge densities required to evoke motor responses using novel annular penetrating microelectrodes. Front Neurosci 2015; 9:265. [PMID: 26283905 PMCID: PMC4518750 DOI: 10.3389/fnins.2015.00265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022] Open
Abstract
Electrodes for cortical stimulation need to deliver current to neural tissue effectively and safely. We have developed electrodes with a novel annular geometry for use in cortical visual prostheses. Here, we explore a critical question on the ideal annulus height to ensure electrical stimulation will be safe and effective. We implanted single electrodes into the motor cortex of anesthetized rats and measured the current required to evoke a motor response to stimulation, and the charge injection capacity (CIC) of the electrodes. We compared platinum iridium (PtIr) electrodes with different annulus heights, with and without a coating of porous titanium nitride (TiN). Threshold charge densities to evoke a motor response ranged from 12 to 36 μC.cm-2.ph-1. Electrodes with larger geometric surface areas (GSAs) required higher currents to evoke responses, but lower charge densities. The addition of a porous TiN coating did not significantly influence the current required to evoke a motor response. The CIC of both electrode types was significantly reduced in vivo compared with in vitro measurements. The measured CIC was 72 and 18 μC.cm-2.ph-1 for electrodes with and without a TiN coating, respectively. These results support the use of PtIr annular electrodes with annulus heights greater than 100 μm (GSA of 38, 000 μm2). However, if the electrodes are coated with porous TiN the annulus height can be reduced to 40 μm (GSA of 16,000 μm2).
Collapse
Affiliation(s)
- Emma K Brunton
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Electrical and Computer Systems Engineering, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | | | - Chun Wang
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Edwin B Yan
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Saman Hagh Gooie
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| | - Arthur J Lowery
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Electrical and Computer Systems Engineering, Monash University Clayton, VIC, Australia
| | - Ramesh Rajan
- Monash Vision Group, Monash University Clayton, VIC, Australia ; Department of Physiology, Monash University Clayton, VIC, Australia
| |
Collapse
|
36
|
Visual Sensation by Electrical Stimulation Using a New Direct Optic Nerve Electrode Device. Brain Stimul 2015; 8:678-81. [DOI: 10.1016/j.brs.2015.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 11/15/2022] Open
|
37
|
Macé MJM, Guivarch V, Denis G, Jouffrais C. Simulated Prosthetic Vision: The Benefits of Computer-Based Object Recognition and Localization. Artif Organs 2015; 39:E102-13. [PMID: 25900238 DOI: 10.1111/aor.12476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Brown DJ, Simpson AJR, Proulx MJ. Visual objects in the auditory system in sensory substitution: how much information do we need? Multisens Res 2015; 27:337-57. [PMID: 25693300 DOI: 10.1163/22134808-00002462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensory substitution devices such as The vOICe convert visual imagery into auditory soundscapes and can provide a basic 'visual' percept to those with visual impairment. However, it is not known whether technical or perceptual limits dominate the practical efficacy of such systems. By manipulating the resolution of sonified images and asking naïve sighted participants to identify visual objects through a six-alternative forced-choice procedure (6AFC) we demonstrate a 'ceiling effect' at 8 x 8 pixels, in both visual and tactile conditions, that is well below the theoretical limits of the technology. We discuss our results in the context of auditory neural limits on the representation of 'auditory' objects in a cortical hierarchy and how perceptual training may be used to circumvent these limitations.
Collapse
|
39
|
Hu J, Qi J, Peng Y, Ren Q. Predicting electrical evoked potential in optic nerve visual prostheses by using support vector regression and case-based prediction. Inf Sci (N Y) 2015. [DOI: 10.1016/j.ins.2014.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Lane FJ, Nitsch K, Huyck M, Troyk P, Schug K. Perspectives of optic nerve prostheses. Disabil Rehabil Assist Technol 2014; 11:301-9. [PMID: 25425410 DOI: 10.3109/17483107.2014.961178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of projects exist that are investigating the ability to restore visual percepts for individuals who are blind through a visual prosthesis. While many projects have reported the results from a technical basis, very little exists in the professional literature on the human experience of visual implant technology. The current study uses an ethnographic methodological approach to document the experiences of the research participants and study personnel of a optic nerve vision prosthesis project in Brussels, Belgium. The findings have implications for motivation for participating in clinical trials, ethical safeguards of participants and the role of the participant in a research study. Implications for Rehabilitation Rehabilitation practitioners are often solicited by prospective participants to assist in evaluating a clinical trial before making a decision about participation. Rehabilitation professionals should be aware that: The decision to participate in a clinical trial is ultimately up to the individual participant. However, participants should be aware that family members might experience stress from of a lack of knowledge about the research study. The more opportunities a participant has to share thoughts and feelings about the research study with investigators will likely result in a positive overall experience. Ethical safeguards put in place to protect the interests of an individual participant may have the opposite effect and create stress. Rehabilitation professionals can play an important role as participant advocates from recruitment through termination of the research study. Participant hope is an important component of participation in a research study. Information provided to participants by investigators during the consent process should be balanced carefully with potential benefits, so it does not destroy a participant's hope.
Collapse
Affiliation(s)
| | | | | | | | - Ken Schug
- d Department of Chemistry , Illinois Institute of Technology , Chicago , IL , USA
| |
Collapse
|
41
|
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 2014; 1595:51-73. [PMID: 25446438 DOI: 10.1016/j.brainres.2014.11.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia.
| | - Helen M Ackland
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Melbourne, Australia.
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA.
| |
Collapse
|
42
|
Fink W, Tarbell MA. Artificial vision support system (AVS(2)) for improved prosthetic vision. J Med Eng Technol 2014; 38:385-95. [PMID: 25286349 DOI: 10.3109/03091902.2014.957869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
State-of-the-art and upcoming camera-driven, implanted artificial vision systems provide only tens to hundreds of electrodes, affording only limited visual perception for blind subjects. Therefore, real time image processing is crucial to enhance and optimize this limited perception. Since tens or hundreds of pixels/electrodes allow only for a very crude approximation of the typically megapixel optical resolution of the external camera image feed, the preservation and enhancement of contrast differences and transitions, such as edges, are especially important compared to picture details such as object texture. An Artificial Vision Support System (AVS(2)) is devised that displays the captured video stream in a pixelation conforming to the dimension of the epi-retinal implant electrode array. AVS(2), using efficient image processing modules, modifies the captured video stream in real time, enhancing 'present but hidden' objects to overcome inadequacies or extremes in the camera imagery. As a result, visual prosthesis carriers may now be able to discern such objects in their 'field-of-view', thus enabling mobility in environments that would otherwise be too hazardous to navigate. The image processing modules can be engaged repeatedly in a user-defined order, which is a unique capability. AVS(2) is directly applicable to any artificial vision system that is based on an imaging modality (video, infrared, sound, ultrasound, microwave, radar, etc.) as the first step in the stimulation/processing cascade, such as: retinal implants (i.e. epi-retinal, sub-retinal, suprachoroidal), optic nerve implants, cortical implants, electric tongue stimulators, or tactile stimulators.
Collapse
Affiliation(s)
- Wolfgang Fink
- Visual and Autonomous Exploration Systems Research Laboratory, California Institute of Technology, Division of Physics, Mathematics and Astronomy , 1200 E California Blvd, Mail Code 103-33, Pasadena, CA 91125 , USA and
| | | |
Collapse
|
43
|
Kitiratschky VBD, Stingl K, Wilhelm B, Peters T, Besch D, Sachs H, Gekeler F, Bartz-Schmidt KU, Zrenner E. Safety evaluation of "retina implant alpha IMS"--a prospective clinical trial. Graefes Arch Clin Exp Ophthalmol 2014; 253:381-7. [PMID: 25219982 DOI: 10.1007/s00417-014-2797-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To restore vision in patients with retinitis pigmentosa, several types of electronic devices have been developed to stimulate neurons at different levels along the visual pathway. Subretinal stimulation of the retina with the Retina Implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) has been demonstrated to provide useful vision in daily life. Here we evaluated the safety of this device. METHODS An interventional, prospective, multi-center, single-arm study was conducted in patients with retinitis pigmentosa with the Retina Implant Alpha IMS. The results from the first nine patients of a single center regarding safety of the device are reported. Any untoward medical occurrence related or unrelated to the tested device was documented and evaluated. RESULTS Nine adult subjects were included in the study at the Tübingen site. Seventy-five adverse events occurred in total, and 53 affected the eye and its adnexa. Thirty-one ocular adverse events had a relationship to the implant that was classified as "certain" while 19 had a probable or possible relationship; three had no relationship to the implant. Thirty-nine ocular adverse events resolved without sequelae, two resolved with sequelae, 11 remained unresolved, and in one the status was unknown. The intensity of ocular adverse events was mild in the majority of cases (n = 45), while six were of moderate and two of severe intensity. There was no non-ocular adverse event with certain relationship to the device. One subject lost light perception (without light localization) in her study eye. CONCLUSIONS In conclusion, this prospective study, "Safety and Efficacy of Subretinal Implants for Partial Restoration of Vision in Blind Patients," shows that the Retina Implant Alpha IMS is an option for restoring vision using a subretinal stimulation device with a clinically acceptable safety profile.
Collapse
|
44
|
Restaino SM, Abliz E, Wachrathit K, Krauthamer V, Shah SB. Biomechanical and functional variation in rat sciatic nerve following cuff electrode implantation. J Neuroeng Rehabil 2014; 11:73. [PMID: 24758405 PMCID: PMC4022540 DOI: 10.1186/1743-0003-11-73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve cuff electrodes are commonly and successfully used for stimulating peripheral nerves. On the other hand, they occasionally induce functional and morphological changes following chronic implantation, for reasons not always clear. We hypothesize that restriction of nerve mobility due to cuff implantation may alter nerve conduction. METHODS We quantified acute changes in nerve-muscle electrophysiology, using electromyography, and nerve kinematics in anesthetized Sprague Dawley rat sciatic nerves during controlled hindlimb joint movement. We compared electrophysiological and biomechanical response in uncuffed nerves and those secured within a cuff electrode using analysis of variance (ANOVA) and regression analysis. RESULTS Tethering resulting from cuff implantation resulted in altered nerve strain and a complex biomechanical environment during joint movement. Coincident with biomechanical changes, electromyography revealed significantly increased variability in the response of conduction latency and amplitude in cuffed, but not free, nerves following joint movement. CONCLUSION Our findings emphasize the importance of the mechanical interface between peripheral nerves and their devices on neurophysiological performance. This work has implications for nerve device design, implantation, and prediction of long-term efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
45
|
Veraart C, Duret F, Brelén M, Oozeer M, Delbeke J. Vision rehabilitation in the case of blindness. Expert Rev Med Devices 2014; 1:139-53. [PMID: 16293017 DOI: 10.1586/17434440.1.1.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article examines the various vision rehabilitation procedures that are available for early and late blindness. Depending on the pathology involved, several vision rehabilitation procedures exist, or are in development. Visual aids are available for low vision individuals, as are sensory aids for blind persons. Most noninvasive sensory substitution prostheses as well as implanted visual prostheses in development are reviewed. Issues dealing with vision rehabilitation are also discussed, such as problems of biocompatibility, electrical safety, psychosocial aspects, and ethics. Basic studies devoted to vision rehabilitation such as simulation in mathematical models and simulation of artificial vision are also presented. Finally, the importance of accurate rehabilitation assessment is addressed, and tentative market figures are given.
Collapse
Affiliation(s)
- Claude Veraart
- Neural Rehabilitation Engineering Laboratory, Universite catholique de Louvain, 54 Avenue Hippocrate Box UCL-54.46, B-1200 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Can vision be restored to the blind? As early as 1929 it was discovered that stimulating the visual cortex of an individual led to the perception of spots of light, known as phosphenes [1] . The aim of artificial human vision systems is to attempt to utilize the perception of phosphenes to provide a useful substitute for normal vision. Currently, four locations for electrical stimulation are being investigated; behind the retina (subretinal), in front of the retina (epiretinal), the optic nerve and the visual cortex (using intra- and surface electrodes). This review discusses artificial human vision technology and requirements, and reviews the current development projects.
Collapse
Affiliation(s)
- Jason Dowling
- School of Electrical and Electronic Systems Engineering, Faculty of Built Environment and Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
47
|
Guenther T, Lovell NH, Suaning GJ. Bionic vision: system architectures – a review. Expert Rev Med Devices 2014; 9:33-48. [DOI: 10.1586/erd.11.58] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Li M, Yan Y, Wang Q, Zhao H, Chai X, Sui X, Ren Q, Li L. A simulation of current focusing and steering with penetrating optic nerve electrodes. J Neural Eng 2013; 10:066007. [PMID: 24140618 DOI: 10.1088/1741-2560/10/6/066007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Current focusing and steering are both widely used to shape the electric field and increase the number of distinct perceptual channels in neural stimulation, yet neither technique has been used for an optic nerve (ON)-based visual prosthesis. In order to evaluate the effects of current focusing and steering in penetrative stimulation, we built an integrated computational model to simulate and investigate the influence of stimulating parameters on ON fibre recruitment. APPROACH Finite element models with extremely fine meshes were first established to compute the 3D electric potential distribution under different stimulating parameters. Then the external electric potential was fed to randomized multi-compartment cable models to predict the distribution of fibres generating an action potential. Finally a statistical process was conducted to quantify the recruitment region. MAIN RESULTS The simulation results show that a two-electrode mode is superior to a three-electrode mode in current steering. The three-electrode mode performs poorly in current focusing, albeit the localized recruitment from both configurations implies that current focusing might be unnecessary in penetrative ON stimulation. SIGNIFICANCE This study provides useful information for the optimized design of penetrating ON electrodes and stimulating strategies. The Monte Carlo style computation paradigm is designed to simulate neural responses of an ensemble of ON fibres, which can be immediately transferred to other similar problems.
Collapse
|
49
|
Lu Y, Wang J, Wu H, Li L, Cao X, Chai X. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis. Artif Organs 2013; 38:E10-20. [PMID: 24117959 DOI: 10.1111/aor.12174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visual prostheses offer a possibility of restoring vision to the blind. It is necessary to determine minimum requirements for daily visual tasks. To investigate the recognition of common objects in daily life based on the simulated irregular phosphene maps, the effect of four parameters (resolution, distortion, dropout percentage, and gray scale) on object recognition was investigated. The results showed that object recognition accuracy significantly increased with an increase of resolution. Distortion and dropout percentage had significant impact on the object recognition; with the increase of distortion level and dropout percentage, the recognition decreased considerably. The accuracy decreased significantly only at gray level 2, whereas the other three gray levels showed no obvious difference. The two image processing methods (merging pixels to lower the resolution and edge extraction before lowering resolution) showed significant difference on the object recognition when there was a high degree of distortion level or dot dropout.
Collapse
Affiliation(s)
- Yanyu Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
50
|
Penetrating electrode stimulation of the rabbit optic nerve: parameters and effects on evoked cortical potentials. Graefes Arch Clin Exp Ophthalmol 2013; 251:2545-54. [PMID: 24013577 DOI: 10.1007/s00417-013-2449-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/13/2013] [Accepted: 08/16/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Stimulus parameters, in particular pulse shape, are an important consideration in the application of electrical stimulation when experimentally testing a visual prosthesis. We changed the biphasic pulse shape of several asymmetric charge-balanced pulses to investigate their effect on optic nerve (ON) stimulation and the recorded cortical response. METHODS Monopolar platinum-iridium electrodes were implanted into the rabbit's ON behind the eyeball. Electrical evoked potentials (EEPs) were recorded with silver ball electrodes placed on the cortex, and the results quantified. RESULTS Our results indicate that changing the shape of cathodic-first charge-balanced biphasic pulse (CA) while maintaining charge balance could reduce the current thresholds for stimulation. When stimulated at the same charge density, the stimulus having high-amplitude short-duration (HASD) cathodic phase produced a higher amplitude response, with a larger spatial spread but with a lower current threshold compared with other stimuli. Adding an inter-phase gap between the two phases of the stimulus increased the EEP amplitude, but was saturated at a gap of ∼0.2 ms; this was most obvious with CA stimulation, which was able to elicit a larger cortical response than that elicited by asymmetrical charge-balanced stimulus pulses with HASD cathodic phase, in contrast to CA without a gap. As the stimulating frequency increased, the amplitudes of the EEP components elicited by CA monotonically decreased. The fastest component (P0) was present with stimulating frequencies as high as 80 Hz, while the slower P1 and P2 disappeared with stimulating frequencies higher than 40 and 20 Hz, respectively. CONCLUSION A CA stimulus waveform with an inter-phase gap of 0.2 ms was more efficacious for ON stimulation than other stimulus combinations, and therefore should result in less tissue damage, minimal electrode etching, and lower power consumption if used in a visual prosthesis.
Collapse
|