1
|
Haeger G, Wirges J, Bongaerts J, Schörken U, Siegert P. Perspectives of aminoacylases in biocatalytic synthesis of N-acyl-amino acids surfactants. Appl Microbiol Biotechnol 2024; 108:495. [PMID: 39453420 PMCID: PMC11511702 DOI: 10.1007/s00253-024-13328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed. KEY POINTS: • Enzymatic synthesis of N-acyl-amino acids, biobased surfactants by aminoacylases.
Collapse
Affiliation(s)
- Gerrit Haeger
- Novo Nordisk, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Ulrich Schörken
- Faculty of Applied Natural Sciences, TH Köln University of Applied Sciences - Leverkusen Campus, 51379, Leverkusen, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany.
| |
Collapse
|
2
|
Zhou L, Tang L, Zhou C, Wen SW, Krewski D, Xie RH. Association of maternal postpartum depression symptoms with infant neurodevelopment and gut microbiota. Front Psychiatry 2024; 15:1385229. [PMID: 38835546 PMCID: PMC11148360 DOI: 10.3389/fpsyt.2024.1385229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Understanding the mechanisms underlying maternal postpartum depression (PPD) and its effects on offspring development is crucial. However, research on the association between maternal PPD, gut microbiota, and offspring neurodevelopment remains limited. This study aimed to examine the association of maternal PPD symptoms with early gut microbiome, gut metabolome, and neurodevelopment in infants at 6 months. Methods Maternal PPD symptoms were assessed using the Edinburgh Postpartum Depression Scale (EPDS) at 42 days postpartum. Infants stool samples collected at 42 days after birth were analyzed using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) detection. Infant neurodevelopment was measured at 6 months using the Ages and Stages Questionnaire, Third Edition (ASQ-3). Correlations between gut microbiota, metabolites and neurodevelopment were identified through co-occurrence network analysis. Finally, mediation analyses were conducted to determine potential causal pathways. Results A total of 101 mother-infant dyads were included in the final analysis. Infants born to mothers with PPD symptoms at 42 days postpartum had lower neurodevelopmental scores at 6 months. These infants also had increased alpha diversity of gut microbiota and were abundant in Veillonella and Finegoldia, while depleted abundance of Bifidobacterium, Dialister, Cronobacter and Megasphaera. Furthermore, alterations were observed in metabolite levels linked to the Alanine, aspartate, and glutamate metabolic pathway, primarily characterized by decreases in N-Acetyl-L-aspartic acid, L-Aspartic acid, and L-Asparagine. Co-occurrence network and mediation analyses revealed that N-Acetyl-L-aspartic acid and L-Aspartic acid levels mediated the relationship between maternal PPD symptoms and the development of infant problem-solving skills. Conclusions Maternal PPD symptoms are associated with alterations in the gut microbiota and neurodevelopment in infants. This study provides new insights into potential early intervention for infants whose mother experienced PPD. Further research is warranted to elucidate the biological mechanisms underlying these associations.
Collapse
Affiliation(s)
- Lepeng Zhou
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Linghong Tang
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuhui Zhou
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
- Women and Children Medical Research Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Shi Wu Wen
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Risk Science International, Ottawa, ON, Canada
| | - Ri-Hua Xie
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
- Women and Children Medical Research Center, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
3
|
Chen Y, Zizmare L, Calbiague V, Wang L, Yu S, Herberg FW, Schmachtenberg O, Paquet-Durand F, Trautwein C. Retinal metabolism displays evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle. eLife 2024; 12:RP91141. [PMID: 38739438 PMCID: PMC11090511 DOI: 10.7554/elife.91141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiyi Chen
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of TübingenTuebingenGermany
- Core Facility Metabolomics, Faculty of Medicine, University of TübingenTuebingenGermany
| | - Victor Calbiague
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaísoChile
| | - Lan Wang
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Shirley Yu
- Institute for Ophthalmic Research, University of TübingenTuebingenGermany
| | - Fritz W Herberg
- Biochemistry Department, University of KasselTuebingenGermany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de ValparaísoValparaísoChile
| | | | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of TübingenTuebingenGermany
- Core Facility Metabolomics, Faculty of Medicine, University of TübingenTuebingenGermany
| |
Collapse
|
4
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
5
|
Haeger G, Probst J, Jaeger K, Bongaerts J, Siegert P. Novel aminoacylases from Streptomyces griseus DSM 40236 and their recombinant production in Streptomyces lividans. FEBS Open Bio 2023; 13:2224-2238. [PMID: 37879963 PMCID: PMC10699109 DOI: 10.1002/2211-5463.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Collapse
Affiliation(s)
- Gerrit Haeger
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Johanna Probst
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfJülichGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum Jülich GmbHJülichGermany
| | - Johannes Bongaerts
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| | - Petra Siegert
- Institute of Nano‐ and BiotechnologiesAachen University of Applied SciencesJülichGermany
| |
Collapse
|
6
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Xiong F, Jiang K, Wu Y, Lou C, Ding C, Zhang W, Zhang X, Li C, Zheng H, Gao H. Intermittent fasting alleviates type 1 diabetes-induced cognitive dysfunction by improving the frontal cortical metabolic disorder. Biochim Biophys Acta Mol Basis Dis 2023:166725. [PMID: 37127173 DOI: 10.1016/j.bbadis.2023.166725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Intermittent fasting (IF) is an ecological strategy to control various metabolic disorder symptoms, but its protective effect on type 1 diabetes (T1D)-induced cognitive dysfunction and the underlying mechanisms remain poorly defined. Herein, we examined the efficacy of IF in altering the behaviors and brain metabolome in T1D mice and investigated the potential molecular mechanisms. We demonstrated that IF remarkably improved frontal cortical-dependent memory in T1D mice and reduced the loss of neuronal cells. Metabolomics and targeted mass spectrometry assay showed that IF reprogrammed the frontal cortical metabolome composition, including activated the aspartate and glutamate pathway and reversed glycerophospholipid and sphingolipid depositions in T1D mice. Mechanistically, IF attenuated the levels of oxidative stress proteins, such as NOX2, NOX4, 8-OHdG, 4-HNE, and inhibited the levels of pro-apoptotic factors Bax and cleaved Caspase-3, finally improved the memory ability of T1D mice. In vitro studies confirmed the protective effect of the supplemented N-acetylaspartate, a pivotal metabolite involved in IF-regulated T1D-induced cognitive dysfunction, in high glucose-stimulated SH-SY5Y cells by eliminating toxic lipids accumulation, oxidative stress and apoptosis. To conclude, the frontal cortical metabolites mediated the protective effects of IF against T1D-induced cognitive dysfunction by attenuating oxidative stress and apoptotic signaling. Thus, IF can be a potential therapeutic strategy for T1D-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Fen Xiong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kaiyuan Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yali Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cong Lou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chengjie Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenli Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou 325035, China.
| |
Collapse
|
8
|
Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies. Eur Arch Psychiatry Clin Neurosci 2022; 272:1395-1411. [PMID: 35322293 DOI: 10.1007/s00406-022-01397-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
One of the main challenges in investigating the neurobiology of ADHD is our limited capacity to study its neurochemistry in vivo. Magnetic resonance spectroscopy (MRS) estimates metabolite concentrations within the brain, but approaches and findings have been heterogeneous. To assess differences in brain metabolites between patients with ADHD and healthy controls, we searched 12 databases screening for MRS studies. Studies were divided into 'children and adolescents' and 'adults' and meta-analyses were performed for each brain region with more than five studies. The quality of studies was assessed by the Newcastle-Ottawa Scale. Thirty-three studies met our eligibility criteria, including 874 patients with ADHD. Primary analyses revealed that the right medial frontal area of children with ADHD presented higher concentrations of a composite of glutamate and glutamine (p = 0.02, SMD = 0.53). Glutamate might be implicated in pruning and neurodegenerative processes as an excitotoxin, while glutamine excess might signal a glutamate depletion that could hinder neurotrophic activity. Both neuro metabolites could be implicated in the differential cortical thinning observed in patients with ADHD across all ages. Notably, more homogeneous designs and reporting guidelines are the key factors to determine how suitable MRS is for research and, perhaps, for clinical psychiatry. Results of this meta-analysis provided an overall map of the brain regions evaluated so far, addressed the role of glutamatergic metabolites in the pathophysiology of ADHD, and pointed to new perspectives for consistent use of the tool in the field.
Collapse
|
9
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [PMID: 35636725 PMCID: PMC11806932 DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.
Collapse
Affiliation(s)
- Huijun Wei
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Man Amanat
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis - Part 2: Acetate and ACSS2 in Health and Disease. Front Physiol 2020; 11:580171. [PMID: 33304273 PMCID: PMC7693462 DOI: 10.3389/fphys.2020.580171] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Acetate, the shortest chain fatty acid, has been implicated in providing health benefits whether it is derived from the diet or is generated from microbial fermentation of fiber in the gut. These health benefits range widely from improved cardiac function to enhanced red blood cell generation and memory formation. Understanding how acetate could influence so many disparate biological functions is now an area of intensive research. Protein acetylation is one of the most common post-translational modifications and increased systemic acetate strongly drives protein acetylation. By virtue of acetylation impacting the activity of virtually every class of protein, acetate driven alterations in signaling and gene transcription have been associated with several common human diseases, including cancer. In part 2 of this review, we will focus on some of the roles that acetate plays in health and human disease. The acetate-activating enzyme acyl-CoA short-chain synthetase family member 2 (ACSS2) will be a major part of that focus due to its role in targeted protein acetylation reactions that can regulate central metabolism and stress responses. ACSS2 is the only known enzyme that can recycle acetate derived from deacetylation reactions in the cytoplasm and nucleus of cells, including both protein and metabolite deacetylation reactions. As such, ACSS2 can recycle acetate derived from histone deacetylase reactions as well as protein deacetylation reactions mediated by sirtuins, among many others. Notably, ACSS2 can activate acetate released from acetylated metabolites including N-acetylaspartate (NAA), the most concentrated acetylated metabolite in the human brain. NAA has been associated with the metabolic reprograming of cancer cells, where ACSS2 also plays a role. Here, we discuss the context-specific roles that acetate can play in health and disease.
Collapse
Affiliation(s)
- John R. Moffett
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ranjini Vengilote
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, United States
| | - Aryan M. Namboodiri
- Department of Anatomy, Physiology and Genetics, and Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
11
|
Kirov II, Sollberger M, Davitz MS, Glodzik L, Soher BJ, Babb JS, Monsch AU, Gass A, Gonen O. Global brain volume and N-acetyl-aspartate decline over seven decades of normal aging. Neurobiol Aging 2020; 98:42-51. [PMID: 33232854 DOI: 10.1016/j.neurobiolaging.2020.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.
Collapse
Affiliation(s)
- Ivan I Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Marc Sollberger
- University Department of Geriatric Medicine FELIX PLATTER, Memory Clinic, Basel, Switzerland; Department of Neurology, University Hospital, Basel, Switzerland
| | - Matthew S Davitz
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Lidia Glodzik
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Andreas U Monsch
- University Department of Geriatric Medicine FELIX PLATTER, Memory Clinic, Basel, Switzerland
| | - Achim Gass
- Department of Neurology/Neuroimaging, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Oded Gonen
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Lendor S, Olkowicz M, Boyaci E, Yu M, Diwan M, Hamani C, Palmer M, Reyes-Garcés N, Gómez-Ríos GA, Pawliszyn J. Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: In Vivo versus Postmortem Comparative Study. ACS Chem Neurosci 2020; 11:1827-1840. [PMID: 32407623 DOI: 10.1021/acschemneuro.0c00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.
Collapse
Affiliation(s)
- Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mustansir Diwan
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Clement Hamani
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - German Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Insular Cell Integrity Markers Linked to Weight Concern in Anorexia Nervosa-An MR-Spectroscopy Study. J Clin Med 2020; 9:jcm9051292. [PMID: 32365843 PMCID: PMC7288299 DOI: 10.3390/jcm9051292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022] Open
Abstract
Objective: An insular involvement in the pathogenesis of anorexia nervosa (AN) has been suggested in many structural and functional neuroimaging studies. This magnetic resonance spectroscopy (MRS) study is the first to investigate metabolic signals in the anterior insular cortex in patients with AN and recovered individuals (REC). Method: The MR spectra of 32 adult women with AN, 21 REC subjects and 33 healthy controls (HC) were quantified for absolute N-acetylaspartate (NAA), glutamate + glutamine (Glx), total choline, myo-inositol, creatine concentrations (mM/L). After adjusting the metabolite concentrations for age and partial gray/white matter volume, group differences were tested using one-way multivariate analyses of variance (MANOVA). Post-hoc analyses of variance were applied to identify those metabolites that showed significant group effects. Correlations were tested for associations with psychometric measures (eating disorder examination), duration of illness, and body mass index. Results: The MANOVA exhibited a significant group effect. The NAA signal was reduced in the AN group compared to the HC group. The REC and the HC groups did not differ in metabolite concentrations. In the AN group, lower NAA and Glx signals were related to increased weight concern. Discussion: We interpret the decreased NAA availability in the anterior insula as a signal of impaired neuronal integrity or density. The association of weight concern, which is a core feature of AN, with decreased NAA and Glx indicates that disturbances of glutamatergic neurotransmission might be related to core psychopathology in AN. The absence of significant metabolic differences between the REC and HC subjects suggests that metabolic alterations in AN represent a state rather than a trait phenomenon.
Collapse
|
14
|
Li C, Wang A, Wang C, Ramamurthy J, Zhang E, Guadagno E, Trakadis Y. Metabolomics in patients with psychosis: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:580-588. [PMID: 30076730 DOI: 10.1002/ajmg.b.32662] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 01/06/2023]
Abstract
The purpose of this article is to provide a comprehensive review of metabolomics studies for psychosis, as a means of biomarker discovery. Manuscripts were selected for review if they involved discovery of metabolites using high-throughput analysis in human subjects and were published in the last decade. The metabolites identified were searched in Human Metabolome Data Base (HMDB) for a link to psychosis. Metabolites associated with psychosis based on evidence in HMBD were then searched using PubMed to explore the availability of further evidence. Almost all of the studies which underwent full review involved patients with schizophrenia. Ten biomarkers were identified. Six of them were reported in two or more independent metabolomics studies: N-acetyl aspartate, lactate, tryptophan, kynurenine, glutamate, and creatine. Four additional metabolites were encountered in a single metabolomics study but had significant evidence (two supporting articles or more) for a link to psychosis based on PubMed: linoleic acid, D-serine, glutathione, and 3-hydroxybutyrate. The pathways affected are discussed as they may be relevant to the pathophysiology of psychosis, and specifically of schizophrenia, as well as, constitute new drug targets for treatment of related conditions. Based on the biomarkers identified, early diagnosis of schizophrenia and/or monitoring may be possible.
Collapse
Affiliation(s)
- Christopher Li
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Aviva Wang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Chloe Wang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Janani Ramamurthy
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Edlyn Zhang
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Elena Guadagno
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| | - Yannis Trakadis
- Department of Medical Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
1H MR spectroscopy of the motor cortex immediately following transcranial direct current stimulation at 7 Tesla. PLoS One 2018; 13:e0198053. [PMID: 30157179 PMCID: PMC6114283 DOI: 10.1371/journal.pone.0198053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/26/2018] [Indexed: 11/19/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation that may modulate cortical excitability, metabolite concentration, and human behaviour. The supplementary motor area (SMA) has been largely ignored as a potential target for tDCS neurorehabilitation but is an important region in motor compensation after brain injury with strong efferent connections to the primary motor cortex (M1). The objective of this work was to measure tissue metabolite changes in the human motor cortex immediately following tDCS. We hypothesized that bihemispheric tDCS would change levels of metabolites involved in neuromodulation including N-acetylaspartate (NAA), glutamate (Glu), and creatine (tCr). In this single-blind, randomized, cross-over study, fifteen healthy adults aged 21–60 participated in two 7T MRI sessions, to identify changes in metabolite concentrations by magnetic resonance spectroscopy. Immediately after 20 minutes of tDCS, there were no significant changes in metabolite levels or metabolite ratios comparing tDCS to sham. However there was a trend toward increased NAA/tCr concentration (p = 0.08) in M1 under the stimulating cathode. There was a strong, positive correlation between the change in the absolute concentration of NAA and the change in the absolute concentration of tCr (p<0.001) suggesting an effect of tDCS. Both NAA and creatine are important markers of neurometabolism. Our findings provide novel insight into the modulation of neural metabolites in the motor cortex immediately following application of bihemispheric tDCS.
Collapse
|
16
|
Gonzalez-Riano C, Sanz-Rodríguez M, Escudero-Ramirez J, Lorenzo MP, Barbas C, Cubelos B, Garcia A. Target and untargeted GC–MS based metabolomic study of mouse optic nerve and its potential in the study of neurological visual diseases. J Pharm Biomed Anal 2018; 153:44-56. [DOI: 10.1016/j.jpba.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
|
17
|
Thomas EH, Bozaoglu K, Rossell SL, Gurvich C. The influence of the glutamatergic system on cognition in schizophrenia: A systematic review. Neurosci Biobehav Rev 2017; 77:369-387. [DOI: 10.1016/j.neubiorev.2017.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
|
18
|
Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct Funct 2017; 222:2831-2853. [PMID: 28285370 PMCID: PMC5541081 DOI: 10.1007/s00429-017-1375-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Understanding the human brain is the ultimate goal in neuroscience, but this is extremely challenging in part due to the fact that brain tissue obtained from autopsy is practically the only source of normal brain tissue and also since changes at different levels of biological organization (genetic, molecular, biochemical, anatomical) occur after death due to multiple mechanisms. Here we used metabolomic and anatomical techniques to study the possible relationship between post-mortem time (PT)-induced changes that may occur at both the metabolomics and anatomical levels in the same brains. Our experiments have mainly focused on the hippocampus of the mouse. We found significant metabolomic changes at 2 h PT, whereas the integrity of neurons and glia, at the anatomical/ neurochemical level, was not significantly altered during the first 5 h PT for the majority of histological markers.
Collapse
|
19
|
Nishitani A, Tanaka M, Shimizu S, Kunisawa N, Yokoe M, Yoshida Y, Suzuki T, Sakuma T, Yamamoto T, Kuwamura M, Takenaka S, Ohno Y, Kuramoto T. Involvement of aspartoacylase in tremor expression in rats. Exp Anim 2016; 65:293-301. [PMID: 27026062 PMCID: PMC4976243 DOI: 10.1538/expanim.16-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Essential tremor (ET) is a common movement disorder with a poorly understood etiology.
The TRM/Kyo mutant rat, showing spontaneous tremor, is an animal model of ET. Recently, we
demonstrated that tremors in these rats emerge when two mutant loci, a missense mutation
in the hyperpolarization-activated cyclic nucleotide-gated potassium channel 1
(Hcn1) and the tremor (tm) deletion, are present
simultaneously. However, we did not identify which gene within the tm
deletion causes tremor expression in TRM/Kyo rats. A strong candidate among the 13 genes
within the tm deletion is aspartoacylase (Aspa), because
some Aspa-knockout mouse strains show tremor. Here, we generated
Aspa-knockout rats using transcription activator-like effector nuclease
technology and produced Aspa/Hcn1 double-mutant rats by
crossing Aspa-knockout rats with Hcn1-mutant rats. The
Aspa-knockout rats carried nonsense mutations in exon 4; and ASPA
proteins were not detectable in their brain extracts. They showed elevated levels of
N-acetyl-L-aspartate (NAA) in urine and spongy vacuolation
and abnormal myelination in the central nervous system, but no tremor. By contrast,
Aspa/Hcn1 double-mutant rats spontaneously showed
tremors resembling those in TRM/Kyo rats, and the tremor was suppressed by drugs
therapeutic for ET but not for parkinsonian tremor. These findings indicated that the lack
of the Aspa gene caused tremor expression in TRM/Kyo rats. Our animal
model suggested that the interaction of NAA accumulation due to ASPA deficiency with an
unstable neuronal membrane potential caused by HCN1 deficiency was involved in tremor
development.
Collapse
Affiliation(s)
- Ai Nishitani
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ohno Y, Shimizu S, Tatara A, Imaoku T, Ishii T, Sasa M, Serikawa T, Kuramoto T. Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One 2015; 10:e0123529. [PMID: 25970616 PMCID: PMC4430019 DOI: 10.1371/journal.pone.0123529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/18/2015] [Indexed: 01/12/2023] Open
Abstract
Genetic factors are thought to play a major role in the etiology of essential tremor (ET); however, few genetic changes that induce ET have been identified to date. In the present study, to find genes responsible for the development of ET, we employed a rat model system consisting of a tremulous mutant strain, TRM/Kyo (TRM), and its substrain TRMR/Kyo (TRMR). The TRM rat is homozygous for the tremor (tm) mutation and shows spontaneous tremors resembling human ET. The TRMR rat also carries a homozygous tm mutation but shows no tremor, leading us to hypothesize that TRM rats carry one or more genes implicated in the development of ET in addition to the tm mutation. We used a positional cloning approach and found a missense mutation (c. 1061 C>T, p. A354V) in the hyperpolarization-activated cyclic nucleotide-gated 1 channel (Hcn1) gene. The A354V HCN1 failed to conduct hyperpolarization-activated currents in vitro, implicating it as a loss-of-function mutation. Blocking HCN1 channels with ZD7288 in vivo evoked kinetic tremors in nontremulous TRMR rats. We also found neuronal activation of the inferior olive (IO) in both ZD7288-treated TRMR and non-treated TRM rats and a reduced incidence of tremor in the IO-lesioned TRM rats, suggesting a critical role of the IO in tremorgenesis. A rat strain carrying the A354V mutation alone on a genetic background identical to that of the TRM rats showed no tremor. Together, these data indicate that body tremors emerge when the two mutant loci, tm and Hcn1A354V, are combined in a rat model of ET. In this model, HCN1 channels play an important role in the tremorgenesis of ET. We propose that oligogenic, most probably digenic, inheritance is responsible for the genetic heterogeneity of ET.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Saki Shimizu
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Ayaka Tatara
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Takuji Imaoku
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
| | - Takahiro Ishii
- Department of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | | | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, 569–1094, Japan
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606–8501, Japan
| |
Collapse
|
21
|
Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio 2015; 6:mBio.00300-15. [PMID: 25900655 PMCID: PMC4453580 DOI: 10.1128/mbio.00300-15] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified on the basis of human clinical data. The mechanisms underlying its beneficial effects are still unknown. Gnotobiotic mice harboring F. prausnitzii (A2-165) and Escherichia coli (K-12 JM105) were subjected to 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis. The inflammatory colitis scores and a gas chromatography-time of flight (GC/TOF) mass spectrometry-based metabolomic profile were monitored in blood, ileum, cecum, colon, and feces in gnotobiotic mice. The potential anti-inflammatory metabolites were tested in vitro. We obtained stable E. coli and F. prausnitzii-diassociated mice in which E. coli primed the gastrointestinal tract (GIT), allowing a durable and stable establishment of F. prausnitzii. The disease activity index, histological scores, myeloperoxidase (MPO) activity, and serum cytokine levels were significantly lower in the presence of F. prausnitzii after TNBS challenge. The protective effect of F. prausnitzii against colitis was correlated to its implantation level and was linked to overrepresented metabolites along the GIT and in serum. Among 983 metabolites in GIT samples and serum, 279 were assigned to known chemical reactions. Some of them, belonging to the ammonia (α-ketoglutarate), osmoprotective (raffinose), and phenolic (including anti-inflammatory shikimic and salicylic acids) pathways, were associated with a protective effect of F. prausnitzii, and the functional link was established in vitro for salicylic acid. We show for the first time that F. prausnitzii is a highly active commensal bacterium involved in reduction of colitis through in vivo modulation of metabolites along the GIT and in the peripheral blood. IMPORTANCE Inflammatory bowel diseases (IBD) are characterized by low proportions of F. prausnitzii in the gut microbiome. This commensal bacterium exhibits anti-inflammatory effects through still unknown mechanisms. Stable monoassociated rodents are actually not a reproducible model to decipher F. prausnitzii protective effects. We propose a new gnotobiotic rodent model providing mechanistic clues. In this model, F. prausnitzii exhibits protective effects against an acute colitis and a protective metabolic profile is linked to its presence along the digestive tract. We identified a molecule, salicylic acid, directly involved in the protective effect of F. prausnitzii. Targeting its metabolic pathways could be an attractive therapeutic strategy in IBD.
Collapse
|
22
|
Serikawa T, Mashimo T, Kuramoro T, Voigt B, Ohno Y, Sasa M. Advances on genetic rat models of epilepsy. Exp Anim 2014; 64:1-7. [PMID: 25312505 PMCID: PMC4329510 DOI: 10.1538/expanim.14-0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Considering the suitability of laboratory rats in epilepsy research, we and other groups
have been developing genetic models of epilepsy in this species. After epileptic rats or
seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits
were usually genetically-fixed by selective breeding. So far, the absence seizure models
GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic
seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER
have been established. Dissection of the genetic bases including causative genes in these
epileptic rat models would be a significant step toward understanding epileptogenesis.
N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to
develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with
an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model
rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type
1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant
stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea
(MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2
(EA2) model rats. Thus, epileptic rat models have been established on the two paths:
‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel
epileptic rat models will be extensively promoted by the use of sophisticated genome
editing technologies.
Collapse
Affiliation(s)
- Tadao Serikawa
- Graduate School of Medicine, Kyoto University, Sakyo-ku 606-8501; Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Baicalein ameliorates cognitive deficits in epilepsy-like tremor rat. Neurol Sci 2014; 35:1261-8. [PMID: 24590842 DOI: 10.1007/s10072-014-1695-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Baicalein has been shown to possess various pharmacological actions. The current work was designed to assess the neuroprotection of baicalein against cognitive deficits in epilepsy-like tremor rat (TRM). Epileptic characteristics and memory functions were assessed by electroencephalograms recording and Morris water maze test, respectively. The changes of oxidative indicators including malondialdehyde (MDA), catalase (CAT), Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, glutathione (GSH), glutathione peroxidase (GSH-PX) and 8-isoprostane were measured using corresponding commercial kits. Real-time RT-PCR and immunoassay were employed to detect activities of various inflammatory mediators such as NF-κB p65, TNF-α, IL-1β, IL-6 and IL-10. Western blot analysis was performed to determine heat shock protein (HSP) 70 and mitogen-activated protein kinases (MAPKs) (including ERK, JNK and p38) proteins. Our results illustrated that baicalein significantly ameliorated epileptiform activity and cognitive deficits in TRM. Besides, reduced oxidative stress and inflammatory responses were also found in TRM treated with baicalein. Furthermore, there were evident alterations of HSP70 and MAPK cascades at protein levels after 14-day pretreatment with baicalein. It was concluded that the neuroprotective effect of baicalein against cognitive dysfunction might be associated with suppressing oxidative stress, inhibiting inflammation and mediating HSP70 as well as MAPK cascades in absence-like TRM.
Collapse
|
24
|
Zhao H, Lin G, Shi M, Gao J, Wang Y, Wang H, Sun H, Cao Y. The mechanism of neurogenic pulmonary edema in epilepsy. J Physiol Sci 2014; 64:65-72. [PMID: 24142459 PMCID: PMC10717646 DOI: 10.1007/s12576-013-0291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Neurogenic pulmonary edema (NPE) is found in many epilepsy patients at autopsy. It is a life-threatening complication, known for almost 100 years, but its etiopathogenesis is still not completely understood. In this study, we used the tremor rat (TRM: tm/tm) as an animal model of epilepsy to investigate the potential mechanisms of NPE under epileptic conditions. We performed reverse-phase high-pressure liquid chromatography assay, H&E and Masson staining, TUNEL assay, and Western blot experiments to determine the role of seizures in NPE. We found the level of catecholamine was higher in TRM rats. Also the occurrence of alveolar cell apoptosis was increased. Moreover, pulmonary vascular remodeling including the deposition of collagen and medial thickening was also found in TRM rats. Further study showed that cell apoptosis was mediated by increasing Bax, decreasing Bcl-2, and activating caspase-3. In addition, the protein level of phosphorylated ERK (p-ERK) was found to be decreased while phosphorylated JNK and phosphorylated p38 were upregulated in TRM rats. Thus, these findings suggest that pulmonary vascular remodeling and alveolar cell apoptosis might be involved in epilepsy-induced NPE and that the mitogen-activated protein kinase signal pathway was involved.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, The Fifth Clinical College of Harbin Medical University, Daqing, 163316 Heilongjiang China
| | - Guijun Lin
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| | - Mumu Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| | - Jingquan Gao
- Department of Clinical Nursing, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| | - Yanming Wang
- Department of College of Pharmacy, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| | - Hongzhi Wang
- Department of Laboratory Diagnosis, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, 163316 China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319 Heilongjiang China
| |
Collapse
|
25
|
Wagner M, Jurcoane A, Hildebrand C, Güresir E, Vatter H, Zanella FE, Berkefeld J, Pilatus U, Hattingen E. Metabolic changes in patients with aneurysmal subarachnoid hemorrhage apart from perfusion deficits: neuronal mitochondrial injury? AJNR Am J Neuroradiol 2013; 34:1535-41. [PMID: 23436053 DOI: 10.3174/ajnr.a3420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Neuronal damage in aSAH apart from perfusion deficits has been widely discussed. We aimed to test if cerebral injury occurs in aSAH independently from visible perfusion deficit by measuring cerebral metabolites in patients with aSAH without infarction or impaired perfusion. MATERIALS AND METHODS We performed 3T MR imaging including (1)H-MR spectroscopy, DWI, and MR perfusion in 58 patients with aSAH and 11 age-matched and sex-matched control patients with incidental aneurysm. We compared changes of NAA, Cho, Glx, Lac, and Cr between all patients with aSAH and controls, between patients with and without visible perfusion deficit or infarction and controls, and between patients with and without visible perfusion deficit or infarction by using the Wilcoxon signed-rank test. RESULTS We found that NAA significantly (P < .005) decreased in all patients with aSAH. Cho was significantly increased in all patients compared with controls (P < .05). In patients without impaired perfusion or infarction, Glx was significantly decreased compared with both controls (P = .005) and patients with impaired perfusion or infarction (P = .006). CONCLUSIONS The significant decrease of NAA and Glx in patients with aSAH but without impaired perfusion or infarction strongly suggests global metabolic changes independent from visible perfusion deficits that might reflect neuronal mitochondrial injury. Further, impaired perfusion in aSAH seems to induce additional metabolic changes from increasing neuronal stress that might, to some extent, mask the global metabolic changes.
Collapse
|
26
|
Leone P, Shera D, McPhee SWJ, Francis JS, Kolodny EH, Bilaniuk LT, Wang DJ, Assadi M, Goldfarb O, Goldman HW, Freese A, Young D, During MJ, Samulski RJ, Janson CG. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med 2013; 4:165ra163. [PMID: 23253610 DOI: 10.1126/scitranslmed.3003454] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Canavan disease is a hereditary leukodystrophy caused by mutations in the aspartoacylase gene (ASPA), leading to loss of enzyme activity and increased concentrations of the substrate N-acetyl-aspartate (NAA) in the brain. Accumulation of NAA results in spongiform degeneration of white matter and severe impairment of psychomotor development. The goal of this prospective cohort study was to assess long-term safety and preliminary efficacy measures after gene therapy with an adeno-associated viral vector carrying the ASPA gene (AAV2-ASPA). Using noninvasive magnetic resonance imaging and standardized clinical rating scales, we observed Canavan disease in 28 patients, with a subset of 13 patients being treated with AAV2-ASPA. Each patient received 9 × 10(11) vector genomes via intraparenchymal delivery at six brain infusion sites. Safety data collected over a minimum 5-year follow-up period showed a lack of long-term adverse events related to the AAV2 vector. Posttreatment effects were analyzed using a generalized linear mixed model, which showed changes in predefined surrogate markers of disease progression and clinical assessment subscores. AAV2-ASPA gene therapy resulted in a decrease in elevated NAA in the brain and slowed progression of brain atrophy, with some improvement in seizure frequency and with stabilization of overall clinical status.
Collapse
Affiliation(s)
- Paola Leone
- Department of Cell Biology, Cell & Gene Therapy Center, University of Medicine & Dentistry of New Jersey, Stratford, NJ 08034, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Francis JS, Strande L, Pu A, Leone P. Endogenous aspartoacylase expression is responsive to glutamatergic activity in vitro and in vivo. Glia 2011; 59:1435-46. [DOI: 10.1002/glia.21187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
28
|
Mao X, Guo F, Yu J, Min D, Wang Z, Xie N, Chen T, Shaw C, Cai J. Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus. Neurosci Lett 2010; 486:150-5. [PMID: 20851161 DOI: 10.1016/j.neulet.2010.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/01/2010] [Accepted: 09/11/2010] [Indexed: 12/15/2022]
Abstract
The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoyuan Mao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pederzolli CD, Rosa AP, de Oliveira AS, Coelho JG, da Luz Becker D, Dalazen GR, Moraes TB, Dutra-Filho CS. Neuroprotective role of lipoic acid against acute toxicity of N-acetylaspartic acid. Mol Cell Biochem 2010; 344:231-9. [DOI: 10.1007/s11010-010-0547-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 07/23/2010] [Indexed: 11/28/2022]
|
30
|
Assadi M, Janson C, Wang DJ, Goldfarb O, Suri N, Bilaniuk L, Leone P. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol 2010; 14:354-9. [PMID: 20034825 DOI: 10.1016/j.ejpn.2009.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 10/27/2009] [Accepted: 11/26/2009] [Indexed: 11/18/2022]
Abstract
Our group has previously reported the first clinical application of lithium in a child affected by Canavan disease. In this study, we aimed to assess the effects of lithium on N-acetyl aspartate (NAA) as well as other end points in a larger cohort. Six patients with clinical, laboratory and genetic confirmation of Canavan disease were recruited and underwent treatment with lithium. The battery of safety and efficacy testing performed before and after sixty days of treatment included Gross Motor Function Testing (GMFM), Magnetic Resonance Imaging (MRI) Proton Magnetic Spectroscopy (H-MRS) as well as blood work. The medication was safe without any clinical or laboratory evidence for toxicity. Parental reports indicated improvement in alertness and social interactions. GMFM did not show statistically significant improvement in motor development. H-MRS documented an overall drop in NAA which was statistically significant in the basal ganglia. T1 measurements recorded on MRI studies suggested a mild improvement in myelination in the frontal white matter after treatment. Diffusion Tensor Imaging was available in two patients and suggested micro-structural improvement in the corpus callosum. The results suggest that lithium administration may be beneficial in patients with Canavan disease.
Collapse
Affiliation(s)
- Mitra Assadi
- Robert Wood Johnson Medical School, Neurology, 3 Cooper Plaza, Suite 320, Camden, NJ 08103, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Pederzolli CD, Mescka CP, Magnusson AS, Deckmann KB, de Souza Streck E, Sgaravatti AM, Sgarbi MB, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS. N-acetylaspartic acid impairs enzymatic antioxidant defenses and enhances hydrogen peroxide concentration in rat brain. Metab Brain Dis 2010; 25:251-9. [PMID: 20437087 DOI: 10.1007/s11011-010-9202-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/22/2010] [Indexed: 11/27/2022]
Abstract
N-Acetylaspartic acid accumulates in Canavan Disease, a severe inherited neurometabolic disease clinically characterized by severe mental retardation, hypotonia, macrocephaly and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain poorly understood, in the present study we investigated the in vitro and in vivo effects of N-acetylaspartic acid on the activities of catalase, superoxide dismutase and glutathione peroxidase, as well as on hydrogen peroxide concentration in cerebral cortex of 14-day-old rats. Catalase and glutathione peroxidase activities were significantly inhibited, while hydrogen peroxide concentration was significantly enhanced by N-acetylaspartic acid both in vitro and in vivo. In contrast, superoxide dismutase activity was not altered by N-acetylaspartic acid. Our results clearly show that N-acetylaspartic acid impairs the enzymatic antioxidant defenses in rat brain. This could be involved in the pathophysiological mechanisms responsible for the brain damage observed in patients affected by Canavan Disease.
Collapse
|
32
|
Pinheiro GM, Basso EA, Fiorin BC, Cendes F, Rittner R, Oliveira AN, Höehr NF. A fast 1H NMR spectroscopy procedure for quantitative determination of N-acetylaspartate in urine samples. Clin Chim Acta 2009; 404:166-8. [DOI: 10.1016/j.cca.2009.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/15/2008] [Accepted: 03/02/2009] [Indexed: 11/24/2022]
|
33
|
Pederzolli CD, Rockenbach FJ, Zanin FR, Henn NT, Romagna EC, Sgaravatti AM, Wyse ATS, Wannmacher CMD, Wajner M, de Mattos Dutra A, Dutra-Filho CS. Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats. Metab Brain Dis 2009; 24:283-98. [PMID: 19294497 DOI: 10.1007/s11011-009-9137-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/29/2008] [Indexed: 01/24/2023]
Abstract
N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients.
Collapse
Affiliation(s)
- Carolina Didonet Pederzolli
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
N-Acetyl-l-aspartate activates hippocampal CA3 neurons in rodent slice preparations. Brain Res Bull 2008; 75:663-7. [DOI: 10.1016/j.brainresbull.2007.10.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/22/2007] [Accepted: 10/26/2007] [Indexed: 11/17/2022]
|
35
|
Rigotti DJ, Inglese M, Gonen O. Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol 2007; 28:1843-9. [PMID: 17921226 DOI: 10.3174/ajnr.a0774] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Proton MR spectroscopy (1H-MR spectroscopy) is a quantitative MR imaging technique often used to complement the sensitivity of conventional MR imaging with specific metabolic information. A key metabolite is the amino acid derivative N-acetylaspartate (NAA), which is almost exclusive to neurons and their processes and is, therefore, an accepted marker of their health and attenuation. Unfortunately, most 1H-MR spectroscopy studies only account for small 1- to 200-cm volumes of interest (VOI), representing less than 20% of the total brain volume. These VOIs have at least 5 additional restrictions: 1) To avoid contamination from subcutaneous and bone marrow lipids, they must be placed away from the skull, thereby missing most of the cortex. 2) They must be image-guided onto MR imaging-visible pathology, subjecting them to the implicit assumption that metabolic changes occur only there. 3) They encounter misregistration errors in serial studies. 4) The time needed to accumulate sufficient signal-intensity quality is often restrictive, and 5) they incur (unknown) T1- and T2-weighting. All these issues are avoided (at the cost of specific localization) by measuring the nonlocalized average NAA concentration over the entire brain. Indeed, whole-brain NAA quantification has been applied to several diffuse neurodegenerative diseases (where specific localization is less important than the total load of the pathology), and the results are presented in this review.
Collapse
Affiliation(s)
- D J Rigotti
- Department of Radiology, New York University School of Medicine, New York, NY10016, USA
| | | | | |
Collapse
|
36
|
Gohma H, Kuramoto T, Matalon R, Surendran S, Tyring S, Kitada K, Sasa M, Serikawa T. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice. Exp Anim 2007; 56:161-5. [PMID: 17460362 DOI: 10.1538/expanim.56.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.
Collapse
Affiliation(s)
- Hiroshi Gohma
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pederzolli CD, Mescka CP, Scapin F, Rockenbach FJ, Sgaravatti AM, Sgarbi MB, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS. N-acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. Int J Dev Neurosci 2007; 25:317-24. [PMID: 17604935 DOI: 10.1016/j.ijdevneu.2007.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/23/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
N-acetylaspartic acid accumulates in Canavan Disease, a severe leukodystrophy characterized by swelling and spongy degeneration of the white matter of the brain. This inherited metabolic disease, caused by deficiency of the enzyme aspartoacylase, is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and also generalized tonic and clonic type seizures in about half of the patients. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether oxidative stress is elicited by N-acetylaspartic acid. The in vitro effect of N-acetylaspartic acid (10-80 mM) was studied on oxidative stress parameters: total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR), chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), reduced glutathione content, sufhydryl content and carbonyl content in the cerebral cortex of 14-day-old rats. The effect of the acute administration of N-acetylaspartic acid (0.1-0.6 mmol/g body weight) was studied on TRAP, TAR, carbonyl content, chemiluminescence and TBA-RS. TRAP, TAR, reduced glutathione content and sulfhydryl content were significantly reduced, while chemiluminescence, TBA-RS and carbonyl content were significantly enhanced by N-acetylaspartic acid in vitro. The enhancement in TBA-RS promoted by N-acetylaspartic acid was completely prevented by ascorbic acid plus Trolox, and partially prevented by glutathione and dithiothreitol. The acute administration of N-acetylaspartic acid also significantly reduced TRAP and TAR, and significantly enhanced carbonyl content, chemiluminescence and TBA-RS. Our results indicate that N-acetylaspartic acid promotes oxidative stress by stimulating lipid peroxidation, protein oxidation and by decreasing non-enzymatic antioxidant defenses in rat brain. This could be another pathophysiological mechanism involved in Canavan Disease.
Collapse
Affiliation(s)
- Carolina D Pederzolli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yan HD, Ishihara K, Hanaya R, Kurisu K, Serikawa T, Sasa M. Voltage-dependent Calcium Channel Abnormalities in Hippocampal CA3 Neurons of Spontaneously Epileptic Rats. Epilepsia 2007; 48:758-64. [PMID: 17326796 DOI: 10.1111/j.1528-1167.2007.00957.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Hippocampal CA3 neurons of spontaneously epileptic rats (SER; zi/zi, tm/tm), which show both absence-like seizures and tonic convulsions, exhibit a long-lasting depolarization shift with repetitive firing with a single stimulation of mossy fibers. Therefore a whole-cell patch-clamp study using temporarily dissociated hippocampal CA3 neurons from SER was performed to elucidate whether such abnormal excitability was due to abnormalities in voltage-dependent Ca(2+) channels (VDCCs). METHODS Hippocampal CA3 neurons were temporarily dissociated with enzymatic and mechanical treatments. In a voltage-clamp mode with whole-cell recording, depolarizing step pulses were applied to induce Ca(2+) currents in the presence of tetrodotoxin and tetraethylammonium. RESULTS The threshold level of the Ca(2+) current induced by depolarizing pulses was found to be lower in hippocampal CA3 neurons of SER compared with those of control Wistar rats. In addition, the Ca(2+) current peak amplitude was greater, and decay of the current was weaker in CA3 neurons of SER than in those of normal Wistar rats. CONCLUSIONS These findings suggest that enhancements of Ca(2+) influx into hippocampal CA3 neurons due to the easier activation properties of VDCCs, as well as a decrease in decay, are involved in SER epileptic seizures.
Collapse
Affiliation(s)
- Hai-Dun Yan
- Department of Pharmacology, Hiroshima University School of Medicine, Hrioshima, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1030] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Epilepsy is a hetergenous syndrome characterized by recurrently and repeatedly occurring seizures. Although able to inhibit the epileptic seizures, the currently available antiepileptic drugs (AEDs) have no effects on epileptogenesis. Such AEDs should be classified as drugs against ictogenesis, which are transient events in ion and/or receptor-gated channels related with triggering to evoke seizures. Epileptogenesis involves long-term and histological/biochemical/physiological alterations formed in brain structures over a long period, ranging from months to years. This review focuses on the effects of AEDs on epileptogenesis and novel candidates of antiepileptogenic drugs using a genetically defined epilepsy model animal, the spontaneous epileptic rat (SER).
Collapse
|
41
|
Ure J, Baudry M, Perassolo M. Metabotropic glutamate receptors and epilepsy. J Neurol Sci 2006; 247:1-9. [PMID: 16697014 DOI: 10.1016/j.jns.2006.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 03/24/2006] [Accepted: 03/28/2006] [Indexed: 11/26/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) play an important role in the initiation of ictal discharges by participating in the interictal-ictal transition, and may play a crucial role in recruiting normal brain tissue into synchronized discharges, thereby facilitating propagation of seizure activity. In this article we present a review of mGluRs and epilepsy studies. Structural features of mGluRs offer multiple possibilities for synthetic compounds to modulate their activity, and for many reasons these compounds are good candidates for therapeutic applications. Group I mGluRs enhance excitatory transmission as much as groups II and III mGluRs can modulate those effects. Finally, main avenues to induce epileptogenesis are considered: activation of Ca2+ channels and Ca2+/CaMKII cascade, overexpression of AMPA and/or KA receptors, enhanced NMDARs function, activation of protooncogenes leading to a steady epileptogenic state, enhancement of INaP currents, blockade of A and/or M K(+) currents, calcium channelopathies, diminished number of GABARs or functions, and down-regulation of glutamate transporters. Deregulation of mGluR signaling functions including deficits in groups II and III mGluRs or hyperactivation of group I mGluRs may occur in some forms of epilepsy, therefore targeting these mechanisms with specific pharmacological tools could provide new developments for original therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Ure
- Department of Neurology, Borda Hospital, Universidad de Buenos Aires, Ramón Carrillo 375, Buenos Aires, Argentina.
| | | | | |
Collapse
|
42
|
Clark JF, Doepke A, Filosa JA, Wardle RL, Lu A, Meeker TJ, Pyne-Geithman GJ. N-Acetylaspartate as a reservoir for glutamate. Med Hypotheses 2006; 67:506-12. [PMID: 16730130 DOI: 10.1016/j.mehy.2006.02.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 02/27/2006] [Accepted: 02/28/2006] [Indexed: 11/23/2022]
Abstract
N-acetylaspartate (NAA) is an intermediary metabolite that is found in relatively high concentrations in the human brain. More specifically, NAA is so concentrated in the neurons that it generates one of the most visible peaks in nuclear magnetic resonance (NMR) spectra, thus allowing NAA to serve as "a neuronal marker". However, to date there is no generally accepted physiological (primary) role for NAA. Another molecule that is found at similar concentrations in the brain is glutamate. Glutamate is an amino acid and neurotransmitter with numerous functions in the brain. We propose that NAA, a six-carbon amino acid derivative, is converted to glutamate (five carbons) in an energetically favorable set of reactions. This set of reactions starts when aspartoacylase converts the six carbons of NAA to aspartate and acetate, which are subsequently converted to oxaloacetate and acetyl CoA, respectively. Aspartylacylase is found in astrocytes and oligodendrocytes. In the mitochondria, oxaloacetate and acetyl CoA are combined to form citrate. Requiring two steps, the citrate is oxidized in the Kreb's cycle to alpha-ketoglutarate, producing NADH. Finally, alpha-ketoglutarate is readily converted to glutamate by transaminating the alpha-keto to an amine. The resulting glutamate can be used by multiple cells types to provide optimal brain functional and structural needs. Thus, the abundant NAA in neuronal tissue can serve as a large reservoir for replenishing glutamate in times of rapid or dynamic signaling demands and stress. This is beneficial in that proper levels of glutamate serve critical functions for neurons, astrocytes, and oligodendrocytes including their survival. In conclusion, we hypothesize that NAA conversion to glutamate is a logical and favorable use of this highly concentrated metabolite. It is important for normal brain function because of the brain's relatively unique metabolic demands and metabolite fluxes. Knowing that NAA is converted to glutamate will be important for better understanding myriad neurodegenerative diseases such as Canavan's Disease and Multiple Sclerosis, to name a few. Future studies to demonstrate the chemical, metabolic and pathological links between NAA and glutamate will support this hypothesis.
Collapse
Affiliation(s)
- Joseph F Clark
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0536, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Janson CG, Assadi M, Francis J, Bilaniuk L, Shera D, Leone P. Lithium citrate for Canavan disease. Pediatr Neurol 2005; 33:235-43. [PMID: 16194720 DOI: 10.1016/j.pediatrneurol.2005.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/03/2005] [Accepted: 04/04/2005] [Indexed: 11/15/2022]
Abstract
Current evidence suggests that the effects of lithium on metabolic and signaling pathways in the brain may vary depending on the specific clinical condition or disease model. For example, lithium increases levels of cerebral N-acetyl aspartate in patients with bipolar disorder but does not appear to affect N-acetyl aspartate levels in normal human subjects. Conversely, lithium significantly decreases whole-brain levels of N-acetyl aspartate in a rat genetic model of Canavan disease in which cerebral N-acetyl aspartate is chronically elevated. While N-acetyl aspartate is a commonly used surrogate marker for neuronal density and correlates with neuronal viability, grossly elevated whole-brain levels of N-acetyl aspartate in Canavan disease are associated with dysmyelination and mental retardation. This report describes the first clinical application of lithium in a human subject with Canavan disease. Spectroscopic and clinical changes were observed over the time period in which lithium was administered, which reversed during a 2-week wash-out period after withdrawal of lithium. This investigation reports decreased N-acetyl aspartate levels in the brain regions tested and magnetic resonance spectroscopic values that are more characteristic of normal development and myelination, suggesting that a larger, controlled trial of lithium may be warranted as supportive therapy for Canavan disease by decreasing abnormally elevated N-acetyl aspartate.
Collapse
Affiliation(s)
- Christopher G Janson
- Department of Neurosurgery and Molecular Genetics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Camden, USA
| | | | | | | | | | | |
Collapse
|
44
|
Yan HD, Ji-qun C, Ishihara K, Nagayama T, Serikawa T, Sasa M. Separation of Antiepileptogenic and Antiseizure Effects of Levetiracetam in the Spontaneously Epileptic Rat (SER). Epilepsia 2005; 46:1170-7. [PMID: 16060925 DOI: 10.1111/j.1528-1167.2005.35204.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE The long-lasting antiseizure effects of levetiracetam (LEV) have been observed in the spontaneously epileptic rat (SER) that expresses both tonic and absence-like seizures. Furthermore, the antiepileptogenic effects of LEV in addition to antiseizure effects have been reported in the amygdala-kindling model in rats. This suggests that the long-lasting seizure protection of LEV may be at least partly due to its antiepileptogenic effects. Therefore this study aimed to differentiate the antiseizure and potential antiepileptogenic effects of LEV by administering LEV continuously to SERs before the appearance of any seizure expression. METHODS LEV was administered to the SERs at 80 mg/kg/day (i.p.) from postnatal weeks 5 to 8. The period of observation for tonic convulsions was from postnatal week 5 to 13. Absence-like seizures were recorded by using conventional EEG in weeks 12 and 13. RESULTS After age 7-8 weeks, SERs exhibit spontaneous tonic convulsions. Development of tonic convulsions was significantly inhibited in the LEV group, compared with the control group, by the middle of week 9. A significant reduction of tonic convulsions also was observed in the LEV group until week 13 (5 weeks after termination of the administration). In week 12, the absence-like seizures were significantly lower in the LEV group, compared with the control group. CONCLUSIONS This study demonstrates a significant inhibition of seizures after prolonged treatment with LEV before the developmental expression of seizure activity in SERs. This effect is suggested to be due to an antiepileptogenic effect and not an antiseizure effect of LEV, because the half-life of the drug in plasma is short (2-3 h in rats) after single and long-term administration. Furthermore, the inhibition of seizure expression in SERs was still apparent 5 weeks after termination of LEV treatment. These results further suggest that LEV possesses not only antiseizure effects but also antiepileptogenic properties.
Collapse
Affiliation(s)
- Hai-Dun Yan
- Department of Pharmacology, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Klugmann M, Leichtlein CB, Symes CW, Serikawa T, Young D, During MJ. Restoration of aspartoacylase activity in CNS neurons does not ameliorate motor deficits and demyelination in a model of Canavan disease. Mol Ther 2005; 11:745-53. [PMID: 15851013 DOI: 10.1016/j.ymthe.2005.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 01/06/2005] [Indexed: 10/25/2022] Open
Abstract
Canavan disease is an early onset leukodystrophy associated with psychomotor retardation, seizures, and premature death. This disorder is caused by mutations in the gene encoding the enzyme aspartoacylase (ASPA). Normally, ASPA is enriched in oligodendrocytes and ASPA deficiency results in elevated levels of its substrate molecule, N-acetylaspartate (NAA), brain edema, and dysmyelination. Using adeno-associated virus, we permanently expressed ASPA in CNS neurons of the tremor rat, a genetic model of Canavan disease, and examined the efficacy of the treatment by monitoring NAA metabolism, myelination, motor behavior, and seizures. Assessment of ASPA protein and enzyme activity in whole brain hemispheres showed restoration to normal levels as long as 6 months after treatment. This finding correlated with a reduction of NAA levels, along with a rescue of the seizure phenotype. However, gross brain pathology, such as dilated ventricles and spongiform vacuolization, was unchanged. Moreover, hypomyelination and motor deficits were not resolved by ASPA gene transfer. Our data suggest that NAA-mediated neuronal hyperexcitation but not oligodendrocyte dysfunction can be compensated for by neuronal ASPA expression.
Collapse
Affiliation(s)
- Matthias Klugmann
- Laboratory of Functional Genomics and Translational Neuroscience, Department of Molecular Medicine and Pathology, University of Auckland School of Medicine, 85 Park Road, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
46
|
Millan MJ. N-Methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology (Berl) 2005; 179:30-53. [PMID: 15761697 DOI: 10.1007/s00213-005-2199-1] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 02/04/2005] [Indexed: 01/23/2023]
Abstract
RATIONALE Activation of "co-agonist" N-methyl-D-aspartate (NMDA) and Glycine(B) sites is mandatory for the operation of NMDA receptors, which play an important role in the control of mood, cognition and motor function. OBJECTIVES This article outlines the complex regulation of activity at Glycine(B)/NMDA receptors by multiple classes of endogenous ligand. It also summarizes the evidence that a hypoactivity of Glycine(B)/NMDA receptors contributes to the pathogenesis of psychotic states, and that drugs which enhance activity at these sites may possess antipsychotic properties. RESULTS Polymorphisms in several genes known to interact with NMDA receptors are related to an altered risk for schizophrenia, and psychotic patients display changes in levels of mRNA encoding NMDA receptors, including the NR1 subunit on which Glycine(B) sites are located. Schizophrenia is also associated with an overall decrease in activity of endogenous agonists at Glycine(B)/NMDA sites, whereas levels of endogenous antagonists are elevated. NMDA receptor "open channel blockers," such as phencyclidine, are psychotomimetic in man and in rodents, and antipsychotic agents attenuate certain of their effects. Moreover, mice with genetically invalidated Glycine(B)/NMDA receptors reveal similar changes in behaviour. Finally, in initial clinical studies, Glycine(B) agonists and inhibitors of glycine reuptake have been found to potentiate the ability of "conventional" antipsychotics to improve negative and, albeit modestly, cognitive and positive symptoms. In contrast, therapeutic effects of clozapine are not reinforced, likely since clozapine itself enhances activity at NMDA receptors. CONCLUSIONS Reduced activity at NMDA receptors is implicated in the aetiology of schizophrenia. Correspondingly, drugs that (directly or indirectly) increase activity at Glycine(B) sites may be of use as adjuncts to other classes of antipsychotic agent. However, there is an urgent need for broader clinical evaluation of this possibility, and, to date, there is no evidence that stimulation of Glycine(B) sites alone improves psychotic states.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
47
|
Tranberg M, Stridh MH, Guy Y, Jilderos B, Wigström H, Weber SG, Sandberg M. NMDA-receptor mediated efflux of N-acetylaspartate: physiological and/or pathological importance? Neurochem Int 2004; 45:1195-204. [PMID: 15380629 DOI: 10.1016/j.neuint.2004.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
N-Acetylaspartate (NAA) is a largely neuron specific dianionic amino acid present in high concentration in vertebrate brain. Many fundamental questions concerning N-acetylaspartate in brain remain unanswered. One such issue is the predominantly neuronal synthesis and largely glial catabolism which implies the existence of a regulated efflux from neurons. Here we show that transient (5 min) NMDA-receptor activation (60 microM) induces a long lasting Ca2+ -dependent efflux of N-acetylaspartate from organotypic slices of rat hippocampus. The NMDA-receptor stimulated efflux was unaffected by hyper-osmotic conditions (120 mM sucrose) and no efflux of N-acetylaspartate was evoked by high K+ -depolarization (50 mM) or kainate (300 microM). These results indicate that the efflux induced by NMDA is not related directly to either cell swelling or depolarization but is coupled to Ca2+ -influx via the NMDA-receptor. The efflux of N-acetylaspartate persisted at least 20 min after the omission of NMDA, similar to the efflux of the organic anions glutathione and phosphoethanolamine. The efflux of taurine and hypotaurine was also stimulated by NMDA but returned more quickly to basal levels. The NMDA-receptor stimulated efflux of N-acetylaspartate, glutathione, phosphoethanolamine, taurine and hypotaurine correlated with delayed nerve cell death measured 24 h after the transient NMDA-receptor stimulation. However, exogenous administration of high concentrations of N-acetylaspartate to the culture medium was non-toxic. The results suggest that Ca2+ -influx via the NMDA-receptor regulates the efflux of N-acetylaspartate from neurons which may have both physiological and pathological importance.
Collapse
Affiliation(s)
- Mattias Tranberg
- Department of Medical Biophysics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|