1
|
Sykes M. Immune monitoring of transplant patients in transient mixed chimerism tolerance trials. Hum Immunol 2018; 79:334-342. [PMID: 29289741 PMCID: PMC5924718 DOI: 10.1016/j.humimm.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
This review focuses on mechanistic studies performed in recipients of non-myeloablative bone marrow transplant regimens developed at Massachusetts General Hospital in HLA-identical and HLA-mismatched haploidentical combinations, initially as a platform for treatment of hematologic malignancies with immunotherapy in the form of donor leukocyte infusions, and later in combination with donor kidney transplantation for the induction of allograft tolerance. In patients with permanent mixed chimerism, central deletion may be a major mechanism of long-term tolerance. In patients in whom donor chimerism is only transient, the kidney itself plays a significant role in maintaining long-term tolerance. A high throughput sequencing approach to identifying and tracking a significant portion of the alloreactive T cell receptor repertoire has demonstrated biological significance in transplant patients and has been useful in pointing to clonal deletion as a long-term tolerance mechanism in recipients of HLA-mismatched combined kidney and bone marrow transplants with only transient chimerism.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, NY, USA; Department of Medicine, Columbia University Medical Center, NY, USA; Department of Microbiology & Immunology, Columbia University Medical Center, NY, USA; Department of Surgery, Columbia University Medical Center, NY, USA.
| |
Collapse
|
2
|
Abstract
BACKGROUND Nonmyeloablative conditioning followed by donor bone marrow infusion (BMI) to induce tolerance has not been robustly tested in liver transplantation (LT) and may be unsafe at the time of LT. We hypothesized T cell-depleted BMI is effective in inducing tolerance when delayed after LT, resulting in potentially safer future clinical applications. METHODS Nonimmunosuppressed syngeneic (Lewis to Lewis) and allogeneic (ACI to Lewis) rat LT transplants were initially performed as controls. Three experimental allogeneic LT groups were treated with tacrolimus (TAC) for 3 to 4 weeks and then underwent: (1) TAC withdrawal alone; (2) nonmyeloablative conditioning (anti-αβTCR mAb + total body irradiation [300 cGy]) followed by TAC withdrawal; (3) Nonmyeloablative conditioning + donor BMI (100 × 10 T cell-depleted bone marrow cells) followed by TAC withdrawal. RESULTS All group 1 recipients developed chronic rejection. Group 2 had long-term survival but impaired liver function and high donor-specific antibody (DSA) levels. In contrast, group 3 (conditioning + BMI) had long-term TAC-free survival with preserved liver function and histology, high mixed chimerism and blood/liver/spleen CD4 + CD25 + Foxp3+ regulatory T cells, and low DSA titers, similar to syngeneic grafts. While donor-specific tolerance was observed post-BMI, graft-versus-host disease was not. CONCLUSIONS These results support that donor-specific tolerance can be achieved with BMI even when delayed after LT and this tolerance correlates with increased mixed chimerism, regulatory T cell generation, and diminished DSA.
Collapse
|
3
|
Lee KW, Choi B, Kim YM, Cho CW, Park H, Moon JI, Choi GS, Park JB, Kim SJ. Major Histocompatibilty Complex-Restricted Adaptive Immune Responses to CT26 Colon Cancer Cell Line in Mixed Allogeneic Chimera. Transplant Proc 2017; 49:1153-1159. [PMID: 28583547 DOI: 10.1016/j.transproceed.2017.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although the induction of mixed allogeneic chimera shows promising clinical tolerance results in organ transplantation, its clinical relevance as an anti-cancer therapy is yet unknown. We introduced a mixed allogenic chimera setting with the use of a murine colon cancer cell line, CT26, by performing double bone marrow transplantation. METHODS We analyzed donor- and recipient-restricted anti-cancer T-cell responses, and phenotypes of subpopulations of T cells. The protocol involves challenging 1 × 105 cells of CT26 cells intra-hepatically on day 50 after bone marrow transplantation, and, by use of CT26 lysates and an H-2Ld-restricted AH1 pentamer, flow cytometric analysis was performed to detect the generation of cancer-specific CD4+ and CD8+ T cells at various time points. RESULTS We found that immunocompetence against tumors depends heavily on cancer-specific CD8+ T-cell responses in a major histocompatibility complex-restricted manner; the evidence was further supported by the increase of interferon-γ-secreting CD4+ T cells. Moreover, we demonstrated that during the effector immune response to CT26 cancer challenge, there was a presence of central memory cells (CD62LhiCCR7+) as well as effector memory cells (CD62LloCCR7-). Moreover, mixed allogeneic chimeras (BALB/c to C56BL/6 or vice versa) showed similar or heightened immune responses to CT26 cells compared with that of wild-type mice. CONCLUSIONS Our results suggest that the responses of primary immunocompetency and of pre-existing memory T cells against allogeneic cancer are sustained and preserved long-term in a mixed allogeneic chimeric environment.
Collapse
Affiliation(s)
- K W Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - B Choi
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y M Kim
- Laboratory of Immunology and Infectious Disease, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - C W Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J I Moon
- Department of Surgery, Konyang University Hospital, Daejeon, Korea
| | - G-S Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - J B Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Lin CH, Wang YL, Anggelia MR, Chuang WY, Cheng HY, Mao Q, Zelken JA, Lin CH, Zheng XX, Lee WPA, Brandacher G. Combined Anti-CD154/CTLA4Ig Costimulation Blockade-Based Therapy Induces Donor-Specific Tolerance to Vascularized Osteomyocutaneous Allografts. Am J Transplant 2016; 16:2030-41. [PMID: 26914847 DOI: 10.1111/ajt.13694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/06/2015] [Accepted: 12/20/2015] [Indexed: 01/25/2023]
Abstract
Tolerance induction by means of costimulation blockade has been successfully applied in solid organ transplantation; however, its efficacy in vascularized composite allotransplantation, containing a vascularized bone marrow component and thus a constant source of donor-derived stem cells, remains poorly explored. In this study, osteomyocutaneous allografts (alloOMCs) from Balb/c (H2(d) ) mice were transplanted into C57BL/6 (H2(b) ) recipients. Immunosuppression consisted of 1 mg anti-CD154 on day 0, 0.5 mg CTLA4Ig on day 2 and rapamycin (RPM; 3 mg/kg per day from days 0-7, then every other day for 3 weeks). Long-term allograft survival, donor-specific tolerance and donor-recipient cell trafficking were evaluated. Treatment with costimulation blockade plus RPM resulted in long-term graft survival (>120 days) of alloOMC in 12 of 15 recipients compared with untreated controls (median survival time [MST] ≈10.2 ± 0.8 days), RPM alone (MST ≈33 ± 5.5 days) and costimulation blockade alone (MST ≈45.8 ± 7.1 days). Donor-specific hyporesponsiveness in recipients with viable grafts was demonstrated in vitro. Evidence of donor-specific tolerance was further assessed in vivo by secondary donor-specific skin graft survival and third-party graft rejection. A significant increase of Foxp3(+) regulatory T cells was evident in tolerant animals. Donor cells populated peripheral blood, thymus, and both donor and recipient bone marrow. Consequently, combined anti-CD154/CTLA4Ig costimulation blockade-based therapy induces donor-specific tolerance in a stringent murine alloOMC transplant model.
Collapse
Affiliation(s)
- C H Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Y L Wang
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - M R Anggelia
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - W Y Chuang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung Medical College and Chang Gung University, Taoyuan, Taiwan
| | - H Y Cheng
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Q Mao
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J A Zelken
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - C H Lin
- Center for Vascularized Composite Allotransplantation, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, and School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - X X Zheng
- Research Center of Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - W P A Lee
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - G Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Curr Opin Organ Transplant 2015; 20:49-56. [PMID: 25563992 DOI: 10.1097/mot.0000000000000159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The present review updates the current status of basic, preclinical, and clinical research on donor hematopoietic stem cell infusion for allograft tolerance induction. RECENT FINDINGS Recent basic studies in mice provide evidence of significant involvement of both central deletional and peripheral regulatory mechanisms in induction and maintenance of allograft tolerance effected through a mixed chimerism approach with donor hematopoietic stem cell infusion. The presence of heterologous memory T cells in primates hampers the induction of persistent chimerism. Durable mixed chimerism, however, now has been recently induced in inbred major histocompatibility complex-mismatched swine, resulting in tolerance of vascularized composite tissue allografts. In clinical transplantation, allograft tolerance has been achieved in human leukocyte antigen-mismatched kidney transplantation after the induction of transient mixed chimerism or persistent full donor chimerism. SUMMARY Tolerance induction in clinical kidney transplantation has been achieved by donor hematopoietic stem cell infusion. Improving the consistency and safety of tolerance induction and extending successful protocols to other organs, and to organs from deceased donors, are critical next steps to bringing tolerance to a wider range of clinical applications.
Collapse
|
6
|
Takeuchi Y, Takeuchi E, Ishida T, Onodera M, Nakauchi H, Otsu M. Curative haploidentical BMT in a murine model of X-linked chronic granulomatous disease. Int J Hematol 2015; 102:111-20. [PMID: 25921405 DOI: 10.1007/s12185-015-1799-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by defective microbial killing in phagocytes. Long-term prognosis for CGD patients is generally poor, highlighting the need to develop minimally toxic, curative therapeutic approaches. We here describe the establishment of a mouse model in which X-linked CGD can be cured by allogeneic bone marrow transplantation. Using a combination of non-myeloablative-dose total body irradiation and a single injection of anti-CD40 ligand monoclonal antibody, transplantation of whole bone marrow cells achieved long-lasting mixed chimerism in X-linked CGD mice in a haploidentical transplantation setting. Stable mixed chimerism was maintained for up to 1 year even at a low range (<20 % donor cells), indicating induction of donor-specific tolerance. The regimen induced mild myelosuppression without severe acute complications. Stable chimerism was therapeutic, as it suppressed cutaneous granuloma formation in an in vivo test suited for evaluation of treatment efficacy in murine CGD models. These results warrant future development of a simplified allogeneic hematopoietic cell transplantation regimen that would benefit CGD patients by allowing the use of haploidentical donor grafts without serious concerns of severe treatment-related toxicity.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Division of Nephrology, Department of Internal Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Ferrer IR, Hester J, Bushell A, Wood KJ. Induction of transplantation tolerance through regulatory cells: from mice to men. Immunol Rev 2015; 258:102-16. [PMID: 24517428 DOI: 10.1111/imr.12158] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organ transplantation results in the activation of both innate and adaptive immune responses to the foreign antigens. While these responses can be limited with the use of systemic immunosuppressants, the induction of regulatory cell populations may be a novel strategy for the maintenance of specific immunological unresponsiveness that can reduce the severity of the detrimental side effects of current therapies. Our group has extensively researched different regulatory T-cell induction protocols for use as cellular therapy in transplantation. In this review, we address the cellular and molecular mechanisms behind regulatory T-cell suppression and their stability following induction protocols. We further discuss the use of different hematopoietically derived regulatory cell populations, including regulatory B cells, regulatory macrophages, tolerogenic dendritic cells, and myeloid-derived suppressor cells, for the induction of transplantation tolerance in light of new clinical trials developing therapies with some of these populations.
Collapse
Affiliation(s)
- Ivana R Ferrer
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
8
|
Mechanistic and therapeutic role of regulatory T cells in tolerance through mixed chimerism. Curr Opin Organ Transplant 2014; 15:725-30. [PMID: 20881493 DOI: 10.1097/mot.0b013e3283401755] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW Although substantial advances in transplantation medicine have improved short-term graft survival, long-term outcome after organ transplantation is unsatisfactory. The induction of donor-specific tolerance as a potential solution remains an unmet need. Mixed chimerism established through transplantation of donor bone marrow is an appealing tolerance strategy, but widespread clinical application is prevented by the toxicity of recipient conditioning, which is required for achieving bone marrow engraftment. Clonal deletion - both central and peripheral - has long been recognized as a cardinal mechanism in experimental mixed chimerism models. RECENT FINDINGS Several recent studies have delineated the importance of nondeletional, regulatory mechanisms for the induction of tolerance through mixed chimerism. Moreover, the therapeutic application of recipient regulatory T cells (Tregs) has been combined with the transplantation of donor bone marrow. Such a 'Treg-chimerism' protocol leads to engraftment of conventional doses of fully allogeneic bone marrow and to donor-specific tolerance without the need for any cytotoxic conditioning. SUMMARY Regulatory mechanisms play a major role in mixed chimerism protocols. Treg therapy is exceptionally effective in achieving bone marrow engraftment without cytotoxic recipient treatment, thereby eliminating a major toxic factor preventing widespread application of the mixed chimerism strategy.
Collapse
|
9
|
Hirai T, Ishii Y, Ikemiyagi M, Fukuda E, Omoto K, Namiki M, Taniguchi M, Tanabe K. A novel approach inducing transplant tolerance by activated invariant natural killer T cells with costimulatory blockade. Am J Transplant 2014; 14:554-67. [PMID: 24502294 DOI: 10.1111/ajt.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023]
Abstract
Invariant natural killer T (iNKT) cells are one of the innate lymphocytes that regulate immunity, although it is still elusive how iNKT cells should be manipulated for transplant tolerance. Here, we describe the potential of a novel approach using a ligand for iNKT cells and suboptimal dosage of antibody for CD40-CD40 ligand (L) blockade as a powerful method for mixed chimerism establishment after allogenic bone marrow transplantation in sublethally irradiated fully allo recipients. Mixed-chimera mice accepted subsequent cardiac allografts in a donor-specific manner. High amounts of type 2 helper T cytokines were detected right after iNKT cell activation, while subsequent interferon-gamma production by NK cells was effectively inhibited by CD40/CD40L blockade. Tolerogenic components, such as CD11c(low) mPDCA1(+) plasmacytoid dendritic cells and activated regulatory T cells (Tregs) expressing CD103, KLRG-1 and PD-1, were subsequently augmented. Those activating Tregs seem to be required for the establishment of chimerism because depletion of the Tregs 1 day before allogenic cell transfer resulted in a chimerism brake. These results collectively suggest that our new protocol makes it possible to induce donor-specific tolerance by enhancement of the innate ability for immune tolerance in place of the conventional immunosuppression.
Collapse
Affiliation(s)
- T Hirai
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan; Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
"Mixed chimerism" refers to a state in which the lymphohematopoietic system of the recipient of allogeneic hematopoietic stem cells comprises a mixture of host and donor cells. This state is usually attained through either bone marrow or mobilized peripheral blood stem cell transplantation. Although numerous treatment regimens have led to transplantation tolerance in mice, the induction of mixed chimerism is currently the only treatment modality that has been successfully extended to large animals and to the clinic. Here we describe and compare the use of mixed chimerism to establish transplantation tolerance in mice, pigs, monkeys, and in the clinic. We also attempt to correlate the mechanisms involved in achieving tolerance with the nature of the tolerance that has resulted in each case.
Collapse
Affiliation(s)
- David H Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129
| | | | | |
Collapse
|
11
|
Haspot F, Li HW, Lucas CL, Fehr T, Beyaz S, Sykes M. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells. Am J Transplant 2014; 14:49-58. [PMID: 24304495 PMCID: PMC4045013 DOI: 10.1111/ajt.12525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/09/2013] [Accepted: 10/06/2013] [Indexed: 01/25/2023]
Abstract
Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I-deficient and Class I/Class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I-deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor-independent manner, of Class I-deficient donor cells.
Collapse
Affiliation(s)
- Fabienne Haspot
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Wei Li
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Carrie L. Lucas
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Fehr
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Semir Beyaz
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Sykes
- Transplantation Biology Research Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
12
|
Langford-Smith KJ, Sandiford Z, Langford-Smith A, Wilkinson FL, Jones SA, Wraith JE, Wynn RF, Bigger BW. Signal one and two blockade are both critical for non-myeloablative murine HSCT across a major histocompatibility complex barrier. PLoS One 2013; 8:e77632. [PMID: 24147041 PMCID: PMC3798400 DOI: 10.1371/journal.pone.0077632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023] Open
Abstract
Non-myeloablative allogeneic haematopoietic stem cell transplantation (HSCT) is rarely achievable clinically, except where donor cells have selective advantages. Murine non-myeloablative conditioning regimens have limited clinical success, partly through use of clinically unachievable cell doses or strain combinations permitting allograft acceptance using immunosuppression alone. We found that reducing busulfan conditioning in murine syngeneic HSCT, increases bone marrow (BM):blood SDF-1 ratio and total donor cells homing to BM, but reduces the proportion of donor cells engrafting. Despite this, syngeneic engraftment is achievable with non-myeloablative busulfan (25 mg/kg) and higher cell doses induce increased chimerism. Therefore we investigated regimens promoting initial donor cell engraftment in the major histocompatibility complex barrier mismatched CBA to C57BL/6 allo-transplant model. This requires full myeloablation and immunosuppression with non-depleting anti-CD4/CD8 blocking antibodies to achieve engraftment of low cell doses, and rejects with reduced intensity conditioning (≤75 mg/kg busulfan). We compared increased antibody treatment, G-CSF, niche disruption and high cell dose, using reduced intensity busulfan and CD4/8 blockade in this model. Most treatments increased initial donor engraftment, but only addition of co-stimulatory blockade permitted long-term engraftment with reduced intensity or non-myeloablative conditioning, suggesting that signal 1 and 2 T-cell blockade is more important than early BM niche engraftment for transplant success.
Collapse
Affiliation(s)
- Kia J. Langford-Smith
- Stem Cell & Neurotherapies, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Zara Sandiford
- Stem Cell & Neurotherapies, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Langford-Smith
- Stem Cell & Neurotherapies, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Fiona L. Wilkinson
- Stem Cell & Neurotherapies, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon A. Jones
- Genetic Medicine, St Mary’s Hospital, Manchester, United Kingdom
| | - J. Ed Wraith
- Genetic Medicine, St Mary’s Hospital, Manchester, United Kingdom
| | - Robert F. Wynn
- Blood and Marrow Transplant Unit, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Brian W. Bigger
- Stem Cell & Neurotherapies, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Mixed chimerism through donor bone marrow transplantation: a tolerogenic cell therapy for application in organ transplantation. Curr Opin Organ Transplant 2013; 17:63-70. [PMID: 22186093 DOI: 10.1097/mot.0b013e32834ee68b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Organ transplantation is the state-of-the-art treatment for end-stage organ failure; however, long-term graft survival is still unsatisfactory. Despite improved immunosuppressive drug therapy, patients are faced with substantial side effects and the risk of chronic rejection with subsequent graft loss. The transplantation of donor bone marrow for the induction of mixed chimerism has been recognized to induce donor-specific tolerance a long time ago, but safety concerns regarding toxicities of current bone marrow transplantation (BMT) protocols impede widespread application. RECENT FINDINGS Recent studies in nonhuman primates and kidney transplant patients have demonstrated successful induction of allograft tolerance even though--in contrast to murine models--only transient chimerism was achieved. Progress toward the development of nontoxic murine BMT protocols revealed that Treg therapy is a potent therapeutic adjunct eliminating the need for cytotoxic recipient conditioning. Furthermore, new insight into the mechanisms underlying tolerization of CD4 and CD8 T cells in mixed chimeras has been gained and has identified possible difficulties impeding clinical translation. SUMMARY This review will address the recent advances in murine models as well as findings from the first clinical trials for the induction of tolerance through mixed chimerism. Both the potential for more widespread clinical application and the remaining hurdles and challenges of this tolerance approach will be discussed.
Collapse
|
14
|
Kraus AK, Cippá PE, Gaspert A, Chen J, Edenhofer I, Wüthrich RP, Lindenmeyer M, Segerer S, Fehr T. Absence of donor CD40 protects renal allograft epithelium and preserves renal function. Transpl Int 2013; 26:535-44. [DOI: 10.1111/tri.12070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/27/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | - Ariana Gaspert
- Institute of Surgical Pathology; University Hospital Zurich; Zurich; Switzerland
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Wang H, Bronson R, Fu Y, Yang YG. Rapid dendritic cell activation and resistance to allotolerance induction in anti-CD154-treated mice receiving CD47-deficient donor-specific transfusion. Cell Transplant 2013; 23:355-63. [PMID: 23295133 DOI: 10.3727/096368912x661346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD47-SIRPα signaling plays an important role in regulating macrophage and dendritic cell (DC) activation. Here we investigated the role of CD47 expression on donor cells in tolerance induction by combined treatment with donor-specific transfusion (DST) plus anti-CD154 mAb in a mouse model of fully MHC-mismatched heart allotransplantation. The majority of BALB/c recipient mice that received anti-CD154 and CD47(+/+) B6 splenocytes (DST) showed indefinite donor heart survival (median survival time, MST > 150 days). Donor heart survival was improved in anti-CD154-treated BALB/c mice that received CD47(+/-) (MST = 90 days) or CD47(-/-) B6 DST (MST = 42 days) when compared to the nontreated (MST = 7 days) and anti-CD154 alone-treated (MST = 15 days) controls, but significantly reduced when compared to mice receiving anti-CD154 plus CD47(+/+) B6 DST. Recipient mice treated with anti-CD154 plus CD47(-/-) or CD47(+/-) DST also showed significantly increased antidonor, but not anti-third-party, MLR responses compared to those receiving anti-CD154 and CD47(+/+) DST. Furthermore, CD47(-/-) DST induced rapid activation of CD11c(hi)SIRPα(hi)CD8α(-) DCs via a mechanism independent of donor alloantigens. These results demonstrated that CD47 expression on donor cells is essential to the success of tolerance induction by combined therapy with DST and CD40/CD154 blockade.
Collapse
Affiliation(s)
- Yuantao Wang
- First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
16
|
Ramsey H, Pilat N, Hock K, Klaus C, Unger L, Schwarz C, Baranyi U, Gattringer M, Schwaiger E, Wrba F, Wekerle T. Anti-LFA-1 or rapamycin overcome costimulation blockade-resistant rejection in sensitized bone marrow recipients. Transpl Int 2012; 26:206-18. [PMID: 23240587 DOI: 10.1111/tri.12021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/15/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023]
Abstract
While costimulation blockade-based mixed chimerism protocols work well for inducing tolerance in rodents, translation to preclinical large animal/nonhuman primate models has been less successful. One recognized cause for these difficulties is the high frequency of alloreactive memory T cells (Tmem) found in the (pre)clinical setting as opposed to laboratory mice. In the present study, we therefore developed a murine bone marrow transplantation (BMT) model employing recipients harboring polyclonal donor-reactive Tmem without concomitant humoral sensitization. This model was then used to identify strategies to overcome this additional immune barrier. We found that B6 recipients that were enriched with 3 × 10(7) T cells isolated from B6 mice that had been previously grafted with Balb/c skin, rejected Balb/c BM despite costimulation blockade with anti-CD40L and CTLA4Ig (while recipients not enriched developed chimerism). Adjunctive short-term treatment of sensitized BMT recipients with rapamycin or anti-LFA-1 mAb was demonstrated to be effective in controlling Tmem in this model, leading to long-term mixed chimerism and donor-specific tolerance. Thus, rapamycin and anti-LFA-1 mAb are effective in overcoming the potent barrier that donor-reactive Tmem pose to the induction of mixed chimerism and tolerance despite costimulation blockade.
Collapse
Affiliation(s)
- Haley Ramsey
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Su Y, Huang X, Wang S, Min WP, Yin Z, Jevnikar AM, Zhang ZX. Double negative Treg cells promote nonmyeloablative bone marrow chimerism by inducing T-cell clonal deletion and suppressing NK cell function. Eur J Immunol 2012; 42:1216-25. [PMID: 22539294 DOI: 10.1002/eji.201141808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The establishment of immune tolerance and prevention of chronic rejection remain major goals in clinical transplantation. In bone marrow (BM) transplantation, T cells and NK cells play important roles for graft rejection. In addition, graft-versus-host-disease (GVHD) remains a major obstacle for BM transplantation. In this study, we aimed to establish mixed chimerism in an irradiation-free condition. Our data indicate that adoptive transfer of donor-derived T-cell receptor (TCR) αβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) (double negative, DN) Treg cells prior to C57BL/6 to BALB/c BM transplantation, in combination with cyclophosphamide, induced a stable-mixed chimerism and acceptance of C57BL/6 skin allografts but rejection of third-party C3H (H-2k) skin grafts. Adoptive transfer of CD4(+) and CD8(+) T cells, but not DN Treg cells, induced GVHD in this regimen. The recipient T-cell alloreactive responsiveness was reduced in the DN Treg cell-treated group and clonal deletions of TCRVβ2, 7, 8.1/2, and 8.3 were observed in both CD4(+) and CD8(+) T cells. Furthermore, DN Treg-cell treatment suppressed NK cell-mediated BM rejection in a perforin-dependent manner. Taken together, our results suggest that adoptive transfer of DN Treg cells can control both adoptive and innate immunities and promote stable-mixed chimerism and donor-specific tolerance in the irradiation-free regimen.
Collapse
Affiliation(s)
- Ye Su
- The Multi-Organ Transplant Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
The role of positive costimulatory molecules in transplantation and tolerance. Curr Opin Organ Transplant 2012; 13:366-72. [PMID: 18685331 DOI: 10.1097/mot.0b013e328306115b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The manipulation of costimulatory pathways holds tremendous potential for treating immunologically mediated diseases. In this article, we review the role of molecules that deliver a positive second signal that, together with an antigen-specific signal from the T-cell receptor, is necessary to promote complete T-cell activation, differentiation and development of effector function. RECENT FINDINGS Numerous positive costimulatory molecules have been identified: CD28/B7, induced costimulatory/induced costimulatory ligand, CD40/CD154, OX40/OX40L, CD27/CD70, 4-1BB/4-1BBL, LIGHT/herpes virus entry mediator, glucosyltransferase R and T-cell immunoglobulin mucin molecules. Many of these have been only recently discovered and remain incompletely studied. Recent work has demonstrated that some costimulatory molecules bind ligands expressed by nonprofessional activated protein C, some modulate regulatory T cells and some sustain rather than initiate immune responses. Emerging data suggest that the costimulatory pathways are redundant and that the various costimulatory molecules affect different T-cell populations and act at different times during the course of the immune response. SUMMARY These observations suggest that the therapeutic exploitation of strategies targeting costimulatory molecules will require carefully timed interventions directed against multiple pathways.
Collapse
|
19
|
Lucas CL, Workman CJ, Beyaz S, LoCascio S, Zhao G, Vignali DAA, Sykes M. LAG-3, TGF-β, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L. Blood 2011; 117:5532-40. [PMID: 21422469 PMCID: PMC3109721 DOI: 10.1182/blood-2010-11-318675] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 03/10/2011] [Indexed: 02/06/2023] Open
Abstract
Administration of a single dose of anti-CD40L mAb at the time of allogeneic BM transplantation tolerizes peripheral alloreactive T cells and permits establishment of mixed hematopoietic chimerism in mice. Once engrafted, mixed chimeras are systemically tolerant to donor Ags through a central deletion mechanism and will accept any donor organ indefinitely. We previously found that the PD-1/PD-L1 pathway is required for CD8 T-cell tolerance in this model. However, the cell population that must express PD-1 and the role of other inhibitory molecules were unknown. Here, we report that LAG-3 is required for long-term peripheral CD8 but not CD4 T-cell tolerance and that this requirement is CD8 cell-extrinsic. In contrast, adoptive transfer studies revealed a CD8 T cell-intrinsic requirement for CTLA4/B7.1/B7.2 and for PD-1 for CD8 T-cell tolerance induction. We also observed that both PD-L1 and PD-L2 are independently required on donor cells to achieve T-cell tolerance. Finally, we uncovered a requirement for TGF-β signaling into T cells to achieve peripheral CD8 but not CD4 T-cell tolerance in this in vivo system.
Collapse
Affiliation(s)
- Carrie L Lucas
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Liu Y, Huang X, Li Y, Li C, Hu X, Xue C, Meng F, Zhou P. Ursolic acid promotes robust tolerance to cardiac allografts in mice. Clin Exp Immunol 2011; 164:282-8. [PMID: 21391985 PMCID: PMC3087921 DOI: 10.1111/j.1365-2249.2011.04333.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2011] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor (NF)-κB is an important molecule in T cell activation. Our previous work has found that T cell-restricted NF-κB super-repressor (IκBαΔN-Tg) mice, expressing an inhibitor of NF-κB restricted to the T cell compartment, can permanently accept fully allogeneic cardiac grafts and secondary donor skin grafts. In this study, we explore if transient NF-κB inhibition by a small molecular inhibitor could induce permanent graft survival. Ursolic acid, a small molecular compound, dose-dependently inhibited T cell receptor (TCR)-triggered NF-κB nuclear translocation and T cell activation in vitro. In vivo, ursolic acid monotherapy prolonged significantly the survival of cardiac allograft in mice. Assisted with donor-specific transfusion (DST) on day 0, ursolic acid promoted 84·6% of first cardiac grafts to survive for more than 150 days. While the mice with long-term surviving grafts (LTS) did not reject the second donor strain hearts for more than 100 days without any treatment, they all promptly rejected the third-party strain hearts within 14 days. Interestingly, this protocol did not result in an increased proportion of CD4(+) CD25(+) forkhead box P3(+) regulatory T cells in splenocytes. That adoptive transfer experiments also did not support regulation was the main mechanism in this model. Splenocytes from LTS showed reduced alloreactivity to donor antigen. However, depletion of CD4(+) CD25(+) regulatory T cells did not alter the donor-reactivity of LTS splenocytes. These data suggest that depletion of donor-reactive T cells may play an important role in this protocol.
Collapse
Affiliation(s)
- Y Liu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Takeuchi E, Shinohara N, Takeuchi Y. Cognate interaction plays a key role in the surveillance of autoreactive B cells in induced mixed bone marrow chimerism in BXSB lupus mice. Autoimmunity 2011; 44:363-72. [PMID: 21244333 DOI: 10.3109/08916934.2010.541172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effects of bone marrow transplantation (BMT) as a treatment for and/or preventive measure against autoimmune diseases in mice were investigated extensively. The reconstitution of the hematopoietic system with a mixture of autologous and heterologous bone marrow cells was reported to suppress the development of autoimmune diseases. However, the pathological mechanism through which mixed chimerism results in the suppression of disease development is still unknown. We have previously reported that the induction of fully major histocompatibility complex (MHC)-mismatched allogeneic mixed chimerism can prevent the disease development in BXSB mice. Interestingly, serum anti-dsDNA IgM antibody (anti-DNA IgM) levels were not significantly decreased in these chimeric mice, though other symptoms of autoimmune disease were ameliorated. In this study, we showed that self-reactive anti-DNA IgM production was mainly attributable to genetically normal B cells from the donor rather than genetically deficient B cells from the host. Host-type B cells responded normally to foreign antigens and produced the appropriate antibodies. BMT from fully MHC-matched or haplo-identical donors could suppress the production of anti-DNA antibodies. Our present study suggests the existence of a surveillance system dependent on the recognition of MHC molecules on B cells.
Collapse
Affiliation(s)
- Emiko Takeuchi
- Department of Laboratory Medicine, Kitasato University School of Medicine , Sagamihara, Kanagawa , Japan.
| | | | | |
Collapse
|
22
|
Baranyi U, Gattringer M, Valenta R, Wekerle T. Cell-based therapy in allergy. Curr Top Microbiol Immunol 2011; 352:161-79. [PMID: 21598105 DOI: 10.1007/82_2011_127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IgE-mediated allergy is an immunological disorder occurring in response to otherwise harmless environmental antigens (i.e., allergens). Development of effective therapeutic or preventive approaches inducing robust tolerance toward allergens remains an unmet goal. Several experimental tolerance approaches have been described. The therapeutic use of regulatory T cells (Tregs) and the establishment of molecular chimerism are two cell-based strategies that are of particular interest. Treg therapy is close to clinical application, but its efficacy remains to be fully defined. Recent proof-of-concept studies demonstrated that transplantation of syngeneic hematopoietic stem cells modified in vitro to express a major allergen leads to molecular chimerism and robust allergen-specific tolerance. Here we review cell-based tolerance strategies in allergy, discussing their potentials and limitations.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
23
|
Hermanrud CE, Lucas CL, Sykes M, Huang CA, Wang Z. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris. Protein Expr Purif 2010; 76:115-20. [PMID: 21074618 DOI: 10.1016/j.pep.2010.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 11/17/2022]
Abstract
The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunologic research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant.
Collapse
Affiliation(s)
- Christina E Hermanrud
- Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Mollov JL, Lucas CL, Haspot F, Gaspar JKC, Guzman A, Sykes M. Recipient dendritic cells, but not B cells, are required antigen-presenting cells for peripheral alloreactive CD8+ T-cell tolerance. Am J Transplant 2010; 10:518-526. [PMID: 20121730 PMCID: PMC4215806 DOI: 10.1111/j.1600-6143.2009.02967.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Induction of mixed allogeneic chimerism is a promising approach for achieving donor-specific tolerance, thereby obviating the need for life-long immunosuppression for solid organ allograft acceptance. In mice receiving a low dose (3Gy) of total body irradiation, allogeneic bone marrow transplantation combined with anti-CD154 tolerizes peripheral CD4 and CD8 T cells, allowing achievement of mixed chimerism with specific tolerance to donor. With this approach, peripheral CD8 T-cell tolerance requires recipient MHC class II, CD4 T cells, B cells and DCs. Recipient-type B cells from chimeras that were tolerant to donor still promoted CD8 T-cell tolerance, but their role could not be replaced by donor-type B cells. Using recipients whose B cells or DCs specifically lack MHC class I and/or class II or lack CD80 and CD86, we demonstrate that dendritic cells (DCs) must express CD80/86 and either MHC class I or class II to promote CD8 tolerance. In contrast, B cells, though required, did not need to express MHC class I or class II or CD80/86 to promote CD8 tolerance. Moreover, recipient IDO and IL-10 were not required. Thus, antigen presentation by recipient DCs and not by B cells is critical for peripheral alloreactive CD8 T cell tolerance.
Collapse
Affiliation(s)
- J. L. Mollov
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - C. L. Lucas
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | | | - J. Kurtz, C. Gaspar
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Guzman
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - M. Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
An optimization of protocol for mixed chimerism induction in mice model. Folia Histochem Cytobiol 2010; 47:395-400. [DOI: 10.2478/v10042-009-0086-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Nikolic B, Onoe T, Takeuchi Y, Khalpey Z, Primo V, Leykin I, Smith RN, Sykes M. Distinct requirements for achievement of allotolerance versus reversal of autoimmunity via nonmyeloablative mixed chimerism induction in NOD mice. Transplantation 2010; 89:23-32. [PMID: 20061915 PMCID: PMC3043373 DOI: 10.1097/tp.0b013e3181c4692e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Mixed hematopoietic chimerism is associated with islet allograft tolerance and may reverse autoimmunity. We developed low intensity regimens for the induction of mixed chimerism and examined the effects on autoimmunity in prediabetic nonobese diabetic (NOD) mice. RESEARCH DESIGN AND METHODS NOD mice received various combinations of total body irradiation, anti-CD154, anti-CD8alpha, anti-CD4, and anti-Thy1.2 monoclonal antibodies, with or without transplantation of C57BL/6 bone marrow cells and were followed up for development of diabetes, chimerism, and donor skin graft survival. Autoimmunity was assessed by histologic examination of salivary glands and pancreata. RESULTS Although conditioning alone prevented or delayed the onset of diabetes, stable mixed chimerism was required for the reversal of isletitis. Mixed chimerism and skin graft tolerance were achieved in NOD mice receiving anti-CD154 with bone marrow transplantation as the means of tolerizing peripheral CD4 T cells to alloantigens. However, isletitis was not reversed in allotolerant mixed chimeras prepared with this regimen. CONCLUSIONS Partial depletion of peripheral autoreactive NOD CD4 T cells is needed to achieve full reversal of isletitis by mixed chimerism induction from a protective donor strain, but it is not required for induction of specific tolerance to donor alloantigens. Thus, the requirements for tolerizing alloreactive and autoreactive NOD CD4 cells are distinct.
Collapse
Affiliation(s)
- Boris Nikolic
- Nephrology Division, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149-8230, 13th Street, Boston, MA 02129
| | - Takashi Onoe
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149, 13th Street, Boston, MA 02129
| | - Yasuo Takeuchi
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149, 13th Street, Boston, MA 02129
| | - Zain Khalpey
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149, 13th Street, Boston, MA 02129
| | - Valeria Primo
- Nephrology Division, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149-8230, 13th Street, Boston, MA 02129
| | - Igor Leykin
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149, 13th Street, Boston, MA 02129
| | - R. Neal Smith
- Department of Pathology, Warren Bldg. 509D, Massachusetts General Hospital/Harvard Medical School, 55 Fruit St., Boston, MA 02114
| | - Megan Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149, 13th Street, Boston, MA 02129
| |
Collapse
|
28
|
A CD8 T cell-intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo. Blood 2009; 115:1280-7. [PMID: 20007805 DOI: 10.1182/blood-2009-07-230680] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that blockade of signaling through the T-cell receptor (TCR)/calcineurin/nuclear factor of activated T cells (NFAT) pathway impairs transplantation tolerance induced with anti-CD154 antibody. By using an allogeneic bone marrow transplantation model, we examined the role of the TCR/calcineurin/NFAT pathway for tolerance induction with anti-CD154. Calcineurin blockade by cyclosporine A led to a failure of CD8 but not CD4 tolerance, and experiments in NFAT1(-/-) mice replicated this effect. Studies in thymectomized mice demonstrated that blockade of the calcineurin/NFAT pathway after bone marrow transplantation led to a failure of peripheral CD8 tolerance. Moreover, CD8 adoptive transfer studies demonstrated that NFAT1 is cell-intrinsically required for peripheral CD8 tolerance. NFAT1 deficiency did not impair CD8 T-cell up-regulation of PD1, which is required for CD8 tolerance in this model. NFAT1 has previously been shown to have a role in CD4 cells for anergy induction and for programming CD4 cells to become regulatory cells. By generating mice lacking NFAT1 in CD4 but not CD8 cells, we demonstrate that NFAT1 is neither required for CD4 tolerance induction nor for their regulatory function on CD8 T cells. Thus, our study reveals a CD8 T cell-intrinsic NFAT1 requirement for CD8 tolerance in vivo.
Collapse
|
29
|
Baśkiewicz-Masiuk M, Grymuła K, Hałasa M, Pius E, Boehlke M, Machaliński B. Induction of mixed chimerism in mice by employing different conditioning protocols and bone marrow cell transplantation. Transplant Proc 2009; 41:1894-9. [PMID: 19545752 DOI: 10.1016/j.transproceed.2009.02.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 02/09/2009] [Indexed: 10/20/2022]
Abstract
Mixed chimerism has been suggested to produce allograft tolerance. Since this phenomenon is not fully understood, the aim of our study was to evaluate various protocols for chimerism induction in a mouse model. B6.SJL-Ptprc(a)Pep3(b) mice were injected with 20 to 30 x 10(6) bone marrow cells from Balb C mice. Conditioning consisted of total body gamma irradiation with 9.5, 5, and 3 Gy on "-1 day" of the experiment, with 200 mg/kg cyclophosphamide (CP) ("+2 day"). Additionally, one group of mice received blocking antibody against CD40L on days 0, 1, 4, and 7. The presence of mixed chimerism in peripheral blood was assessed at 1, 2, 3, 4, 6, and 8 weeks using flow cytometry to detect CD45.1 or CD45.2 antigen expression. Moreover, the chimerism was examined in CD4, CD8, CD45/B220, Mac-1alpha subpopulations in peripheral blood and bone marrow cells at 8 weeks. We also compared chimerism in peripheral blood, bone marrow, and spleen leukocyte populations. We observed that the most effective conditioning method with relatively low toxicity was based on concomitant use of 5 Gy total body irradiation and CP. The percentage of donor cells differed among peripheral blood subpopulations and bone marrow cells, but was similar in leukocyte populations derived from various sources. Our experiments sought to optimize the induction of stable mixed chimerism.
Collapse
Affiliation(s)
- M Baśkiewicz-Masiuk
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Donor-specific immune tolerance would avoid the toxicities of chronic immunosuppressive therapies while preventing graft rejection. Hematopoietic cell transplantation has shown preliminary success for intentional tolerance induction in pilot clinical trials. The mechanisms of tolerance in these trials and the animal studies leading up to them are discussed.
Collapse
|
31
|
Abstract
Although the inhibitory receptor CTLA-4 (CD152) has been implicated in peripheral CD4 T-cell tolerance, its mechanism of action remains poorly defined. We analyzed mechanisms of CD4 cell tolerance in a model of tolerance induction involving establishment of mixed hematopoietic chimerism in recipients of fully MHC-mismatched allogeneic bone marrow cells with anti-CD154 mAb. Animals lacking CD80 and CD86 failed to achieve chimerism. We detected no T cell-intrinsic requirement for CD28 for chimerism induction. However, a CD4 T cell-intrinsic signal through CTLA-4 was shown to be essential within the first 48 hours of exposure to alloantigen for the establishment of tolerance and mixed chimerism. This signal must be provided by a recipient CD80/86(+) non-T-cell population. Donor CD80/86 expression was insufficient to achieve tolerance. Together, our findings demonstrate a surprising role for interactions of CTLA-4 expressed by alloreactive peripheral CD4 T cells with CD80/86 on recipient antigen-presenting cells (APCs) in the induction of early tolerance, suggesting a 3-cell tolerance model involving directly alloreactive CD4 cells, donor antigen-expressing bone marrow cells, and recipient antigen-presenting cells. This tolerance is independent of regulatory T cells and culminates in the deletion of directly alloreactive CD4 T cells.
Collapse
|
32
|
Fehr T, Wang S, Haspot F, Kurtz J, Blaha P, Hogan T, Chittenden M, Wekerle T, Sykes M. Rapid deletional peripheral CD8 T cell tolerance induced by allogeneic bone marrow: role of donor class II MHC and B cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:4371-80. [PMID: 18768896 DOI: 10.4049/jimmunol.181.6.4371] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.
Collapse
Affiliation(s)
- Thomas Fehr
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Koporc Z, Pilat N, Nierlich P, Blaha P, Bigenzahn S, Pree I, Selzer E, Sykes M, Muehlbacher F, Wekerle T. Murine mobilized peripheral blood stem cells have a lower capacity than bone marrow to induce mixed chimerism and tolerance. Am J Transplant 2008; 8:2025-36. [PMID: 18828766 PMCID: PMC2992943 DOI: 10.1111/j.1600-6143.2008.02371.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Allogeneic bone marrow transplantation (BMT) under costimulation blockade allows induction of mixed chimerism and tolerance without global T-cell depletion (TCD). The mildest such protocols without recipient cytoreduction, however, require clinically impracticable bone marrow (BM) doses. The successful use of mobilized peripheral blood stem cells (PBSC) instead of BM in such regimens would provide a substantial advance, allowing transplantation of higher doses of hematopoietic donor cells. We thus transplanted fully allogeneic murine granulocyte colony-stimulating factor (G-CSF) mobilized PBSC under costimulation blockade (anti-CD40L and CTLA4Ig). Unexpectedly, PBSC did not engraft, even when very high cell doses together with nonmyeloablative total body irradiation (TBI) were used. We show that, paradoxically, T cells contained in the donor PBSC triggered rejection of the transplanted donor cells. Rejection of donor BM was also triggered by the cotransplantation of unmanipulated donor T cells isolated from naïve (nonmobilized) donors. Donor-specific transfusion and transient immunosuppression prevented PBSC-triggered rejection and mixed chimerism and tolerance were achieved, but graft-versus-host disease (GVHD) occurred. The combination of in vivo TCD with costimulation blockade prevented rejection and GVHD. Thus, if allogeneic PBSC are transplanted instead of BM, costimulation blockade alone does not induce chimerism and tolerance without unacceptable GVHD-toxicity, and the addition of TCD is required for success.
Collapse
Affiliation(s)
- Zvonimir Koporc
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Patrick Nierlich
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Peter Blaha
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Sinda Bigenzahn
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Ines Pree
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Edgar Selzer
- Department of Radiotherapy and Radiobiology; Vienna General Hospital, Medical University of Vienna, Austria
| | - Megan Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Ferdinand Muehlbacher
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery; Vienna General Hospital, Medical University of Vienna, Austria
| |
Collapse
|
34
|
Fehr T, Haspot F, Mollov J, Chittenden M, Hogan T, Sykes M. Alloreactive CD8 T cell tolerance requires recipient B cells, dendritic cells, and MHC class II. THE JOURNAL OF IMMUNOLOGY 2008; 181:165-73. [PMID: 18566381 DOI: 10.4049/jimmunol.181.1.165] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Allogeneic bone marrow chimerism induces robust systemic tolerance to donor alloantigens. Achievement of chimerism requires avoidance of marrow rejection by pre-existing CD4 and CD8 T cells, either of which can reject fully MHC-mismatched marrow. Both barriers are overcome with a minimal regimen involving anti-CD154 and low dose (3 Gy) total body irradiation, allowing achievement of mixed chimerism and tolerance in mice. CD4 cells are required to prevent marrow rejection by CD8 cells via a novel pathway, wherein recipient CD4 cells interacting with recipient class II MHC tolerize directly alloreactive CD8 cells. We demonstrate a critical role for recipient MHC class II, B cells, and dendritic cells in a pathway culminating in deletional tolerance of peripheral alloreactive CD8 cells.
Collapse
Affiliation(s)
- Thomas Fehr
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
35
|
Peripheral deletional tolerance of alloreactive CD8 but not CD4 T cells is dependent on the PD-1/PD-L1 pathway. Blood 2008; 112:2149-55. [PMID: 18577709 DOI: 10.1182/blood-2007-12-127449] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although interaction between programmed death-1 (PD-1) and the ligand PD-L1 has been shown to mediate CD8 cell exhaustion in the setting of chronic infection or the absence of CD4 help, a role for this pathway in attenuating early alloreactive CD8 cell responses has not been identified. We demonstrate that the PD-1/PD-L1 pathway is needed to rapidly tolerize alloreactive CD8 cells in a model that requires CD4 cells and culminates in CD8 cell deletion. This protocol involves allogeneic bone marrow transplantation (BMT) following conditioning with low-dose total body irradiation and anti-CD154 antibody. Tolerized donor-reactive T-cell receptor transgenic CD8 cells are shown to be in an abortive activation state prior to their deletion, showing early and prolonged expression of activation markers (compared with rejecting CD8 cells) while being functionally silenced by day 4 after transplantation. Although both tolerized and rejecting alloreactive CD8 cells up-regulate PD-1, CD8 cell tolerance is dependent on the PD-1/PD-L1 pathway. In contrast, CD4 cells are tolerized independently of this pathway following BMT with anti-CD154. These studies demonstrate a dichotomy between the requirements for CD4 and CD8 tolerance and identify a role for PD-1 in the rapid tolerization of an alloreactive T-cell population via a deletional mechanism.
Collapse
|
36
|
Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol Rev 2008; 223:334-60. [PMID: 18613846 PMCID: PMC2680695 DOI: 10.1111/j.1600-065x.2008.00636.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMMARY Stem cells (SCs) with varying potentiality have the capacity to repair injured tissues. While promising animal data have been obtained, allogeneic SCs and their progeny are subject to immune-mediated rejection. Here, we review the potential of hematopoietic stem cells (HSCs) to promote immune tolerance to allogeneic and xenogeneic organs and tissues, to reverse autoimmunity, and to be used optimally to cure hematologic malignancies. We also review the mechanisms by which hematopoietic cell transplantation (HCT) can promote anti-tumor responses and establish donor-specific transplantation tolerance. We discuss the barriers to clinical translation of animal studies and describe some recent studies indicating how they can be overcome. The recent achievements of durable mixed chimerism across human leukocyte antigen barriers without graft-versus-host disease and of organ allograft tolerance through combined kidney and bone marrow transplantation suggest that the potential of this approach for use in the treatment of many human diseases may ultimately be realized.
Collapse
Affiliation(s)
- Carrie Gibbons
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
37
|
Takeuchi E, Takeuchi Y. Allogenic Mixed Chimerism Induced by Nonlymphoablative Regimen Including Donor BMT with Low-Dose TBI and Anti-CD40L Cured Proliferative Glomerulonephritis in Lupus Mice. Ann N Y Acad Sci 2007; 1110:362-7. [PMID: 17911451 DOI: 10.1196/annals.1423.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Allogeneic mixed chimerism achieved by low-dose total body irradiation (TBI) and anti-CD40L monoclonal antibody (mAb) with donor bone marrow transplantation (BMT) and host T cell depletion overcomes both allo- and autoimmunity. We investigated whether a similar regimen without T cell depletion cured diffuse proliferative glomerulonephritis. Male BXSB mice (H-2b) were injected with 20 x 10(6) BALB/c (H-2d) BM cells. When indicated, 3 Gy TBI on day -1 and anti-CD40LmAb (2 mg) on day 0 of BMT was given. Skin grafting was performed 1 day after BMT. BXSB mice were divided into four groups--I: BMT with TBI and anti-CD40LmAb; II: TBI; III: TBI and anti-CD40LmAb; and IV: no treatment. Chimerism in peripheral blood was analyzed. The kidney was examined histologically. TBI with anti-CD40LmAb and BMT allowed induction of multilineage mixed chimerism and donor-specific tolerance to skin grafts without graft-versus-host disease (GVHD). There was significant decrease in glomerular PAS-positive material deposition score, glomerular cell numbers, IgG, and C3 deposition in chimeric mice. All chimeric mice survived. Allogeneic mixed chimerism induced by a less toxic, nonlymphoablative regimen achieved allograft tolerance and cured glomerulonephritis in BXSB lupus mice.
Collapse
Affiliation(s)
- Emiko Takeuchi
- Department of Clinical Investigation, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara City, Kanagawa 228-8555, Japan.
| | | |
Collapse
|
38
|
Abstract
The achievement of immune tolerance, a state of specific unresponsiveness to the donor graft, has the potential to overcome the current major limitations to progress in organ transplantation, namely late graft loss, organ shortage and the toxicities of chronic nonspecific immumnosuppressive therapy. Advances in our understanding of immunological processes, mechanisms of rejection and tolerance have led to encouraging developments in animal models, which are just beginning to be translated into clinical pilot studies. These advances are reviewed here and the appropriate timing for clinical trials is discussed.
Collapse
Affiliation(s)
- M Sykes
- Transplantation Biology Research Center, Bone Marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
39
|
Pree I, Wekerle T. Inducing mixed chimerism and transplantation tolerance through allogeneic bone marrow transplantation with costimulation blockade. Methods Mol Biol 2007; 380:391-403. [PMID: 17876108 DOI: 10.1007/978-1-59745-395-0_25] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of mixed chimerism (i.e., coexistence of donor and recipient hematopoietic cells) through transplantation of allogeneic donor bone marrow under appropriate host conditioning, is one of the most reliable strategies to induce transplantation tolerance. Robust tolerance is evident in mixed chimeras as they permanently accept donor skin grafts while promptly rejecting third party grafts. Although historically, myeloablative and T-cell depleting regimens have been described, milder protocols involving costimulation blockade have recently been developed. The prototypical murine protocol described in this chapter, involves the use of CTLA4Ig and a monoclonal antibody-specific for CD154 (CD40L) for costimulation blockade, 3 Gy of nonmyeloablative total body irradiation and a conventional number of 20 x 10(6) fully allogeneic bone marrow cells. Flow cytometry is used to determine levels of multilineage hematopoietic chimerism and deletion of donor-reactive CD4+ T cells. Tolerance is assessed in vivo by grafting of donor and third party skin.
Collapse
Affiliation(s)
- Ines Pree
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| | | |
Collapse
|
40
|
Graca L, Daley S, Fairchild PJ, Cobbold SP, Waldmann H. Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning. BMC Immunol 2006; 7:9. [PMID: 16638128 PMCID: PMC1463008 DOI: 10.1186/1471-2172-7-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 04/25/2006] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. RESULTS We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. CONCLUSION We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains.
Collapse
Affiliation(s)
- Luis Graca
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, P1649-028 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, P2780-156 Oeiras, Portugal
| | - Stephen Daley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Stephen P Cobbold
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
41
|
Perco P, Blaha P, Kainz A, Mayer B, Hauser P, Wekerle T, Oberbauer R. Molecular signature of mice T lymphocytes following tolerance induction by allogeneic BMT and CD40-CD40L costimulation blockade. Transpl Int 2006; 19:146-57. [PMID: 16441364 DOI: 10.1111/j.1432-2277.2005.00241.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tolerance induction by mixed chimerism and costimulation blockade is a promising approach to avoid immunosuppression, but the molecular basis of tolerant T lymphocytes remains elusive. We investigated the genome-wide gene expression profile of murine T lymphocytes after tolerance induction by allogeneic bone marrow transplantation (BMT) and costimulatory blockade using the anti-CD40L antibody MR1. Molecular functions, biological processes, cellular locations, and coregulation of identified genes were determined. A total of 113 unique genes exhibited a significant differential expression between the lymphocytes of MR1-treated Tolerance (TOL) and untreated recipients Control (CTRL). The majority of genes upregulated in the TOL group are involved in several signal transduction cascades such as members of the MAPKKK cascade (IL6, Tob2, Stk39, and Dusp24). Other genes involved in lymphocyte differentiation and highly expressed in the TOL group are lymphotactin, the estrogen receptors (ERs) and the suppressor of cytokine signaling 7. Common transcription factors such as ER 1 alpha, GATA-binding protein 1, insulin promoter factor 1, and paired-related homeobox 2 could be identified in the promoter regions of upregulated genes in the TOL group. These data suggest that T lymphoctes of tolerant mice exhibit a distinct molecular expression profile, which needs to be evaluated in other experimental tolerance models to determine whether it is a universal signature of tolerance.
Collapse
Affiliation(s)
- Paul Perco
- Department of Nephrology, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
42
|
Fehr T, Takeuchi Y, Kurtz J, Wekerle T, Sykes M. Early regulation of CD8 T cell alloreactivity by CD4+CD25- T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation. Eur J Immunol 2005; 35:2679-90. [PMID: 16082727 DOI: 10.1002/eji.200526190] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
While acquisition of regulatory function by CD4+CD25- T cells has been reported following antigenic stimulation, "naturally occurring" regulatory CD4+ T cells (Treg) are believed to express CD25. We examined the mechanisms involved in peripheral CD8 T cell tolerance by induction of mixed chimerism using non-myeloablative conditioning with low-dose (3 Gy) total body irradiation and anti-CD154 antibody. Recipient CD4+ T cells were initially required for the induction of CD8 cell tolerance, but were not needed beyond 2 weeks. Depletion of CD25+ Treg prior to bone marrow transplantation and blockade of IL-2 with neutralizing antibody did not impede tolerance induction. Tolerance was dependent on CTLA4, but not on IFN-gamma. In C57BL/6 mice containing a fraction of 2C TCR transgenic CD8+ T cells, which recognize the MHC class I alloantigen Ld, induction of chimerism with L(d+), but not Ld-, bone marrow cells led to deletion of peripheral 2C+ CD8+ cells within 1 week in peripheral blood and spleen. Complete deletion required the presence of recipient CD4+ T cells. Thus, a novel, rapid form of regulation by CD4+CD25- T cells permits initial CD8 T cell tolerance in this model. Rapid peripheral deletion of donor-specific CD8 T cells precludes an ongoing requirement for CD4 T cell-mediated regulation.
Collapse
Affiliation(s)
- Thomas Fehr
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
43
|
Blaha P, Bigenzahn S, Koporc Z, Sykes M, Muehlbacher F, Wekerle T. Short-term immunosuppression facilitates induction of mixed chimerism and tolerance after bone marrow transplantation without cytoreductive conditioning. Transplantation 2005; 80:237-43. [PMID: 16041269 DOI: 10.1097/01.tp.0000164510.25625.70] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Induction of mixed chimerism and tolerance usually requires cytoreduction or transplantation of high numbers of bone marrow cells (BMC). However, such protocols have only a suboptimal success rate and, more importantly, equivalent numbers of BMC cannot be routinely obtained in the clinical setting. The authors therefore evaluated whether a short-course of immunosuppression (IS) given in addition to co-stimulation blockade would facilitate chimerism induction and allow reduction of the minimally required number of BMC without cytoreduction. METHODS B6 mice received 200, 100, or 50 x 10 unseparated BMC from Balb/c donors plus an anti-CD40L monoclonal antibody (mAb) and CTLA4Ig (without irradiation or cytotoxic drugs). Some groups were treated additionally with IS (rapamycin, methylprednisolone, and mycophenolate mofetil for 4 weeks after bone marrow transplantation), donor-specific transfusion (DST), or anti-OX40L mAb, as indicated. RESULTS IS led to long-term multilineage chimerism in 9 of 10 mice receiving 200 x 10 BMC (without IS, 1 of 4; P<0.05), in all mice (n=10) receiving 100 x 10 (without IS, 6 of 9; P<0.05), and notably in 9 of 10 mice treated with 50 x 10 BMC (without IS, 4 of 10; P<0.05). With transient IS, donor skin grafts were accepted longer than 170 days in 9 of 10 mice receiving 200 x 10 (without IS, 0 of 5 mice; P<0.05), all mice receiving 100 x 10 (without IS, 6 of 9; P<0.05), and 6 of 11 mice receiving 50 x 10 BMC (without IS, 4 of 10). The use of DST or anti-OX40L mAb had no beneficial effect. CONCLUSIONS Transient IS significantly improves rates of chimerism and donor skin graft survival, and allows lasting mixed chimerism after transplantation of only 50 x 10 BMC. Thus, IS might help in the further development of noncytoreductive chimerism protocols.
Collapse
Affiliation(s)
- Peter Blaha
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Transplantation of haematopoietic stem cells--cells capable of self renewing and reconstituting all types of blood cell--can treat numerous lethal diseases, including leukaemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant rheumatoid arthritis and multiple sclerosis. Studies in animal models show that the transfer of haematopoietic stem cells can reverse autoimmunity, and several mechanistic pathways may explain this phenomenon. The outcome of ongoing clinical trials, as well as of studies in patients and animal models, will help to determine the role that stem-cell transplantation can play in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Megan Sykes
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Building 149-5102, 13th Street, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|
45
|
Abstract
The establishment of mixed hematopoietic chimerism induces life-long donor-specific organ graft tolerance while obviating the need for chronic immunosuppression. Recent advances have dramatically reduced the conditioning toxicity required to achieve mixed chimerism. We argue that the achievement of high levels of donor chimerism ensures life-long deletion of donor-reactive T cells, precluding and obviating the need for regulatory mechanisms in the maintenance of tolerance. However, in situations where high levels of donor chimerism cannot be established or sustained, control of immune responsiveness can be achieved through additional mechanisms, including regulatory T cells.
Collapse
Affiliation(s)
- Josef Kurtz
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH East, Bldg. 149-5102 13(th) Street, Boston, MA 02129, USA
| | | | | |
Collapse
|
46
|
Prigozhina TB, Elkin G, Gurevitch O, Morecki S, Yakovlev E, Khitrin S, Slavin S. Depletion of alloantigen-primed lymphocytes overcomes resistance to allogeneic bone marrow in mildly conditioned recipients. Blood Cells Mol Dis 2004; 33:238-47. [PMID: 15528138 DOI: 10.1016/j.bcmd.2004.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Successful implantation of allogeneic bone marrow (BM) cells after nonmyeloablative conditioning would allow to compensate for the inadequate supply of compatible grafts and to reduce mortality of graft-vs.-host disease (GVHD). Recently, we proposed to facilitate engraftment of mismatched BM by conditioning for alloantigen-primed lymphocyte depletion (APLD) with cyclophosphamide (CY). Here we summarize the experimental results obtained by this approach. MATERIALS AND METHODS Naive or mildly irradiated BALB/c mice were primed with C57BL/6 BM cells (day 0), treated with CY (day 1) to deplete alloantigen-primed lymphocytes, and given a second C57BL/6 BM transplant (day 2) for engraftment. Recipients were repeatedly tested for chimerism in the blood and followed for GVHD and survival. The protocol was also tested for inducing tolerance to donor tissue and organ allografts, and for treatment of leukemia, breast cancer, and autoimmune diabetes in NOD mice. RESULTS APLD by 200 mg/kg CY provided engraftment of allogeneic BM from the same donor in 100% mildly irradiated recipients. Eighty percent chimeras remained GVHD-free more 200 days. All chimeras accepted permanently donor skin grafts and donor hematopoietic stromal progenitors. Allogeneic BM transplantation (BMT) after APLD had a strong therapeutic potential in BALB/c mice harboring malignant cells and in autoimmune NOD recipients. Tolerance-inducing CY dose could be reduced to 100 mg/kg. Conditioning for APLD resulted in engraftment of allogeneic BM after a significantly lower radiation dose than treatment with radiation and CY alone. CONCLUSION Our results demonstrate that conditioning for APLD has a definite advantage over general immunosuppression with CY and radiation therapy.
Collapse
Affiliation(s)
- Tatyana B Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The principle that the induction of (mixed) hematopoietic chimerism can lead to transplantation tolerance to another organ from the same donor has been verified in rodents, in large animals including non-human primates and recently in a selected group of renal transplant recipients. The wide application of this tool depends on the development of more gentle, non-toxic induction protocols and reliable assays with which to detect the establishment of stable donor-specific tolerance.
Collapse
Affiliation(s)
- Frans Claas
- Leiden University Medical Center, Department of Immunohematology and Blood Transfusion, Albinusdreef 2, PO Box 9600, 2300 RC, The Netherlands.
| |
Collapse
|
48
|
Prigozhina T, Slavin S. Transplantation of hematopoietic stem cells for induction of unresponsiveness to organ allografts. ACTA ACUST UNITED AC 2004; 26:169-85. [PMID: 15368079 DOI: 10.1007/s00281-004-0171-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although it has been recognized since the early days of Owen and Medawar that engraftment of donor stem cells, induced in utero spontaneously or intentionally neonatally, results in life-long unresponsiveness to donor alloantigens. However, successful induction of transplantation tolerance in adult life still represents an unsolved problem. Engraftment of donor stem cells using conventional modalities involves intensive myeloablative or lymphoablative immunosuppression, which is associated with toxicity and mortality and such methods are not suitable for organ allograft recipients. In this chapter, we present an innovative approach for induction of donor-specific unresponsiveness to bone marrow and organ allografts without myeloablative conditioning. Our methods is based on cyclophosphamide-induced, alloantigen-primed lymphocyte depletion. Cyclophosphamide is administered 1 day following infusion of donor hematopoietic cells, thus eliminating predominantly host T lymphocytes reacting against donor cell challenge, and resulting in relative unresponsiveness to donor alloantigens. Subsequently, life-long tolerance to fully mismatched donor skin allografts can be accomplished by a second infusion of stem cells from the same donor, with donor T cells displacing residual alloreactive host cells that may have escaped deletion. Taken together, we believe that induction of true permanent and specific tolerance to organ allografts using donor hematopoietic cells could become a clinical reality in the foreseeable future.
Collapse
Affiliation(s)
- Tatyana Prigozhina
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, P.O.B. 12000, 91120 Jerusalem, Israel
| | | |
Collapse
|
49
|
Donor hematopoietic cells: central versus peripheral tolerance. Curr Opin Organ Transplant 2004. [DOI: 10.1097/01.mot.0000134872.10331.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Abstract
Introduction of modern immunosuppressive agents has led to great success of allotransplantation in humans, and survival rates for all solid organs have been dramatically improved. However, a constant proportion of organs is lost every year due to chronic allograft rejection and immunosuppressive drug toxicity. This has led to a situation where, despite the of donor organ shortage, about one third of the patients on the kidney transplant waiting list are listed for a retransplant. The induction of donor-specific tolerance has the potential of at least partially resolving this problem, since it might prevent chronic rejection and drug toxicity at the same time. For a variety of protocols, successful tolerance induction has been demonstrated in rodent models. However, translation of such protocols to large animal models and on clinical trials has turned out to be very difficult. This review briefly describes mechanisms and barriers to transplantation tolerance, and then focuses on pre-clinical and clinical studies in non-human primates and humans. We have divided the strategies into two groups, based on the principle mechanisms of tolerance induction: the first group are protocols not using hematopoietic stem cell transplantation (HCT) as part of there regimen. They rely mainly on intensive T cell depletion (either by total body irradiation, total lymphoid irradiation or treatment with T cell-depleting agents such as anti-thymocyte globulin, anti-CD52 antibody or CD3 immunotoxin), which have been combined with costimulatory blockade, signaling blockade or donor antigen infusion. The second group are HCT-based protocols combining HCT with T cell-depleting agents and cytoreductive treatment. So far, only two protocols (one with total lymphoid irradiation and anti-thymocyte globulin, but no HCT; one with HCT, cyclophosphamide, anti-thymocyte globulin and thymic irradiation) have been translated into successful human studies. We summarize and discuss the results of these trials and suggest goals for further studies for the development tolerance protocols applicable for a broad population of allograft recipients.
Collapse
Affiliation(s)
- Thomas Fehr
- Transplantation Biology Research Center, Bone Marrow Transplantation Section, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|