1
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Yin Q, Zhang X, Liao S, Huang X, Wan CC, Wang Y. Potential anticoagulant of traditional chinese medicine and novel targets for anticoagulant drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154880. [PMID: 37267694 DOI: 10.1016/j.phymed.2023.154880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Anticoagulants are the main drugs used for the prevention and treatment of thrombosis. Currently, anticoagulant drugs are primarily multitarget heparin drugs, single-target FXa inhibitors and FIIa inhibitors. In addition, some traditional Chinese drugs also have anticoagulant effects, but they are not the main direction of treatment at present. But the anticoagulant drugs mentioned above, all have a common side effect is bleeding. Many other anticoagulation targets are under investigation. With further exploration of coagulation mechanism, how to further determine new anticoagulant targets and how to make traditional Chinese medicine play anticoagulant role have become a new field of exploration. PURPOSE The purpose of the study was to summarize the recent research progress on coagulation mechanisms, new anticoagulant targets and traditional Chinese medicine. METHODS A comprehensive literature search was conducted using four electronic databases, including PubMed, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the study to 28 Feb 2023. Key words used in the literature search were "anticoagulation", "anticoagulant targets", "new targets", "coagulation mechanisms", "potential anticoagulant", "herb medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "blood coagulation factor", keywords are linked with AND/OR. Recent findings on coagulation mechanisms, potential anticoagulant targets and traditional Chinese medicine were studied. RESULTS The active components extracted from the Chinese medicinal herbs, Salvia miltiorrhiza, Chuanxiong rhizoma, safflower and Panax notoginseng have obvious anticoagulant effects and can be used as potential anticoagulant drugs, but the risk of bleeding is unclear. TF/FVIIa, FVIII, FIX, FXI, FXII, and FXIII have all been evaluated as targets in animal studies or clinical trials. FIX and FXI are the most studied anticoagulant targets, but FXI inhibitors have shown stronger advantages. CONCLUSION This review of potential anticoagulants provides a comprehensive resource. Literature analysis suggests that FXI inhibitors can be used as potential anticoagulant candidates. In addition, we should not ignore the anticoagulant effect of traditional Chinese medicine, and look forward to more research and the emergence of new drugs.
Collapse
Affiliation(s)
- Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Suqing Liao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Jiangxi Key Laboratory for Post-Harvest Technology and Nondestructive Testing of Fruits & Vegetables, Nanchang 330045, PR. China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, PR. China.
| |
Collapse
|
3
|
Nardi MA. Hemophilia A: Emicizumab monitoring and impact on coagulation testing. Adv Clin Chem 2023; 113:273-315. [PMID: 36858648 DOI: 10.1016/bs.acc.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hemophilia A is an X-linked recessive bleeding disorder characterized by absent or ineffective coagulation factor VIII, a condition that could result in a severe and potentially life-threatening bleed. Although the current standard of care involves prophylactic replacement therapy of factor VIII, the development of neutralizing anti-factor VIII alloantibody inhibitors often complicates such therapeutic treatment. Emicizumab (Hemlibra®), a novel recombinant therapeutic agent for patients with hemophilia A, is a humanized asymmetric bispecific IgG4 monoclonal antibody designed to mimic activated factor VIII by bridging factor IXa and factor X thus effecting hemostasis. Importantly, this drug eliminates the need for factor VIII and complications associated with inhibitor generation. Emicizumab has been approved for use in several countries including the United States and Japan for prophylaxis of bleeding episodes in hemophilia A with and without FVIII inhibitors. Therapy is also approved in the European Union for routine prophylaxis of bleeds in hemophilia A with inhibitors or severe hemophilia A without inhibitors. Unfortunately, emicizumab therapy presents unique challenges for routine and specialty coagulation tests currently used to monitor hemophilia A. In this review, hemophilia A is presented, the biochemistry of factor VIII is discussed, and the impact of the therapeutic agent emicizumab is highlighted.
Collapse
Affiliation(s)
- Michael A Nardi
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, United States; Department of Pathology, New York University Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
4
|
Mast AE, Ruf W. Regulation of coagulation by tissue factor pathway inhibitor: Implications for hemophilia therapy. J Thromb Haemost 2022; 20:1290-1300. [PMID: 35279938 PMCID: PMC9314982 DOI: 10.1111/jth.15697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein that primarily dampens the initiation phase of coagulation before thrombin is generated. As such, TFPI's actions are localized to cells expressing TF and to sites of injury, where it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα and TFPIβ localize to different sites within and surrounding the vasculature. Both forms directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF-FVIIa via their Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes localized to distinct cellular microenvironments and engaging additional cell surface receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, also serves an inhibitor of FXa independent of the TF initiation complex and prevents the formation of an active prothrombinase. This regulation of thrombin generation in the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
Collapse
Affiliation(s)
- Alan E. Mast
- Versiti Blood Research InstituteMilwaukeeWisconsinUSA
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
- Department of Immunology and MicrobiologyScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
5
|
Chatterjee M, Meeks S, Novakovic VA, Gilbert GE. Discordance between platelet-supported and vesicle-supported factor VIII activity in the presence of anti-C2 domain inhibitory antibodies. J Thromb Haemost 2020; 18:3184-3193. [PMID: 32558078 DOI: 10.1111/jth.14961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND We recently reported that factor VIII (FVIII) binds to a macromolecular complex including fibrin on thrombin-stimulated platelets and that two antibodies against FVIII diminish platelet-supported FVIII activity more than vesicle-supported activity. The C2 domain of FVIII is known to bind to phospholipid membrane and also binds fibrin. OBJECTIVES We asked whether the degree of inhibition by anti-C2 antibodies would show differences between platelet-supported and the standard activated partial thromboplastin time (aPTT) assay. METHODS We evaluated the inhibition by a well-defined panel of monoclonal anti-C2 domain antibodies encompassing the major epitopes of the C2 domain. Activity was measured in an activated platelet time (aPT) assay containing fresh, density gradient-purified human platelets. RESULTS The aPT exhibited a log-linear relationship between FVIII and time to fibrin formation over a 4-log range, encompassing 0.01% to 100% plasma FVIII. Nine of 10 mAbs inhibited 89% to 96% of FVIII activity, whereas mAb F85 did not. There was no correlation between the degree of inhibition in the aPTT-based assay and the platelet assay. In particular, four mAbs did not inhibit the aPTT assay, yet inhibited 90% of platelet-based activity. Residual FVIII activity in purified-protein assays, relying on platelets, correlated with the aPT assay. CONCLUSIONS The degree of FVIII impairment by some inhibitor antibodies is substantially different on platelet membranes vs synthetic vesicles. Thus, current inhibitor assays may underestimate the frequency of significant inhibitors, and a platelet-based assay may more accurately assess bleeding risk.
Collapse
Affiliation(s)
- Madhumouli Chatterjee
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Shannon Meeks
- Department of Pediatrics, Children's Healthcare Atlanta/Aflac Cancer and Blood Disorder Center, Emory University, Atlanta, Georgia, USA
| | - Valerie A Novakovic
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Gary E Gilbert
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Vadivel K, Schreuder HA, Liesum A, Schmidt AE, Goldsmith G, Bajaj SP. Sodium-site in serine protease domain of human coagulation factor IXa: evidence from the crystal structure and molecular dynamics simulations study. J Thromb Haemost 2019; 17:574-584. [PMID: 30725510 PMCID: PMC6443445 DOI: 10.1111/jth.14401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023]
Abstract
Essentials Consensus sequence and biochemical data suggest a Na+ -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na+ -site not observed earlier. Molecular dynamics simulations data support that Na+ ± Ca2+ promote FIXa protease domain stability. Sulfate ions found in the protease domain mimic heparin sulfate binding mode in FIXa. SUMMARY: Background Activated coagulation factor IX (FIXa) consists of a γ-carboxyglutamic acid domain, two epidermal growth factor-like (EGF) domains, and a C-terminal protease domain. Consensus sequence and biochemical data support the existence of a Na+ -site in the FIXa protease domain. However, soaking experiments or crystals grown in high concentration of ammonium sulfate did not reveal a Na+ -site in wild-type or mutant FIXa EGF2/protease domain structure. Objective Determine the structure of the FIXa EGF2/protease domain in the presence of Na+ ; perform molecular dynamics (MD) simulations to explore the role of Na+ in stabilizing FIXa structure. Methods Crystallography, MD simulations, and modeling heparin binding to FIXa. Results Crystal structure at 1.37-Å resolution revealed that Na+ is coordinated to carbonyl groups of residues 184A, 185, 221A, and 224 in the FIXa protease domain. The Na+ -site in FIXa is similar to that of FXa and is linked to the Asp189 S1-site. In MD simulations, Na+ reduced fluctuations in residues 217-225 (Na+ -loop) and 70-80 (Ca2+ -loop), whereas Ca2+ reduced fluctuations only in residues of the Ca2+ -loop. Ca2+ and Na+ together reduced fluctuations in residues of the Ca2+ -loop and Na+ -loop (residues 70-80, 183-194, and 217-225). Moreover, we observed four sulfate ions that make salt bridges with FIXa protease domain Arg/Lys residues, which have been implicated in heparin binding. Based upon locations of the sulfate ions, we modeled heparin binding to FIXa, which is similar to the heparin binding in thrombin. Conclusions The FIXa Na+ -site in association with Ca2+ contributes to stabilization of the FIXa protease domain. The heparin binding mode in FIXa is similar to that in thrombin.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | | | - Alexander Liesum
- Sanofi-Aventis Pharma Deutschland GmbH, Frankfurt am Main, Germany
| | - Amy E Schmidt
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | | | - S Paul Bajaj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Dimitropoulos G, Rahim SMZ, Moss AS, Lip GYH. New anticoagulants for venous thromboembolism and atrial fibrillation: what the future holds. Expert Opin Investig Drugs 2017; 27:71-86. [DOI: 10.1080/13543784.2018.1416090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gerasimos Dimitropoulos
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Cardiology Department, City Hospital, Birmingham, UK
| | - S. M. Zubair Rahim
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Cardiology Department, City Hospital, Birmingham, UK
| | - Alexandra Sophie Moss
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Cardiology Department, City Hospital, Birmingham, UK
| | - Gregory Y. H. Lip
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Devabhakthuni S, Yoon CH, Pincus KJ. Review of the Target-Specific Oral Anticoagulants in Development for the Treatment and Prevention of Venous Thromboembolism. J Pharm Pract 2016; 29:392-405. [DOI: 10.1177/0897190014568388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anticoagulation therapy is often indicated for the treatment and prevention of venous thromboembolism (VTE). Despite advances in anticoagulant management with parenteral anticoagulants and vitamin K antagonists, limitations to their use still exists, leading to investigation of alternative anticoagulants such as factor Xa inhibitors and direct thrombin inhibitors. To date, 3 target-specific oral anticoagulants (TSOACs) are Food and Drug Administration approved; several other agents are currently in development to optimize VTE management and minimize bleeding risks. The objective of this systematic review article is to provide clinicians an overview of the clinical evidence on the investigational TSOACs for the treatment and prevention of VTE. Of the agents in development, edoxaban holds the most promise due to robust data supporting its clinical benefit with a similar bleeding risk to currently approved agents. Clinicians should understand the TSOACs under investigation, since differences in pharmacokinetics and pharmacodynamics may influence clinical decision making and agent selection for management of VTE. Currently, no direct comparisons between TSOACs have been conducted. Agents under investigation have yet to overcome the major limitations of the currently existing TSOACs. Further studies are necessary to clarify which TSOAC agent is best for management of VTE in clinical practice.
Collapse
Affiliation(s)
- Sandeep Devabhakthuni
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Connie H. Yoon
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Rockville, MD, USA
| | - Kathleen J. Pincus
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
9
|
Livaja Koshiar R, Somajo S, Norström E, Dahlbäck B. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation. PLoS One 2014; 9:e104200. [PMID: 25136857 PMCID: PMC4138094 DOI: 10.1371/journal.pone.0104200] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that prevents binding of protein S to microparticles and also attenuated by anti-TFPI antibodies. In the presence of erythrocyte-derived microparticles, activated protein C inhibited tenase and prothrombinase by degrading the cofactors FVIIIa and FVa, respectively. Protein S stimulated the Arg306-cleavage in FVa, whereas efficient inhibition of FVIIIa depended on the synergistic cofactor activity of protein S and FV. In summary, the erythrocyte-derived microparticle surface is suitable for the anticoagulant reactions of the protein C system, which may be important to balance the initiation and propagation of coagulation in vivo.
Collapse
Affiliation(s)
- Ruzica Livaja Koshiar
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sofia Somajo
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Eva Norström
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Björn Dahlbäck
- Department of Laboratory Medicine, Division of Clinical Chemistry, Lund University, Skåne University Hospital, Malmö, Sweden
- * E-mail:
| |
Collapse
|
10
|
Protein S and factor V in regulation of coagulation on platelet microparticles by activated protein C. Thromb Res 2014; 134:144-52. [PMID: 24835672 DOI: 10.1016/j.thromres.2014.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Platelets are the main source of microparticles in plasma and the concentration of microparticles is increased in many diseases. As microparticles expose negatively charged phospholipids, they can bind and assemble the procoagulant enzyme-cofactor complexes. Our aim was to elucidate possible regulation of these complexes on microparticles by the anticoagulant protein C system. MATERIALS AND METHODS Platelets were activated with thrombin ± collagen or the calcium ionophore A23187 ± thrombin to generate microparticles. The microparticles were analyzed using flow cytometry and functional coagulation assays to characterize parameters with importance for the activated protein C system. RESULTS Activation with A23187+thrombin was most efficient, fully converting the platelets to microparticle-like vesicles, characterized by high lactadherin and protein S binding capacity. Suppression of thrombin generation by activated protein C in plasma spiked with these microparticles was dependent on the presence of plasma protein S. Experiments with purified components showed that activated protein C inhibited both factor Va and factor VIIIa on the microparticle surface. Inhibition of factor Va was stimulated by, but not fully dependent on, the presence of protein S. In the factor VIIIa-degradation, activated protein C was dependent on the addition of protein S, and exogenous factor V further increased the efficiency. CONCLUSIONS Protein S is crucial for activated protein C-mediated inhibition of thrombin generation on platelet-derived microparticles in plasma. Moreover, protein S and factor V are synergistic cofactors in the inhibition of factor VIIIa. The results demonstrate that the activated protein C system has the capacity to counterbalance the procoagulant ability of microparticles.
Collapse
|
11
|
|
12
|
Berny MA, Munnix ICA, Auger JM, Schols SEM, Cosemans JMEM, Panizzi P, Bock PE, Watson SP, McCarty OJT, Heemskerk JWM. Spatial distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear. PLoS One 2010; 5:e10415. [PMID: 20454680 PMCID: PMC2861630 DOI: 10.1371/journal.pone.0010415] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/31/2010] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear. METHODOLOGY/PRINCIPAL FINDINGS Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca(2+) signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl(3). Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen). CONCLUSIONS/SIGNIFICANCE FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).
Collapse
Affiliation(s)
- Michelle A. Berny
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Imke C. A. Munnix
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jocelyn M. Auger
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saskia E. M. Schols
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | | | - Peter Panizzi
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Johan W. M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Eriksson BI, Dahl OE, Lassen MR, Ward DP, Rothlein R, Davis G, Turpie AGG. Partial factor IXa inhibition with TTP889 for prevention of venous thromboembolism: an exploratory study. J Thromb Haemost 2008; 6:457-63. [PMID: 18088349 DOI: 10.1111/j.1538-7836.2007.02872.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Inhibitors of factor (F) IXa show potent antithrombotic activity with a low risk of bleeding in preclinical models. We investigated the anticoagulant potential of oral TTP889, a small molecule that inhibits up to 90% of FIXa activity at therapeutic doses, using a clinical model of extended prophylaxis in hip fracture surgery (HFS). METHODS In this multicenter, randomized, double-blind study, 261 patients received oral TTP889 (300 mg once daily) or placebo starting 6-10 days after HFS, and standard thromboprophylaxis for 5-9 days. Treatment was continued for 3 weeks and all patients then underwent mandatory bilateral venography. The primary efficacy outcome was venous thromboembolism (VTE; venographic or symptomatic deep vein thrombosis or pulmonary embolism) during treatment, and it was evaluated centrally by an independent adjudication panel. The main safety outcome was bleeding (major, clinically relevant non-major, and minor events). RESULTS Two hundred and twelve patients with an evaluable venogram were included in the efficacy analysis. The primary efficacy outcome occurred in 32.1% (35/109) of patients who had been allocated TTP889, and 28.2% (29/103) of patients on placebo (P = 0.58). There were no major bleeding events, and only two clinically relevant non-major bleeding events with TTP889. CONCLUSION Partial FIXa inhibition with TTP889 300 mg daily was not effective for extended prevention of VTE after standard prophylaxis for up to 9 days. Coupled with the low incidence of bleeding episodes, this suggests a lack of antithrombotic potential. Further investigation of TTP889 in different clinical settings is needed. (Clinical trial registration information URL: http://www.clinicaltrials.gov. Unique identifier: NCT00119457).
Collapse
Affiliation(s)
- B I Eriksson
- Sahlgrenska University Hospital/Ostra, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
SCHEIFLINGER F, DOCKAL M, ROSING J, KERSCHBAUMER RJ. Enhancement of the enzymatic activity of activated coagulation factor IX by anti-factor IX antibodies. J Thromb Haemost 2008. [DOI: 10.1111/j.1538-7836.2008.02868.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Mackman N, Tilley RE, Key NS. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2007; 27:1687-93. [PMID: 17556654 DOI: 10.1161/atvbaha.107.141911] [Citation(s) in RCA: 452] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hemostasis requires both platelets and the coagulation system. At sites of vessel injury, bleeding is minimized by the formation of a hemostatic plug consisting of platelets and fibrin. The traditional view of the regulation of blood coagulation is that the initiation phase is triggered by the extrinsic pathway, whereas amplification requires the intrinsic pathway. The extrinsic pathway consists of the transmembrane receptor tissue factor (TF) and plasma factor VII/VIIa (FVII/FVIIa), and the intrinsic pathway consists of plasma FXI, FIX, and FVIII. Under physiological conditions, TF is constitutively expressed by adventitial cells surrounding blood vessels and initiates clotting. In addition so-called blood-borne TF in the form of cell-derived microparticles (MPs) and TF expression within platelets suggests that TF may play a role in the amplification phase of the coagulation cascade. Under pathologic conditions, TF is expressed by monocytes, neutrophils, endothelial cells, and platelets, which results in an elevation of the levels of circulating TF-positive MPs. TF expression within the vasculature likely contributes to thrombosis in a variety of diseases. Understanding how the extrinsic pathway of blood coagulation contributes to hemostasis and thrombosis may lead to the development of safe and effective hemostatic agents and antithrombotic drugs.
Collapse
Affiliation(s)
- Nigel Mackman
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Code SP30-3040, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Panteleev MA, Ananyeva NM, Greco NJ, Ataullakhanov FI, Saenko EL. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J Thromb Haemost 2005; 3:2545-53. [PMID: 16241952 DOI: 10.1111/j.1538-7836.2005.01616.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Binding of fluorescein-labeled coagulation factors IXa, VIII, X, and allophycocyanin-labeled annexin V to thrombin-activated platelets was studied using flow cytometry. Upon activation, two platelet subpopulations were detected, which differed by 1-2 orders of magnitude in the binding of the coagulation factors and by 2-3 orders of magnitude in the binding of annexin V. The percentage of the high-binding platelets increased dose dependently of thrombin concentration. At 100 nm of thrombin, platelets with elevated binding capability constituted approximately 4% of total platelets and were responsible for the binding of approximately 50% of the total bound factor. Binding of factors to the high-binding subpopulation was calcium-dependent and specific as evidenced by experiments in the presence of excess unlabeled factor. The percentage of the high-binding platelets was not affected by echistatin, a potent aggregation inhibitor, confirming that the high-binding platelets were not platelet aggregates. Despite the difference in the coagulation factors binding, the subpopulations were indistinguishable by the expression of general platelet marker CD42b and activation markers PAC1 (an epitope of glycoprotein IIb/IIIa) and CD62P (P-selectin). Dual-labeling binding studies involving coagulation factors (IXa, VIII, or X) and annexin V demonstrated that the high-binding platelet subpopulation was identical for all coagulation factors and for annexin V. The high-binding subpopulation had lower mean forward and side scatters compared with the low-binding subpopulation ( approximately 80% and approximately 60%, respectively). In its turn, the high-binding subpopulation was not homogeneous and included two subpopulations with different scatter values. We conclude that activation by thrombin induces the formation of two distinct subpopulations of platelets different in their binding of the components of the intrinsic fX-activating complex, which may have certain physiological or pathological significance.
Collapse
Affiliation(s)
- M A Panteleev
- National Research Center for Hematology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
18
|
Schmidt AE, Stewart JE, Mathur A, Krishnaswamy S, Bajaj SP. Na+ site in blood coagulation factor IXa: effect on catalysis and factor VIIIa binding. J Mol Biol 2005; 350:78-91. [PMID: 15913649 DOI: 10.1016/j.jmb.2005.04.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/20/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.
Collapse
Affiliation(s)
- Amy E Schmidt
- UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE Previous work has shown that platelets stimulated with the combination of thrombin and convulxin, a glycoprotein VI agonist, develop 2 populations with different levels of alpha-granule factor V bound to the platelet surface. To evaluate whether this phenomenon is restricted to alpha-granule components or is a feature that can be generalized to other coagulation factors, we studied the binding of factors V, VIII, IX, and X on the surface of platelets stimulated by convulxin and thrombin. METHODS AND RESULTS The relative amount of factors V, VIII, IX, and X on the surface of platelets stimulated with thrombin or convulxin plus thrombin was measured using flow cytometry. Simultaneous measurements of factor Xa and thrombin generation were obtained and correlated with the binding of coagulation factors on the platelet surface. The binding of factors V, VIII, IX, and X all increased on a subpopulation of platelets when stimulated with the combined agonists. The development of this platelet subpopulation is dependent on convulxin concentration and correlates with increases in factor Xa and thrombin generation. CONCLUSIONS The development of increased coagulation factor binding to a subpopulation of platelets is not limited to alpha-granule components. Convulxin-induced increases in thrombin generation are regulated by the proportion of platelets with increased coagulation factor binding.
Collapse
|