1
|
Cui H, Liu Y, Yu Y, Lv D, Ma S, Gao M, Yang Y, Yuan C, Liu Y, Wang C. Panax notoginseng saponins and acetylsalicylic acid co-delivered liposomes for targeted treatment of ischemic stroke. Int J Pharm 2024; 667:124782. [PMID: 39349224 DOI: 10.1016/j.ijpharm.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/28/2024] [Indexed: 10/02/2024]
Abstract
In this study, we aimed to develop brain-targeted co-delivery liposomes for the concurrent delivery of Panax notoginseng saponins (PNS) and acetylsalicylic acid (ASA) for the treatment of ischemic stroke. Within this system, PNS served as a cholesterol substitute, integrating into the phospholipid bilayer of the liposomes, while ASA was encapsulated internally. A poly-2-methacryloyloxyethyl phosphorylcholine (PMPC) polymer was synthesized and incorporated into the liposome surface. This formulation demonstrated an enhanced PNS-loading capacity and facilitated the synchronized delivery of key saponin components. Following PMPC modification, the liposomes exhibited prolonged circulation and improved transport across the blood-brain barrier (BBB) through acetylcholine receptor-mediated pathways. Furthermore, the co-delivery system exhibited enhanced therapeutic efficacy in a rat model of cerebral ischemia-reperfusion injury via the phosphoinositide 3-kinase/protein kinase C pathway. Additional analyses revealed significant effects on the metabolism of neurotransmitters, amino acids, folate, and various other pathways, indicating a multi-faceted therapeutic effect. Overall, this study presents an innovative research strategy for the comprehensive delivery of diverse components in traditional Chinese medicine formulations, highlighting the potential for synergistic treatments that combine traditional Chinese medicine with chemical agents.
Collapse
Affiliation(s)
- Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Dong Lv
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Mingju Gao
- Wenshan University, Wenshan 663099, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuan Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China.
| |
Collapse
|
2
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
3
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Nie L, Li Y, Liu Y, Shi L, Chen H. Recent Applications of Contact Lenses for Bacterial Corneal Keratitis Therapeutics: A Review. Pharmaceutics 2022; 14:2635. [PMID: 36559128 PMCID: PMC9786638 DOI: 10.3390/pharmaceutics14122635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Corneal keratitis is a common but severe infectious disease; without immediate and efficient treatment, it can lead to vision loss within a few days. With the development of antibiotic resistance, novel approaches have been developed to combat corneal keratitis. Contact lenses were initially developed to correct vision. Although silicon hydrogel-based contact lenses protect the cornea from hypoxic stress from overnight wear, wearing contact lenses was reported as an essential cause of corneal keratitis. With the development of technology, contact lenses are integrated with advanced functions, and functionalized contact lenses are used for killing bacteria and preventing infectious corneal keratitis. In this review, we aim to examine the current applications of contact lenses for anti-corneal keratitis.
Collapse
Affiliation(s)
- Linyan Nie
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanfeng Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Linqi Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Huiyun Chen
- Department of Ophthalmology, The People’s Hospital of Yuhuan, Yuhuan 317600, China
| |
Collapse
|
5
|
Ishihara K. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:498-524. [PMID: 36117516 PMCID: PMC9481090 DOI: 10.1080/14686996.2022.2119883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/01/2023]
Abstract
This review summarizes recent research on the design of polymer material systems based on biomimetic concepts and reports on the medical devices that implement these systems. Biomolecules such as proteins, nucleic acids, and phospholipids, present in living organisms, play important roles in biological activities. These molecules are characterized by heterogenic nature with hydrophilicity and hydrophobicity, and a balance of positive and negative charges, which provide unique reaction fields, interfaces, and functionality. Incorporating these molecules into artificial systems is expected to advance material science considerably. This approach to material design is exceptionally practical for medical devices that are in contact with living organisms. Here, it is focused on zwitterionic polymers with intramolecularly balanced charges and introduce examples of their applications in medical devices. Their unique properties make these polymers potential surface modification materials to enhance the performance and safety of conventional medical devices. This review discusses these devices; moreover, new surface technologies have been summarized for developing human-friendly medical devices using zwitterionic polymers in the cardiovascular, cerebrovascular, orthopedic, and ophthalmology fields.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Fujii S, Kozuka S, Yokota K, Ishihara K, Yusa SI. Preparation of Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Hollow Particles Using Silica Particles as a Template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5812-5819. [PMID: 35476546 DOI: 10.1021/acs.langmuir.2c00423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrophilic poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) shows biocompatibility because the pendant phosphorylcholine group has the same chemical structure as the hydrophilic part of phospholipids that form cell membranes. Hollow particles can be used in various fields, such as a carrier in drug delivery systems because they can encapsulate hydrophilic drugs. In this study, vinyl group-decorated silica particles with a radius of 150 nm were covered with cross-linked PMPC based on the graft-through method. The radius of PMPC-coated silica particles increased compared to that of the original silica particles. The PMPC-coated silica particles were immersed in a hydrogen fluoride aqueous solution to remove template silica particles to prepare the hollow particles. The PMPC hollow particles were characterized by dynamic light scattering, infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy observations. The thickness of the hollow particle shell can be controlled by the polymerization solvent quality. When a poor solvent for PMPC was used for the polymerization, PMPC hollow particles with thick shells can be obtained. The PMPC hollow particles can encapsulate hydrophilic guest molecules by immersing the hollow particles in a high-concentration guest molecule solution. The biocompatible PMPC hollow particles can be used in a drug carrier.
Collapse
Affiliation(s)
- Sayaka Fujii
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Shohei Kozuka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kaito Yokota
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering and Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
7
|
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review. Bioengineering (Basel) 2021; 8:215. [PMID: 34940368 PMCID: PMC8698751 DOI: 10.3390/bioengineering8120215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.
Collapse
Affiliation(s)
- Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia;
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Zhang M, Tansley GD, Dargusch MS, Fraser JF, Pauls JP. Surface Coatings for Rotary Ventricular Assist Devices: A Systematic Review. ASAIO J 2021; 68:623-632. [PMID: 34324447 DOI: 10.1097/mat.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rotary ventricular assist devices (VADs) are frequently used to provide mechanical circulatory support to patients suffering from end-stage heart failure. Therefore, these devices and especially their pump impeller and housing components have stringent requirements on wear resistance and hemocompatibility. Various surface coatings have been investigated to improve the wear resistance or hemocompatibility of these devices. The aim of the present systematic review was to build a comprehensive understanding of these coatings and provide potential future research directions. A Boolean search for peer-reviewed studies was conducted in online databases (Web of Science, Scopus, PubMed, and ScienceDirect), and a preferred reporting items for systematic reviews and meta-analyses (PRISMA) process was followed for selecting relevant papers for analysis. A total of 45 of 527 publications were included for analysis. Eighteen coatings were reported to improve wear resistance or hemocompatibility of rotary VADs with the most common coatings being diamond-like carbon (DLC), 2-methacryloyloxyethyl phosphorylcholine (MPC), and heparin. Ninety-three percent of studies focused on hemocompatibility, whereas only 4% of studies focused on wear properties. Thirteen percent of studies investigated durability. This review provides readers with a systematic catalogue and critical review of surface coatings for rotary VADs. The review has identified that more comprehensive studies especially investigations on wear properties and durability are needed in future work.
Collapse
Affiliation(s)
- Meili Zhang
- From the Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland, Australia School of Engineering and Built Environment, Griffith University, Brisbane, Queensland, Australia School of Medicine, University of Queensland, Brisbane, Queensland, Australia School of Medicine, Griffith University, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
9
|
Poly 2-methacryloyloxyethyl Phosphorylcholine Protects Corneal Cells and Contact Lenses from Desiccation Damage. Optom Vis Sci 2021; 98:159-169. [PMID: 33534380 DOI: 10.1097/opx.0000000000001642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Contact lens (CL) wearing may cause discomfort and eye dryness. We describe here the efficacy of a synthetic polymer in protecting both the corneal epithelial cells and the CL from desiccation damage. Artificial tears containing this polymer might be helpful to treat or prevent ocular surface damage in CL wearers. PURPOSE We aimed to investigate the protective effects of the synthetic polymer 2-methacryloyloxyethyl phosphorylcholine (poly-MPC) on corneal epithelial cells and CLs subjected to desiccation damage. METHODS The interaction of poly-MPC with the cell membrane was evaluated on human primary corneal epithelial cells (HCE-F) by the sodium dodecyl sulfate damage protection assay or the displacement of the cell-binding lectin concanavalin A (ConA). Survival in vitro of HCE-F cells and ex vivo of porcine corneas exposed to desiccating conditions after pre-treatment with poly-MPC or hyaluronic acid (HA), hypromellose (HPMC), and trehalose was evaluated by a colorimetric assay. Soft CLs were soaked overnight in a solution of poly-MPC/HPMC and then let dry in ambient air. Contact lens weight, morphology, and transparency were periodically registered until complete dryness. RESULTS Polymer 2-methacryloyloxyethyl phosphorylcholine and HPMC were retained on the HCE-F cell membrane more than trehalose or HA. Polymer 2-methacryloyloxyethyl phosphorylcholine, HA, and HPMC either alone or in association protected corneal cells from desiccation significantly better than did trehalose alone or in association with HA. Contact lens permeation by poly-MPC/HPMC preserved better their shape and transparency than did saline. CONCLUSIONS Polymer 2-methacryloyloxyethyl phosphorylcholine coats and protects corneal epithelial cells and CLs from desiccation damage more efficiently compared with trehalose and as good as other reference compounds.
Collapse
|
10
|
Parekh A, Sood A, Monsef JB, Hamouda M, Hussain A, Gonzalez M. Second-Generation Highly Cross-Linked Polyethylene in Total Hip Arthroplasty. JBJS Rev 2021; 9:e20.00065. [PMID: 33982980 DOI: 10.2106/jbjs.rvw.20.00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Amit Parekh
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Anshum Sood
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Jad Bou Monsef
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Awais Hussain
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| | - Mark Gonzalez
- Department of Orthopaedic Surgery, University of Illinois, Chicago, Illinois
| |
Collapse
|
11
|
Kannojiya V, Das AK, Das PK. Comparative assessment of different versions of axial and centrifugal LVADs: A review. Artif Organs 2021; 45:665-681. [PMID: 33434332 DOI: 10.1111/aor.13914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
Continuous-flow left ventricular assist devices (LVADs) have gained tremendous acceptance for the treatment of end-stage heart failure patients. Among different versions, axial flow and centrifugal flow LVADs have shown remarkable potential for clinical implants. It is also very crucial to know which device serves its purpose better to treat heart failure patients. A thorough comparison of axial and centrifugal LVADs, which may guide doctors in deciding before the implant, still lacks in the literature. In this work, an assessment of axial and centrifugal LVADs has been made to suggest a better device by comparing their engineering, clinical, and technological development of design aspects. Hydrodynamic and hemodynamic aspects for both types of pumps are discussed along with their biocompatibility, bearing types, and sizes. It has been observed numerically that centrifugal LVADs perform better over axial LVADs in every engineering aspect like higher hydraulic efficiency, better characteristics curve, lesser power intake, and also lesser blood damage. However, the clinical outcomes suggest that centrifugal LVADs experience higher events of infections, renal, and respiratory dysfunction. In contrast, axial LVADs encountered higher bleeding and cardiac arrhythmia. Moreover, recent technological developments suggested that magnetic type bearings along with biocompatible coating improve the life of LVADs.
Collapse
Affiliation(s)
- Vikas Kannojiya
- Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India
| | - Arup Kumar Das
- Mechanical and Industrial Engineering Department, IIT Roorkee, Roorkee, India
| | | |
Collapse
|
12
|
Quintana-Villamandos B, Barranco M, Fernández I, Ruiz M, Del Cañizo JF. New Advances in Monitoring Cardiac Output in Circulatory Mechanical Assistance Devices. A Validation Study in a Porcine Model. Front Physiol 2021; 12:634779. [PMID: 33746776 PMCID: PMC7969803 DOI: 10.3389/fphys.2021.634779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiac output (CO) measurement by continuous pulmonary artery thermodilution (COCTD) has been studied in patients with pulsatile-flow LVADs (left ventricular assist devices), confirming the clinical utility. However, it has not been validated in patients with continuous-flow LVADs. Therefore, the aim of this study was to assess the validity of COCTD in continuous-flow LVADs. Continuous-flow LVADs were implanted in six miniature pigs for partial assistance of the left ventricle. Both methods of measuring CO—measurement by COCTD and intermittent pulmonary artery thermodilution, standard technique (COITD)—were used in four consecutive moments of the study: before starting the LVAD (basal moment), and with the LVAD started in normovolemia, hypervolemia (fluid overloading), and hypovolemia (shock hemorrhage). At the basal moment, COCTD and COITD were closely correlated (r2 = 0.97), with a mean bias of −0.13 ± 0.16 L/min and percentage error of 11%. After 15 min of partial support LVAD, COCTD and COITD were closely correlated (r2 = 0.91), with a mean bias of 0.31 ± 0.35 L/min and percentage error of 20%. After inducing hypervolemia, COCTD and COITD were closely correlated (r2 = 0.99), with a mean bias of 0.04 ± 0.07 L/min and percentage error of 5%. After inducing hypovolemia, COCTD and COITD were closely correlated (r2 = 0.74), with a mean bias of 0.08 ± 0.22 L/min and percentage error of 19%. This study shows that continuous pulmonary thermodilution could be an alternative method of monitoring CO in a porcine model with a continuous-flow LVAD.
Collapse
Affiliation(s)
- Begoña Quintana-Villamandos
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain.,Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Mónica Barranco
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain
| | - Ignacio Fernández
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain
| | - Manuel Ruiz
- Department of Cardiovascular Surgery, Gregorio Marañón Hospital, Madrid, Spain.,Department of Surgery, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
13
|
Classification of the Frequency, Severity, and Propagation of Thrombi in the HeartMate II Left Ventricular Assist Device. ASAIO J 2020; 66:992-999. [DOI: 10.1097/mat.0000000000001151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
14
|
Azuma T, Matsushita T, Manivel VA, Nilsson Ekdahl K, Nilsson B, Teramura Y, Takai M. Poly(2-aminoethyl methacrylate)-based polyampholyte brush surface with carboxylic groups to improve blood compatibility. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:679-693. [PMID: 31888410 DOI: 10.1080/09205063.2019.1710900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Zwitterionic material-based polymer brush significantly prevents protein adsorption and cell adhesion, which leads to the blood compatibility. However, zwitterionic polymer itself is difficult to be modified further, for the blood compatibility since the charged balance is impaired after the modification. In this research, chemically modifiable mixed charge polymer brush is designed, without impairing its characteristics. Condensed mixed charge polymer brush will work like zwitterionic material because neighbouring opposite charge is reported to be important in the zwitterionic material. Cationic polymer brush with primary amine group, which is based on 2-aminoethyl methacrylate (AEMA), was prepared and modified by succinic anhydride to obtain carboxylic group induced poly(AEMA). The ratio of primary amine group and carboxylic group was optimized to obtain the polyampholyte brush. The blood compatibility was evaluated by measuring coagulation/complement activation, protein adsorption and cell adhesion induced by the polymer. Our designed cationic-based polyampholyte brush prevented coagulation/complement activation comparable to poly(2-methacryloyloxyethyl phosphorylcholine) brush, based on intra-monomer interaction, because condensed mix charge works like zwitterion.
Collapse
Affiliation(s)
- Tomoyuki Azuma
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | | | - Vivek Anand Manivel
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Yuji Teramura
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan.,Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Micropatterning of a 2-methacryloyloxyethyl phosphorylcholine polymer surface by hydrogenated amorphous carbon thin films for endothelialization and antithrombogenicity. Acta Biomater 2019; 87:187-196. [PMID: 30710709 DOI: 10.1016/j.actbio.2019.01.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 11/23/2022]
Abstract
The existing first-generation drug-eluting stent (DES) has caused late and very late stent thrombosis related to incomplete stent endothelialization. Hence, biomaterials that possess sufficient anti-thrombogenicity and endothelialization with the controlled drug release system have been highly required. In this work, we have developed a newly designed drug-release platform composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer, a non-thrombogenic polymer, and micropatterned hydrogenated amorphous carbon (a-C:H), a cell-compatible thin film. The platelet adhesion and the endothelial cell adhesion behavior on the micropatterned substrates were investigated in vitro. The results indicated that the micropatterned a-C:H/MPC polymer substrates effectively supported the human umbilical vein endothelial cell (HUVEC) proliferation, while suppressing the platelet adhesion. Interestingly, the HUVEC exhibited different shape and behavior by changing the island size of the micropatterned a-C:H. By introducing both a non-thrombogenic polymer and cell-compatible thin films through a simple patterning method, we demonstrated that the platform had the potential to be utilized as a base material for DES with cell controllability. STATEMENT OF SIGNIFICANCE: The current first-generation drug-eluting stents (DES) would cause late and very late stent thrombosis due to the incomplete endothelialization of the metal stent material. In this work, we have developed a new DES platform composed of a 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer micropatterned by hydrogenated amorphous carbon (a-C:H). Two types of differently micropatterned a-C:H stent surface were made. Our studies revealed that the micropatterned a-C:H/MPC polymer substrates could effectively enhance the endothelial cell (EC) proliferation, simultaneously suppressing the platelet adhesion, becoming a highly biocompatible material especially for indwelling devices including a drug-release device. The new drug-release platform could be utilized as a base material for cell-controllable coating on DES.
Collapse
|
16
|
Asif S, Asawa K, Inoue Y, Ishihara K, Lindell B, Holmgren R, Nilsson B, Rydén A, Jensen-Waern M, Teramura Y, Ekdahl KN. Validation of an MPC Polymer Coating to Attenuate Surface-Induced Crosstalk between the Complement and Coagulation Systems in Whole Blood in In Vitro and In Vivo Models. Macromol Biosci 2019; 19:e1800485. [PMID: 30786149 DOI: 10.1002/mabi.201800485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/23/2019] [Indexed: 11/08/2022]
Abstract
Artificial surfaces that come into contact with blood induce an immediate activation of the cascade systems of the blood, leading to a thrombotic and/or inflammatory response that can eventually cause damage to the biomaterial or the patient, or to both. Heparin coating has been used to improve hemocompatibility, and another approach is 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymer coatings. Here, the aim is to evaluate the hemocompatibility of MPC polymer coating by studying the interactions with coagulation and complement systems using human blood in vitro model and pig in vivo model. The stability of the coatings is investigated in vitro and MPC polymer-coated catheters are tested in vivo by insertion into the external jugular vein of pigs to monitor the catheters' antithrombotic properties. There is no significant activation of platelets or of the coagulation and complement systems in the MPC polymer-coated one, which was superior in hemocompatibility to non-coated matrix surfaces. The protective effect of the MPC polymer coat does not decline after incubation in human plasma for up to 2 weeks. With MPC polymer-coated catheters, it is possible to easily draw blood from pig for 4 days in contrast to the case for non-coated catheters, in which substantial clotting is seen.
Collapse
Affiliation(s)
- Sana Asif
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Kenta Asawa
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuuki Inoue
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Björn Lindell
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.,Department of Surgical Sciences, Plastic and Maxillofacial Surgery, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Robin Holmgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden
| | - Anneli Rydén
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Almas Allé 8, 750 07, Uppsala, Sweden
| | - Marianne Jensen-Waern
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Almas Allé 8, 750 07, Uppsala, Sweden
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.,Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, SE-391 82, Kalmar, Sweden
| |
Collapse
|
17
|
Ishihara K. Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A 2019; 107:933-943. [DOI: 10.1002/jbm.a.36635] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 Japan
| |
Collapse
|
18
|
Ishihara K. Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1778-1787. [PMID: 30056709 DOI: 10.1021/acs.langmuir.8b01565] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For the acquisition of blood-compatible materials, various hydrophilic polymers for surface modification have been examined. Among them, polymers with a representative phospholipid polar group, the phosphorylcholine (PC) group, are a successful example. These polymers were designed from inspiration of the cell membrane surface and provide protein adsorption resistance even following contact with plasma. This important property is based on the unique hydration state of water molecules surrounding hydrated polymer; in other words, water molecules weakly interact with the polymers and maintain their favorable cluster structure through hydrogen bonding. These polymers are not only hydrophilic, but also electrically neutral, important characteristics which make hydrogen bonding with water molecules less likely to occur and avoid hydrophobic interactions. Phosphorylcholine groups and other zwitterionic structures are significant as hydrophilic functional groups meeting these important requirements. In this review, blood compatibility of a polymer having a PC group is introduced in relation to its hydration structure, followed by a description of the applications of this polymer to cardiovascular medical devices.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
19
|
Matsuhashi Y, Sameshima K, Yamamoto Y, Umezu M, Iwasaki K. Real-time visualization of thrombus formation at the interface between connectors and tubes in medical devices by using optical coherence tomography. PLoS One 2017; 12:e0188729. [PMID: 29216225 PMCID: PMC5720586 DOI: 10.1371/journal.pone.0188729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 11/13/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Blood-contacting devices have contributed to improving the treatment of patients. However, thrombus formation at the interface between a connector and tube is still a potential source of thrombus-related complications that induce stroke or myocardial infarction. We aimed to develop a non-blood-contacting real-time method for visualizing thrombus formation, and to experimentally investigate the time-dependent phenomenon of thrombus formation at the interface between a connector and a tube in a medical device. METHODS AND FINDINGS An optical coherence tomography device with a center wavelength of 1330 nm was used to visualize thrombus formation during porcine blood circulation for 50 min in a closed 50-mL circulation system isolated from ambient air. The thrombus formation sites at the interface between a tube and connector were visualized. The area of the thrombus formation at the interface between the inlet of the connector and the tube was found to be 0.012 ± 0.011 mm2. Conversely, at the interface between the outlet of the connector and the tube, the area was found to be 0.637 ± 0.306 mm2. Thus, significantly larger amounts of thrombus were formed at the outlet interface (p < 0.01). The thrombus formation area at the outlet interface increased over time. Conversely, the area of thrombus formation showed repeated increasing and decreasing behavior at the inlet interface. Flow visualization with particle image velocimetry showed the presence of a flow separated area in the minimal flow phase at the inlet interface and a large recirculating slow flow region at the outlet interface in the minimal flow phase. These data suggested that the recirculating stagnant flow region contributed to thrombus growth. CONCLUSIONS The method presented here was effective in quantitatively assessing time-dependent phenomena of thrombus formation at the connector-tube interface. The method may contribute to the assessment of thrombogenicity of a novel design of connector.
Collapse
Affiliation(s)
- Yuki Matsuhashi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kei Sameshima
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Yoshiki Yamamoto
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Mitsuo Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kiyotaka Iwasaki
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Cooperative Major in Advanced Biomedical Sciences, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
20
|
Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion. Colloids Surf B Biointerfaces 2017; 159:655-661. [DOI: 10.1016/j.colsurfb.2017.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022]
|
21
|
Chantasirichot S, Inoue Y, Ishihara K. Introduction of functional groups to reactive ABA block-copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(glycidyl methacrylate) for spontaneous hydrogel formation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Macková H, Plichta Z, Hlídková H, Sedláček O, Konefal R, Sadakbayeva Z, Dušková-Smrčková M, Horák D, Kubinová Š. Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10544-10553. [PMID: 28287694 DOI: 10.1021/acsami.7b01513] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Degradable poly(2-hydroxyethyl methacrylate) hydrogels were prepared from a linear copolymer (Mw = 49 kDa) of 2-hydroxyethyl methacrylate (HEMA), 2-(acethylthio)ethyl methacrylate (ATEMA), and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC). The deprotection of ATEMA thiol groups by triethylamine followed by their gentle oxidation with 2,2'-dithiodipyridine resulted in the formation of reductively degradable polymers with disulfide bridges. Finally, a hydrogel 3D structure with an oriented porosity was obtained by gelation of the polymer in the presence of needle-like sodium acetate crystals. The pore diameter and porosity of resulting poly(2-hydroxyethyl methacrylate-co-2-(acethylthio)ethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine) [P(HEMA-ATEMA-MPC)] hydrogels varied between 59 and 65 μm and between 70 and 79.6 vol % according to Hg porosimetry, and complete degradation of these materials was reached in 86 days in 0.33 mmol solution of l-cysteine/L in phosphate buffer. The cross-linked P(HEMA-ATEMA-MPC) hydrogels were evaluated as a possible support for human mesenchymal stem cells (MSCs). No cytotoxicity was found for the un-cross-linked thiol-containing and protected P(HEMA-ATEMA-MPC) chains up to a concentration of 5 and 1 wt % in α-minimum essential medium, respectively.
Collapse
Affiliation(s)
- Hana Macková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Helena Hlídková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Rafal Konefal
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Zhansaya Sadakbayeva
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Miroslava Dušková-Smrčková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic , Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
23
|
Ishihara K, Chen W, Liu Y, Tsukamoto Y, Inoue Y. Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:300-312. [PMID: 27877883 PMCID: PMC5111563 DOI: 10.1080/14686996.2016.1190257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/21/2016] [Accepted: 05/12/2016] [Indexed: 05/23/2023]
Abstract
Multifunctional polymeric nanoparticles are materials with great potential for a wide range of biomedical applications. For progression in this area of research, unfavorable interactions of these nanoparticles with proteins and cells must be avoided in biological environments, for example, through treatment of the nanoparticle surfaces. Construction of an artificial cell membrane structure based on polymers bearing the zwitterionic phosphorylcholine group can prevent biological reactions at the surface effectively. In addition, certain bioactive molecules can be immobilized on the surface of the polymer to generate enough affinity to capture target biomolecules. Furthermore, entrapment of inorganic nanoparticles inside polymeric matrices enhances the nanoparticle functionality significantly. This review summarizes the preparation and characterization of cytocompatible and multifunctional polymeric nanoparticles; it analyzes the efficiency of their fluorescence function, the nature of the artificial cell membrane structure, and their performance as in-cell devices; and finally, it evaluates both their chemical reactivity and effects in cells.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Weixin Chen
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yihua Liu
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuriko Tsukamoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Garapaty A, Champion JA. Non-covalent phosphorylcholine coating reduces protein adsorption and phagocytic uptake of microparticles. Chem Commun (Camb) 2015; 51:13814-7. [DOI: 10.1039/c5cc03459k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphorylcholine co-polymer was assembled on model polystyrene microparticles through a simple, widely-applicable ethanol coating process. The coating rendered particles resistant to protein adsorption and phagocytosis by macrophages, making it useful for a range of biological applications.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
25
|
Biomaterials in cardiovascular research: applications and clinical implications. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459465. [PMID: 24895577 PMCID: PMC4033350 DOI: 10.1155/2014/459465] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Abstract
Cardiovascular biomaterials (CB) dominate the category of biomaterials based on the demand and investments in this field. This review article classifies the CB into three major classes, namely, metals, polymers, and biological materials and collates the information about the CB. Blood compatibility is one of the major criteria which limit the use of biomaterials for cardiovascular application. Several key players are associated with blood compatibility and they are discussed in this paper. To enhance the compatibility of the CB, several surface modification strategies were in use currently. Some recent applications of surface modification technology on the materials for cardiovascular devices were also discussed for better understanding. Finally, the current trend of the CB, endothelization of the cardiac implants and utilization of induced human pluripotent stem cells (ihPSCs), is also presented in this review. The field of CB is growing constantly and many new investigators and researchers are developing interest in this domain. This review will serve as a one stop arrangement to quickly grasp the basic research in the field of CB.
Collapse
|
26
|
Ehashi T, Takemura T, Hanagata N, Minowa T, Kobayashi H, Ishihara K, Yamaoka T. Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds. PLoS One 2014; 9:e85132. [PMID: 24454803 PMCID: PMC3891765 DOI: 10.1371/journal.pone.0085132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/22/2013] [Indexed: 02/06/2023] Open
Abstract
To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations.
Collapse
Affiliation(s)
- Tomo Ehashi
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Core Research Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Taro Takemura
- Nanotechnology Innovation Station, National Institute for Materials Science, Ibaraki, Japan
| | - Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Ibaraki, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Station, National Institute for Materials Science, Ibaraki, Japan
| | - Hisatoshi Kobayashi
- Biomaterials Center, National Institute for Materials Science, Ibaraki, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering and Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
- Core Research Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Ye SH, Jang YS, Yun YH, Shankarraman V, Woolley JR, Hong Y, Gamble LJ, Ishihara K, Wagner WR. Surface modification of a biodegradable magnesium alloy with phosphorylcholine (PC) and sulfobetaine (SB) functional macromolecules for reduced thrombogenicity and acute corrosion resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8320-7. [PMID: 23705967 PMCID: PMC3716277 DOI: 10.1021/la401341y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.
Collapse
Affiliation(s)
- Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yong-Seok Jang
- Department of Bioengineering, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural & Technical State University, Greensboro, NC, 27411
| | - Venkat Shankarraman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joshua R. Woolley
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yi Hong
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lara J. Gamble
- Department of Bioengineering and NESAC/BIO, University of Washington, Seattle, WA 98195, USA
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
29
|
Moro T, Kyomoto M, Ishihara K, Saiga K, Hashimoto M, Tanaka S, Ito H, Tanaka T, Oshima H, Kawaguchi H, Takatori Y. Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles. J Mech Behav Biomed Mater 2013; 31:100-6. [PMID: 23651567 DOI: 10.1016/j.jmbbm.2013.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 03/07/2013] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
Abstract
Despite improvements in the techniques, materials, and fixation of total hip arthroplasty, periprosthetic osteolysis, a complication that arises from this clinical procedure and causes aseptic loosening, is considered to be a major clinical problem associated with total hip arthroplasty. With the objective of reducing the production of wear particles and eliminating periprosthetic osteolysis, we prepared a novel hip polyethylene (PE) liner whose surface graft was made of a biocompatible phospholipid polymer-poly(2-methacryloyloxyethyl phosphorylcholine (MPC)). This study investigated the wear resistance of the poly(MPC)-grafted cross-linked PE (CLPE; MPC-CLPE) liner during 15×10(6) cycles of loading in a hip joint simulator. The gravimetric analysis showed that the wear of the acetabular liner was dramatically suppressed in the MPC-CLPE liner, as compared to that in the non-treated CLPE liner. Analyses of the MPC-CLPE liner surface revealed that it suffered from no or very little wear even after the simulator test, whereas the CLPE liners suffered from substantial wears. The scanning electron microscope (SEM) analysis of the wear particles isolated from the lubricants showed that poly(MPC) grafting dramatically decreased the total number, area, and volume of the wear particles. However, there was no significant difference in the particle size distributions, and, in particular, from the SEM image, it was observed that particles with diameters less than 0.50μm were present in the range of the highest frequency. In addition, there were no significant differences in the particle size descriptors and particle shape descriptors. The results obtained in this study show that poly(MPC) grafting markedly reduces the production of wear particles from CLPE liners, without affecting the size of the particles. These results suggest that poly(MPC) grafting is a promising technique for increasing the longevity of artificial hip joints.
Collapse
Affiliation(s)
- Toru Moro
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Masayuki Kyomoto
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenichi Saiga
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Research Department, KYOCERA Medical Corporation, 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideya Ito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeyuki Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirofumi Oshima
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawaguchi
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshio Takatori
- Division of Science for Joint Reconstruction, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
30
|
Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064101. [PMID: 27877525 PMCID: PMC5099758 DOI: 10.1088/1468-6996/13/6/064101] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/18/2012] [Accepted: 09/06/2012] [Indexed: 05/25/2023]
Abstract
This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion - in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564–8680, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
| |
Collapse
|
31
|
Takami K, Watanabe J, Takai M, Ishihara K. Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:77-89. [DOI: 10.1163/092050609x12578498967995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kimiaki Takami
- a Department of Bioengineering, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for Medical System Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junji Watanabe
- b Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- c Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhiko Ishihara
- d Department of Bioengineering, The University of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for Medical System Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
32
|
Bartoli CR, Dowling RD. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol Clin 2012; 29:559-82. [PMID: 22062206 DOI: 10.1016/j.ccl.2011.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The recent, widespread success of mechanical circulatory support has prompted the development of numerous implantable devices to treat advanced heart failure. It is important to raise awareness of novel device systems, the mechanisms by which they function, and implications for patient management. This article discusses devices that are being developed or are in clinical trials. Devices are categorized as standard full support, less-invasive full support, partial support: rotary pumps, partial support: counterpulsation devices, right ventricular assist device, and total artificial heart. Implantation strategy, mechanism of action, durability, efficacy, hemocompatibility, and human factors are considered. The feasibility of novel strategies for unloading the failing heart is examined.
Collapse
Affiliation(s)
- Carlo R Bartoli
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY, USA
| | | |
Collapse
|
33
|
Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Ishihara K. Cartilage-mimicking, high-density brush structure improves wear resistance of crosslinked polyethylene: a pilot study. Clin Orthop Relat Res 2011; 469:2327-36. [PMID: 21132412 PMCID: PMC3126960 DOI: 10.1007/s11999-010-1718-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND In natural synovial joints under physiologic conditions, fluid thin-film lubrication by a hydrated layer of the cartilage is essential for the smooth motion of the joints. The considerably less efficient lubrication of artificial joints of polyethylene is prone to wear, leading to osteolysis and aseptic loosening and limiting the longevity of THA. A nanometer-scale layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) with cartilage-mimicking brushlike structures on a crosslinked polyethylene (CLPE) surface may provide hydrophilicity and lubricity resembling the physiologic joint surface. QUESTIONS/PURPOSES We asked whether the photoirradiation time during graft polymerization would affect the density and stability of the PMPC layer and the PMPC-grafted surface would enhance the durability of artificial joints. We investigated the effect of photoirradiation time and the resultant characteristics of the PMPC layer on the durability of the CLPE. METHODS For each of the PMPC-grafted CLPE surfaces with various photoirradiation times (six groups: 0 [untreated CLPE], 11, 23, 45, 90, and 180 minutes), 18 sample pieces (total of 108 samples) were evaluated in surface analyses, and four cups (total of 24 samples) were evaluated in a hip simulator test. RESULTS The density of the PMPC layer increased with an increase in the photoirradiation time. The hip simulator test confirmed the PMPC-grafted CLPE with a high density of the PMPC layer exhibited minimal wear as compared with the untreated CLPE. High-density PMPC grafting appears essential for maintaining the high wear resistance of the PMPC-grafted CLPE. To obtain a high-density PMPC layer, the photoirradiation time must be greater than 45 minutes. CONCLUSIONS The cartilage-mimicking, density brushlike structure of the PMPC-grafted CLPE could extend high durability to acetabular cups in THA. CLINICAL RELEVANCE Our in vitro findings suggest the wear performance of CLPE acetabular cups in THA can be improved by this approach.
Collapse
Affiliation(s)
- Masayuki Kyomoto
- Research Department, Japan Medical Materials Corp, 3-3-31, Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan.
| | | | | | | | | |
Collapse
|
34
|
Weizhong Jin, Lingxiang Wu, Yuanlin Song, Jinjun Jiang, Xiaodan Zhu, Dawei Yang, Chunxue Bai. Continuous Intra-Arterial Blood pH Monitoring by a Fiber-Optic Fluorosensor. IEEE Trans Biomed Eng 2011; 58:1232-8. [DOI: 10.1109/tbme.2011.2107514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Jin W, Jiang J, Wang X, Zhu X, Wang G, Song Y, Bai C. Continuous intra-arterial blood pH monitoring in rabbits with acid-base disorders. Respir Physiol Neurobiol 2011; 177:183-8. [PMID: 21402180 DOI: 10.1016/j.resp.2011.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/08/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
The acid-base balance of arterial blood is important for the clinical management of seriously ill patients, especially patients with acute lung injury or acute respiratory distress syndrome. We developed a novel fluorosensor for continuous blood pH monitoring and evaluated its performance both in vitro and in vivo in rabbits with acid-base disorders. The pH sensor is made of N-allyl-4-piperazinyl-1, 8-napthalimide and 2-hydroxyethyl methacrylate, which were bonded at the distal end of the optical fiber. The fluorescence intensity increased as the pH decreased with good reproducibility, selectivity and linearity in the pH range of 6-8. The pH measurement precision was 0.03 ± 0.03 pH units with a bias of -0.02 ± 0.04 (n = 105) and -0.00 ± 0.05 pH units (n=189) in rabbits with metabolic and respiratory acid-base orders, respectively. The optical pH sensor can accurately measure pH fluctuations with a fast response and is a promising candidate for continuous in-line measurements of blood pH in critical care patients.
Collapse
Affiliation(s)
- Weizhong Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Johnson CA, Vandenberghe S, Daly AR, Woolley JR, Snyder ST, Verkaik JE, Ye SH, Borovetz HS, Antaki JF, Wearden PD, Kameneva MV, Wagner WR. Biocompatibility assessment of the first generation PediaFlow pediatric ventricular assist device. Artif Organs 2011; 35:9-21. [PMID: 20626737 PMCID: PMC3200290 DOI: 10.1111/j.1525-1594.2010.01023.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PediaFlow pediatric ventricular assist device is a miniature magnetically levitated mixed flow pump under development for circulatory support of newborns and infants (3-15 kg) with a targeted flow range of 0.3-1.5 L/min. The first generation design of the PediaFlow (PF1) was manufactured with a weight of approximately 100 g, priming volume less than 2 mL, length of 51 mm, outer diameter of 28 mm, and with 5-mm blood ports. PF1 was evaluated in an in vitro flow loop for 6 h and implanted in ovines for three chronic experiments of 6, 17, and 10 days. In the in vitro test, normalized index of hemolysis was 0.0087 ± 0.0024 g/100L. Hemodynamic performance and blood biocompatibility of PF1 were characterized in vivo by measurements of plasma free hemoglobin, plasma fibrinogen, total plasma protein, and with novel flow cytometric assays to quantify circulating activated ovine platelets. The mean plasma free hemoglobin values for the three chronic studies were 4.6 ± 2.7, 13.3 ± 7.9, and 8.8 ± 3.3 mg/dL, respectively. Platelet activation was low for portions of several studies but consistently rose along with observed animal and pump complications. The PF1 prototype generated promising results in terms of low hemolysis and platelet activation in the absence of complications. Hemodynamic results validated the magnetic bearing design and provided the platform for design iterations to meet the objective of providing circulatory support for young children with exceptional biocompatibility.
Collapse
Affiliation(s)
- Carl A. Johnson
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| | | | - Amanda R. Daly
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| | - Joshua R. Woolley
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
| | | | | | - Sang-Ho Ye
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Department of Surgery, University of Pittsburgh
| | - Harvey S. Borovetz
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Department of Surgery, University of Pittsburgh
| | - James F. Antaki
- Department of Bioengineering, University of Pittsburgh
- Department of Biomedical Engineering, Carnegie Mellon University
| | - Peter D. Wearden
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Cardiothoracic Surgery, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Marina V. Kameneva
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Department of Surgery, University of Pittsburgh
| | - William R. Wagner
- Department of Bioengineering, University of Pittsburgh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh
- Department of Surgery, University of Pittsburgh
| |
Collapse
|
37
|
Ye SH, Johnson CA, Woolley JR, Murata H, Gamble LJ, Ishihara K, Wagner WR. Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids Surf B Biointerfaces 2010; 79:357-64. [PMID: 20547042 PMCID: PMC3178391 DOI: 10.1016/j.colsurfb.2010.04.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Thrombosis and thromboembolism remain problematic for a large number of blood contacting medical devices and limit broader application of some technologies due to this surface bioincompatibility. In this study we focused on the covalent attachment of zwitterionic phosphorylcholine (PC) or sulfobetaine (SB) moieties onto a TiAl(6)V(4) surface with a single step modification method to obtain a stable blood compatible interface. Silanated PC or SB modifiers (PCSi or SBSi) which contain an alkoxy silane group and either PC or SB groups were prepared respectively from trimethoxysilane and 2-methacryloyloxyethyl phosphorylcholine (MPC) or N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SMDAB) monomers by a hydrosilylation reaction. A cleaned and oxidized TiAl(6)V(4) surface was then modified with the PCSi or SBSi modifiers by a simple surface silanization reaction. The surface was assessed with X-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle goniometry. Platelet deposition and bulk phase activation were evaluated following contact with anticoagulated ovine blood. XPS results verified successful modification of the PCSi or SBSi modifiers onto TiAl(6)V(4) based on increases in surface phosphorous or sulfur respectively. Surface contact angles in water decreased with the addition of hydrophilic PC or SB moieties. Both the PCSi and SBSi modified TiAl(6)V(4) surfaces showed decreased platelet deposition and bulk phase platelet activation compared to unmodified TiAl(6)V(4) and control surfaces. This single step modification with PCSi or SBSi modifiers offers promise for improving the surface hemocompatibility of TiAl(6)V(4) and is attractive for its ease of application to geometrically complex metallic blood contacting devices.
Collapse
Affiliation(s)
- Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carl A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joshua R. Woolley
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hironobu Murata
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lara J. Gamble
- Department of Bioengineering and NESAC/BIO, University of Washington, Seattle, WA 98195, USA
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
38
|
Ishiyama N, Moro T, Ishihara K, Ohe T, Miura T, Konno T, Ohyama T, Kimura M, Kyomoto M, Nakamura K, Kawaguchi H. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions. Biomaterials 2010; 31:4009-16. [DOI: 10.1016/j.biomaterials.2010.01.100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 01/15/2010] [Indexed: 01/29/2023]
|
39
|
Shimizu T, Goda T, Minoura N, Takai M, Ishihara K. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 2010; 31:3274-80. [DOI: 10.1016/j.biomaterials.2010.01.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 01/08/2010] [Indexed: 11/30/2022]
|
40
|
Liu G, Iwata K, Ogasawara T, Watanabe J, Fukazawa K, Ishihara K, Asawa Y, Fujihara Y, Chung UL, Moro T, Takatori Y, Takato T, Nakamura K, Kawaguchi H, Hoshi K. Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates. J Biomed Mater Res A 2010; 92:1273-82. [PMID: 19330850 DOI: 10.1002/jbm.a.32460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To enrich the subpopulation that preserves self-renewal and multipotentiality from conventionally prepared bone marrow stromal cells (MSCs), we attempted to use 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer-coated plates that selected the MSCs with strong adhesion ability and evaluated the proliferation ability or osteogenic/chondrogenic potential of the MPC polymer-selected MSCs. The number of MSCs that were attached to the MPC polymer-coated plates decreased with an increase in the density of MPC unit (0-10%), whereas no significant difference in the proliferation ability was seen among these cells. The surface epitopes of CD29, CD44, CD105, and CD166, and not CD34 or CD45, were detectable in the cells of all MPC polymer-coated plates, implying that they belong to the MSC category. In the osteogenic and chondrogenic induction, the MSCs selected by the 2-5% MPC unit composition showed higher expression levels of osteoblastic and chondrocytic markers (COL1A1/ALP, or COL2A1/COL10A1/Sox9) at passage 2, compared with those of 0-1% or even 10% MPC unit composition, while the enhanced effects continued by passage 5. The selection based on the adequate cell adhesiveness by the MPC polymer-coated plates could improve the osteogenic and chondrogenic potential of MSCs, which would provide cell sources that can be used to treat the more severe and various bone/cartilage diseases.
Collapse
Affiliation(s)
- G Liu
- Department of Cartilage and Bone Regeneration (Fujisoft), Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ye SH, Johnson CA, Woolley JR, Oh HI, Gamble LJ, Ishihara K, Wagner WR. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids Surf B Biointerfaces 2009; 74:96-102. [PMID: 19647420 PMCID: PMC2811089 DOI: 10.1016/j.colsurfb.2009.06.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
Abstract
To improve the thromboresistance of a titanium alloy (TiAl(6)V(4)) surface which is currently utilized in several ventricular assist devices (VADs), a plasma-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) was carried out and poly(MPC) (PMPC) chains were covalently attached onto a TiAl(6)V(4) surface by a plasma induced technique. Cleaned TiAl(6)V(4) surfaces were pretreated with H(2)O-vapor-plasma and silanated with 3-methacryloylpropyltrimethoxysilane (MPS). Next, a plasma-induced graft polymerization with MPC was performed after the surfaces were pretreated with Ar plasma. Surface compositions were verified by X-ray photoelectron spectroscopy (XPS). In vitro blood biocompatibility was evaluated by contacting the modified surfaces with ovine blood under continuous mixing. Bulk phase platelet activation was quantified by flow cytometric analysis, and surfaces were observed with scanning electron microscopy after blood contact. XPS data demonstrated successful modification of the TiAl(6)V(4) surfaces with PMPC as evidenced by increased N and P on modified surfaces. Platelet deposition was markedly reduced on the PMPC grafted surfaces and platelet activation in blood that contacted the PMPC-grafted samples was significantly reduced relative to the unmodified TiAl(6)V(4) and polystyrene control surfaces. Durability studies under continuously mixed water suggested no change in surface modification over a 1-month period. This modification strategy shows promise for further investigation as a means to reduce the thromboembolic risk associated with the metallic blood-contacting surfaces of VADs and other cardiovascular devices under development.
Collapse
Affiliation(s)
- Sang Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carl A. Johnson
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joshua R. Woolley
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Heung-Il Oh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lara J. Gamble
- Departments of Bioengineering and NESAC/BIO, University of Washington, Seattle, WA 98195, USA
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
42
|
Ye SH, Johnson CA, Woolley JR, Snyder TA, Gamble LJ, Wagner WR. Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. J Biomed Mater Res A 2009; 91:18-28. [PMID: 18683221 PMCID: PMC3402171 DOI: 10.1002/jbm.a.32184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our objective was to develop a surface modification strategy for a titanium alloy (TiAl6V4) to provide thromboresistance for surfaces in rigorous blood-contacting cardiovascular applications, such as that found in ventricular assist devices. We hypothesized that this could be accomplished by the covalent attachment of a phospholipid polymer, poly(2-methacryloyloxyethylphosphorylcholine (MPC)-co-methacryl acid) (PMA). TiAl6V4 was H2O plasma treated by radio frequency glow discharge, silanated with 3-aminopropyltriethoxysilane (APS), and ammonia plasma treated to increase surface reactivity. The TiAl6V4 surface was then modified with PMA via a condensation reaction between the amino groups on the TiAl6V4 surface and the carboxyl groups on PMA. The surface composition was verified by X-ray photoelectron spectroscopy, confirming successful modification of the TiAl6V4 surfaces with APS and PMA as evidenced by increased Si and P. Plasma treatments with H2O and ammonia were effective at further increasing the surface reactivity of TiAl6V4 as evidenced by increased surface PMA. The adsorption of ovine fibrinogen onto PMA-modified surfaces was reduced relative to unmodified surfaces, and in vitro ovine blood contact through a rocking test revealed marked reductions in platelet deposition and bulk phase platelet activation relative to unmodified TiAl6V4 and polystyrene controls. The results indicate that the PMA-modification scheme for TiAl6V4 surfaces offers a potential pathway to improve the thromboresistance of the blood-contacting surfaces of cardiovascular devices.
Collapse
Affiliation(s)
- Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | |
Collapse
|
43
|
Someya T, Kobayashi M, Waguri S, Ushiyama T, Nagaoka E, Hijikata W, Shinshi T, Arai H, Takatani S. Development of a Disposable Maglev Centrifugal Blood Pump Intended for One-Month Support in Bridge-to-Bridge Applications: In Vitro and Initial In Vivo Evaluation. Artif Organs 2009; 33:704-13. [DOI: 10.1111/j.1525-1594.2009.00900.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Saeed D, Fukamachi K. In Vivo Preclinical Anticoagulation Regimens After Implantation of Ventricular Assist Devices. Artif Organs 2009; 33:491-503. [DOI: 10.1111/j.1525-1594.2009.00733.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Sato K, Orihashi K, Kurosaki T, Tokumine A, Fukunaga S, Ninomiya S, Sueda T. Analysis of flow patterns in a ventricular assist device: a comparative study of particle image velocimetry and computational fluid dynamics. Artif Organs 2009; 33:352-9. [PMID: 19335412 DOI: 10.1111/j.1525-1594.2009.00726.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to develop a diaphragm-type ventricular assist device (VAD), we studied the flow field change following structural modifications. We devised a center flow-type pump by putting a small projection on the center of the housing and/or diaphragm to provide a center in the flow field, and examined the following four types of VADs: N type without a projection, D type with a projection on the diaphragm, H type with a projection on the housing, and DH type with projections on both the diaphragm and housing. Computational fluid dynamics (CFD) was used for flow simulation. Particle image velocimetry (PIV) was also used to verify the reliability of the CFD method and to determine how the flow field changes in the presence of a projection. The results of the PIV and CFD analyses were comparable. The placement of a projection on the housing was most effective in rectifying the flow field.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Department of Surgery, Division of Clinical Medical Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
This article focuses on the surface engineering of ventricular assist devices (VADs) for the treatment of heart failure patients, which involves the modification of surfaces contacting blood in order to improve the blood compatibility (hemocompatibility) of the VADs. Following an introduction to the categorization and the complications of VADs, this article pays attention on the hemocompatibility, applications and limitations of six types of surface coatings for VADs: titanium nitride coatings, diamond-like carbon coatings, 2-methacryloyloxyethyl phosphorylcholine polymer coatings, heparin coatings, textured surfaces and endothelial cell linings. In particular, diamond-like coatings and heparin coatings are the most commonly used for VADs owing to their excellent hemocompatibility, durability and technical maturity. For high performance and a long lifetime of VADs, surface modification with coatings to ensure hemocompatibility is as important as the mechanical design of the device.
Collapse
Affiliation(s)
- Dong-Choon Sin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, QLD 4059, Australia.
| | | | | |
Collapse
|
47
|
Study on the physical properties of tissue-engineered blood vessels made by chemical cross-linking and polymer-tissue cross-linking. J Artif Organs 2009; 12:47-54. [DOI: 10.1007/s10047-008-0443-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 11/27/2008] [Indexed: 11/26/2022]
|
48
|
Ishihara K, Takai M. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry. J R Soc Interface 2009; 6 Suppl 3:S279-91. [PMID: 19324688 PMCID: PMC2690090 DOI: 10.1098/rsif.2008.0335] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review paper describes novel biointerfaces for nanobiodevices. Biocompatible and non-biofouling surfaces are designed largely based on cell membrane structure, and the preparation and functioning of the bioinspired interface are evaluated and compared between living and artificial systems. A molecular assembly of polymers with a phospholipid polar group has been developed as the platform of the interface. At the surface, protein adsorption is effectively reduced and the subsequent bioreactions are suppressed. Through this platform, biomolecules with a high affinity to the specific molecules are introduced under mild conditions. The activity of the biomolecules is retained even after immobilization. This bioinspired interface is adapted to construct bionanodevices, that is, microfluidic chips and nanoparticles for capturing target molecules and cells. The interface functions well and has a very high efficiency for biorecognition. This bioinspired interface is a promising universal platform that integrates various fields of science and has useful applications.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | |
Collapse
|
49
|
Development of fiber optic fluorescence oxygen sensor in both in vitro and in vivo systems. Respir Physiol Neurobiol 2008; 161:160-6. [DOI: 10.1016/j.resp.2008.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 01/20/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
|
50
|
Ohuchi K, Hoshi H, Iwasaki Y, Ishihara K, Yoshikawa M, Ugaki S, Ishino K, Osaki S, Kotani Y, Sano S, Takatani S. Feasibility of a Tiny Centrifugal Blood Pump (TinyPump) for Pediatric Extracorporeal Circulatory Support. Artif Organs 2007; 31:408-12. [PMID: 17470213 DOI: 10.1111/j.1525-1594.2007.00401.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, the performances of the TinyPump (priming volume 5 mL) system including the pediatric cannulae (Stöckert Pediatric Arterial Cannulae 2.6, 3.0, and 4.0 mm, Stöckert Instruments GmbH, Munich, Germany; Polystan 20-Fr Venous Catheter, MAQUET GmbH, Rastatt, Germany) and an oxygenator (Terumo Capiox RX05 Baby-RX, Terumo Cardiovascular Systems Co., Tokyo, Japan) were studied in vitro followed with preliminary ex vivo studies in 20-kg piglets. In vitro results revealed that the TinyPump system met the requirements for pump speed, pump flow, and pressure drop as extracorporeal circulatory support during open heart surgery and extracorporeal membrane oxygenation (ECMO) in pediatric patients. In 2-h ex vivo studies using 20-kg piglets where the blood contacting surface of the TinyPump was coated with a biocompatible phospholipid polymer, the plasma-free hemoglobin levels remained less than 5.0 mg/dL and no thrombus formation was observed inside the pump. The TinyPump system including the oxygenator and connecting circuits resulted in an overall priming volume of 68 mL, the smallest ever reported. The TinyPump can be a safe option for pediatric circulatory support during open heart surgery and ECMO without requiring blood transfusion.
Collapse
Affiliation(s)
- Katsuhiro Ohuchi
- Department of Artificial Organs, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|