1
|
Characterization and evaluation of cytotoxic effect, antioxidant and antimicrobial activities of zinc oxide nanoparticles derived from Justicia adhatoda. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Afshar EA, Taher MA. New fabrication of CuFe2O4/PAMAM nanocomposites by an efficient removal performance for organic dyes: Kinetic study. ENVIRONMENTAL RESEARCH 2022; 204:112048. [PMID: 34536375 DOI: 10.1016/j.envres.2021.112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Today, removing pollutants from water sources is essential because of the population increase and the growing need for safe drinking water. Dyes are one of the most critical pollutants from industrial effluents such as paper and textile industries that profoundly affect the environment. There are several ways to remove environmental contaminants. Magnetic nanoparticles have a high ability to adsorb dyes. Of course, increasing the interaction between magnetic nanomaterials and pollutants is also essential, which can be done using porous materials such as dendrimers. In this work, the synthesis of CuFe2O4 magnetite nanoparticles within the polyamidoamine dendrimers structure was used as an efficient sorbent to remove both alizarin reds (ARS) and brilliant green (BG) dyes. Moreover, various parameters for dyes removal were studied. The optimum removal conditions were obtained for ARS within 30 min at a sorbent dose of 2 mg per 5 mL for the initial dye concentration of 7.0 ppm in pH 6 at 25 °C, and for BG within 45 min at a sorbent dose of 5 mg per 5 mL for the initial dye concentration of 17.0 ppm in pH 8 at 25 °C. At the optimum values of the above parameters, both dyes' removal efficiency was more than 97%. Also, the obtained results showed that the adsorption isotherm follows the Langmuir model and Temkin model for ARS and BG, respectively. This method was successfully used for the removal of both dyes in water samples.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Research Societies, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
4
|
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. ENVIRONMENTAL RESEARCH 2022; 204:111961. [PMID: 34492277 DOI: 10.1016/j.envres.2021.111961] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.
Collapse
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
5
|
Fe3O4@Au-rGO Nanocomposite/Ionic Liquid Modified Sensor for Ultrasensitive and Selective Sensing of Doxorubicin. Top Catal 2022. [DOI: 10.1007/s11244-021-01504-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
7
|
Shahraki S, Masrournia M, Karimi-Maleh H. Fabrication of Electrochemical Sensor for Epinine Determination
Amplified with MgO/CNTs Nanocomposite and Ionic Liquid. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666210303091301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Catecholamines are a large group of pharmacological and biological compounds
that are widely used in biological systems. These compounds are prepared both naturally
and synthetically with many key roles in the human body and its activities. Therefore, many researchers
focused on the identification and determination of catecholamines in biological samples.
Methods:
MgO/SWCNTs were synthesized through the chemical precipitation method. In addition,
cyclic voltammetry, differential pulse voltammetry, and chronoamperometric methods were used
for the electro-oxidation reaction study of epinine at the surface of the modified electrode.
Results:
Carbon paste electrode (CPE) modified with MgO/SWCNTs nanocomposite and 1-butyl-
3-methylimidazolium methanesulfonate (BMMS) was used as an electrochemical sensor for the
determination of epinine. The results showed a linear dynamic range of 5.0 nM-250 μM with a
detection limit of 0.1 nM for epinine determination using MgO/SWCNTs/BMMS/CPE as a sensor.
Conclusion:
In the present study, a highly sensitive electrochemical sensor was designed and fabricated
as an analytical tool for the determination of epinine. MgO/SWCNTs/BMMS/CPE was
successfully used for the determination of epinine in water and dextrose saline with an acceptable
recovery range of 98.7%-102.72%.
Collapse
Affiliation(s)
- Shirin Shahraki
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad,Iran
| | | | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Advanced Technology, Quchan,Iran
| |
Collapse
|
8
|
Orooji Y, Tanhaei B, Ayati A, Tabrizi SH, Alizadeh M, Bamoharram FF, Karimi F, Salmanpour S, Rouhi J, Afshar S, Sillanpää M, Darabi R, Karimi-Maleh H. Heterogeneous UV-Switchable Au nanoparticles decorated tungstophosphoric acid/TiO 2 for efficient photocatalytic degradation process. CHEMOSPHERE 2021; 281:130795. [PMID: 34022601 DOI: 10.1016/j.chemosphere.2021.130795] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In the present study, gold nanoparticles were locally well-decorated on the surface of TiO2 using the tungstophosphoric acid (HPW), as UV-switchable reducing intermediate linkers. The prepared Au NPs/HPW/TiO2 nanostructure was characterized using FTIR, XRD, EDS, SEM and TEM, which confirmed the successful attachment of quasi-spherical Au NPs in the range of 20-30 nm on the surface of HPW modified TiO2. Also, the FTIR results show that the Au NPs were binded to TiO2 through the terminal the oxygen atoms HPW. The photocatalytic performance of prepared nanostructures was assessed in degradation of nitrobenzene. The nitrobenzene photodegradation kinetic study revealed that it well followed the Langmuir-Hinshelwood kinetic model with the apparent rate constant of 0.001 min-1 using anatase TiO2, 0.0004 min-1 using HPW, 0.0014 using HPW/TiO2, while it was obtained 0.0065 min-1 using Au NPs@HPW/TiO2 nanostructure. It shows that the photocatalytic rate of the prepared nanocomposites increased by 6.5- and 4.6-fold compared to photoactivity of anatase TiO2 and HPW/TiO2 respectively. Also, the photocatalytic mechanism of process was proposed. Moreover, the reusability study confirmed that its photocatalytic activity still remained high after three cycles.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Soheil Hamidi Tabrizi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| |
Collapse
|
9
|
Enzymatic sensing of tyrosine in egg and cheese samples using electrochemical sensor amplified with reduced graphene oxide. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01099-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Sadrnia A, Orooji Y, Behmaneshfar A, Darabi R, Maghsoudlou Kamali D, Karimi-Maleh H, Opoku F, Govender PP. Developing a simple box-behnken experimental design on the removal of doxorubicin anticancer drug using Fe 3O 4/graphene nanoribbons adsorbent. ENVIRONMENTAL RESEARCH 2021; 200:111522. [PMID: 34129863 DOI: 10.1016/j.envres.2021.111522] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
This paper aims to develop a Box-Behnken experimental design system to optimize the removal process of doxorubicin anticancer drugs. For this goal, Fe3O4/graphene nanoribbons was selected as adsorbent and removal of doxorubicin anticancer drug optimized using Box-Behnken experimental design with a selection of four effective factors. A three-level, four-factor Box-Behnken experimental design was used to assess the relationship between removal percentage as a dependent variable with adsorption weight (0.0015-0.01 mg), pH (3-9), temperature (15-45 °C) and time (1-15 min) as independent variables. Optimized condition by Behnken experimental design (pH = 7.36; time = 15 min; adsorbent weight = 0.01 mg and temperature = 29.26 °C) improved removal of doxorubicin anticancer drug about 99.2% in aqueous solution. The dynamic behavior, adsorption properties and mechanism of doxorubicin molecule on Fe3O4/graphene nanoribbon were investigated based on ab initio molecular dynamics (AIMD) simulations and density functional theory calculations with dispersion corrections. A closer inspection of the adsorption configurations and binding energies revealed that π-π interactions were the driving force when the doxorubicin molecule adsorbed on Fe3O4/graphene nanoribbon. The observed negative adsorption energy signifies a favourable and exothermic adsorption process of the various adsorbate-substrate systems. Besides, AIMD and phonon dispersion calculations confirm the dynamic stability of Fe3O4/graphene nanoribbon.
Collapse
Affiliation(s)
- Abdolhossein Sadrnia
- Department of Industrial Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Ali Behmaneshfar
- Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rozhin Darabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Donya Maghsoudlou Kamali
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, China; Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Francis Opoku
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Penny Poomani Govender
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
11
|
Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top Catal 2021. [DOI: 10.1007/s11244-021-01479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Hassani Moghadam F, Taher MA, Karimi-Maleh H. Doxorubicin Anticancer Drug Monitoring by ds-DNA-Based Electrochemical Biosensor in Clinical Samples. MICROMACHINES 2021; 12:808. [PMID: 34357218 PMCID: PMC8306963 DOI: 10.3390/mi12070808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
In this research, glassy carbon electrode (GCE) amplified with single-wall carbon nanotubes (SWCNTs) and ds-DNA was fabricated and utilized for voltammetric sensing of doxorubicin with a low detection limit. In this technique, the reduction in guanine signal of ds-DNA in the presence of doxorubicin (DOX) was chosen as an analytical factor. The molecular docking study revealed that the doxorubicin drug interacted with DNA through intercalation mode, which was in agreement with obtained experimental results. The DOX detection performance of ds-DNA/SWCNTs/GCE was assessed at a concentration range of 1.0 nM-20.0 µM. The detection limit was found to be 0.6 nM that was comparable and even better (in many cases) than that of previous electrochemical reported sensors. In the final step, the ds-DNA/SWCNTs/GCE showed powerful ability for determination of the DOX in injection samples with acceptable recovery data.
Collapse
Affiliation(s)
| | - Mohammad A. Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
| |
Collapse
|
13
|
An electrochemical strategy for toxic ractopamine sensing in pork samples; twofold amplified nano-based structure analytical tool. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00982-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Pachaiappan R, Rajendran S, Show PL, Manavalan K, Naushad M. Metal/metal oxide nanocomposites for bactericidal effect: A review. CHEMOSPHERE 2021; 272:128607. [PMID: 33097236 DOI: 10.1016/j.chemosphere.2020.128607] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/13/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Many microbial species causing infectious disease all over the world became a social burden and creating threat among community. These microbes possess long lifetime, enhancing mortality and morbidity rate in affected organisms. In this condition, the treatment was ineffective and more chances of spreading of infection into other organisms. Hence, it is necessary to initiate infection control efforts and prevention activities against multidrug resistant microbes, to reduce the death rate of people. Seriously concerning towards this problem progress was shown in developing significant drugs with least side effects. Emergence of nanoparticles and its novelty showed effective role in targeting and destructing microbes well. Further, many research works have shown nanocomposites developed from nanoparticles coupled with other nanoparticles, polymers, carbon material acted as an exotic substance against microbes causing severe loss. However, metal and metal oxide nanocomposites have gained interest due to its small size and enhancing the surface contact with bacteria, producing damage to it. The bactericidal mechanism of metal and metal oxide nanocomposites involve in the production of reactive oxygen species which includes superoxide radical anions, hydrogen peroxide anions and hydrogen peroxide which interact with the cell wall of bacteria causing damage to the cell membrane in turn inhibiting the further growth of cell with leakage of internal cellular components, leading to death of bacteria. This review provides the detailed view on antibacterial activity of metal and metal oxide nanocomposite which possessed novelty due to its physiochemical changes.
Collapse
Affiliation(s)
- Rekha Pachaiappan
- Department of Sustainable Energy Management, Stella Maris College, Chennai, 600086, Tamilnadu, India.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad deIngeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kovendhan Manavalan
- Department of Nuclear Physics, University of Madras, Gunidy Campus, Chennai, 600 025, Tamilnadu, India
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| |
Collapse
|
15
|
Moghaddam A, Zamani HA, Karimi-Maleh H. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe 3O 4-SWCNTs/Ionic Liquid Paste Sensor. MICROMACHINES 2021; 12:mi12040437. [PMID: 33919951 PMCID: PMC8070955 DOI: 10.3390/mi12040437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
A new electrochemical platform was suggested for the sensing of the dasatinib (DA) anticancer drug based on paste electrode modification (PE) amplified with Fe3O4-SWCNTs nanocomposite and 1-hexyl-3-methylimidazolium tetrafluoroborate (mim-BF4−). The new platform showed a linear dynamic range from 0.001–220 µM with a detection limit of 0.7 nM to determine DA at optimal condition. Electrochemical investigation showed that the redox reaction of DA is relative to changing the pH of solution. Moreover, Fe3O4-SWCNTs/mim-BF4−/PE has improved the oxidation current of DA about 5.58 times which reduced its oxidation potential by about 120 mV at optimal condition. In the final step, Fe3O4-SWCNTs/mim-BF4−/PE was used as an analytical platform to determine the DA in tablets and a dextrose saline spike sample, and the results showed recovery data 99.58–103.6% which confirm the powerful ability of the sensor as an analytical tool to determine the DA in real samples.
Collapse
Affiliation(s)
- Ali Moghaddam
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Hassan Ali Zamani
- Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
- Correspondence: (H.A.Z.); (H.K.-M.); Tel.: +98-9112540112 (H.K.-M.)
| | - Hassan Karimi-Maleh
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Correspondence: (H.A.Z.); (H.K.-M.); Tel.: +98-9112540112 (H.K.-M.)
| |
Collapse
|
16
|
Formaldehyde Emission in Micron-Sized Wollastonite-Treated Plywood Bonded with Soy Flour and Urea-Formaldehyde Resin. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196709] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soy flour was partly substituted for urea-formaldehyde (UF) resin with different content to investigate its effect on formaldehyde emission in three-layer plywood panels. In each square meter of panels, 300 g of resin was used (wet weight basis of resin). Micron-sized wollastonite was added to the resin mixture at 5% and 10% consumption levels (wet weight basis of resin) to determine its potential effects as a reinforcing filler to mitigate the negative effects of addition of soy flour. Results showed a decreasing trend in formaldehyde emission as soy flour content increased to 20%. The highest shear-strength values were observed in panels with 10% and 15% soy flour content. The addition of wollastonite did not have a significant effect on formaldehyde emission, but it decreased the shear strength in soy-treated panels, although the values were still higher than those of control panels. Wollastonite significantly mitigated the negative effects of soy flour on the water absorption and thickness swelling of panels. It was concluded that 10% of soy flour and 5% of wollastonite provided the lowest formaldehyde emission and the most optimum physical and mechanical properties.
Collapse
|
17
|
Potential Use of Wollastonite as a Filler in UF Resin Based Medium-Density Fiberboard (MDF). Polymers (Basel) 2020; 12:polym12071435. [PMID: 32605051 PMCID: PMC7408164 DOI: 10.3390/polym12071435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
Urea-formaldehyde (UF) resins are primary petroleum-based, increasing their potential environmental footprint. Identifying additives to reduce the total amount of resin needed without adversely affecting the panel properties could reduce these impacts. Wollastonite is a mineral containing calcium and silica that has been used as an additive in a variety of materials and may be useful as a resin extender. Nanoscale wollastonite has been shown to enhance the panel properties but is costly. Micron-scale wollastonite may be a less costly alternative. Medium-density fiberboards were produced by blending a hardwood furnish with UF alone, micron-sized wollastonite alone, or a 9:1 ratio of UF to wollastonite. Panels containing of only wollastonite had poor properties, but the properties of panels with 9:1 UF/wollastonite were similar to the UF-alone panels, except for the internal bond strength. The results suggest that small amounts of micron-sized wollastonite could serve as a resin extender. Further studies are suggested to determine if the micron-sized material has similar positive effects on the resin curing rate.
Collapse
|
18
|
Esmailpour A, Majidi R, Taghiyari HR, Ganjkhani M, Mohseni Armaki SM, Papadopoulos AN. Improving Fire Retardancy of Beech Wood by Graphene. Polymers (Basel) 2020; 12:polym12020303. [PMID: 32028564 PMCID: PMC7077454 DOI: 10.3390/polym12020303] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this paper was to improve the fire retardancy of beech wood by graphene. Six fire properties, namely time to onset of ignition, time to onset of glowing, back-darkening time, back-holing time, burnt area and weight loss were measured using a newly developed apparatus with piloted ignition. A set of specimens was treated with nano-wollastonite (NW) for comparison with the results of graphene-treated specimens. Graphene and NW were mixed in a water-based paint and brushed on the front and back surface of specimens. Results demonstrated significant improving effects of graphene on times to onset of ignition and glowing. Moreover, graphene drastically decreased the burnt area. Comparison between graphene- and NW-treated specimens demonstrated the superiority of graphene in all six fire properties measured here. Fire retardancy impact of graphene was attributed to its very low reaction ability with oxygen, as well as its high and low thermal conductivity in in-plane and cross-section directions, respectively. The improved fire-retardancy properties by the addition of graphene in paint implied its effectiveness in hindering the spread of fire in buildings and structures, providing a longer timespan to extinguish a fire, and ultimately reducing the loss of life and property. Based on the improvements in fire properties achieved in graphene-treated specimens, it was concluded that graphene has a great potential to be used as a fire retardant in solid wood species.
Collapse
Affiliation(s)
- Ayoub Esmailpour
- Department of Physics, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran; (A.E.); (R.M.)
| | - Roya Majidi
- Department of Physics, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran; (A.E.); (R.M.)
| | - Hamid R. Taghiyari
- Wood Science and Technology Department, Faculty of Materials Engineering & New Technologies, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran;
- Correspondence: (H.R.T.); (A.N.P.)
| | - Mehdi Ganjkhani
- Wood Science and Technology Department, Faculty of Materials Engineering & New Technologies, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran;
| | | | - Antonios N. Papadopoulos
- Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece
- Correspondence: (H.R.T.); (A.N.P.)
| |
Collapse
|