1
|
Mohany M, Ali J, Wahab A, Fozia F, Shah SM, Gul R, Gul A, Ahmad I, Milošević M, Al-Rejaie SS, Aboul-Soud MAM. Green synthesized AgNPs of the Anchusa arvensis aqueous extract resulting in impressive protein kinase, antioxidant, antibacterial, and antifungal activities. Z NATURFORSCH C 2024:znc-2024-0148. [PMID: 39323117 DOI: 10.1515/znc-2024-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
This study focused on analyzing the pharmacological activities of AgNPs synthesized from an aqueous plant extract of Anchusa arvensis. The effectiveness of AgNPs was evaluated for protein kinase inhibition, antioxidant, antibacterial, and antifungal activities. The AgNPs and plant were used to regulate the protein kinase activity using the liquid TSB and ISP4 medium protein kinase inhibition study demonstrated that nanoparticles exhibited a larger zone of inhibition (9.1 ± 0.8) compared to the plant extract (8.1 ± 0.6). The antioxidant activity was assessed using DPPH reagent, and the results indicated that AgNPs displayed potent free radical scavenging properties. In terms of antibacterial activity, AgNPs showed higher efficacy against Enterobacter aerogens (20.1 ± 0.9), Bordetella bronchiseptaca (19.1 ± 0.9), and Salmonella typhimurium (17.2 ± 0.8) at 4 mg/mL. The antifungal activity of AgNPs was prominent against Aspergillus fumagatus (14.1 ± 0.9), Mucor species (19.2 ± 0.8), and Fusarium solani (11.2 ± 0.8) at 20 mg/mL. These findings suggest that AgNPs possess multiple beneficial properties, including bactericidal/fungicidal effects, protein kinase inhibition, and potential free radical scavenging abilities. Therefore, AgNPs have potential applications in various fields, such as biomedicine and industry, due to their ability to counteract the harmful effects of free radicals.
Collapse
Affiliation(s)
- Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Jamshed Ali
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Fozia Fozia
- Department of Biochemistry, Khyber Medical University Institute of Dental Sciences, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Majid Shah
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Ahmad Gul
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mourad A M Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
2
|
Valorisation of fruit peel bioactive into green synthesized silver nanoparticles to modify cellulose wrapper for shelf-life extension of packaged bread. Food Res Int 2023; 164:112321. [PMID: 36737915 DOI: 10.1016/j.foodres.2022.112321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Fruit peels are rich source of bioactive compounds such as polyphenols, flavonoids, and antioxidants but are often discarded as waste due to limited pharmaceutical and nutraceutical applications. This study aimed to valorise pomegranate and citrus fruit peel into green synthesised silver nanoparticles (AgNPs) in order to modify cellulose-based wrapping material for prospective food packaging applications and propose an alternate and sustainable approach to replace polyethene based food packaging material. Four different concentrations of AgNO3 (0.5 mM, 1 mM, 2 mM, and 3 mM) were used for green synthesis of AgNPs from fruit peel bioactive, which were characterised followed by phytochemical analysis. Ultraviolet-Visible spectroscopy showed surface plasmon resonance at 420 nm, XRD analysis showed 2θ peak at 27.8°, 32.16°, 38.5°, 44.31°, 46.09°, 54.76°, 57.47°, 64.61° and 77.50° corresponding to (210), (122), (111), (200), (231), (142), (241), (220) and (311) plane of face centred cubic crystal structure of AgNPs. Fourier-transform infrared spectroscopy analysis of AgNPs green synthesised from pomegranate and kinnow peel extract showed a major peak at 3277, 1640 and 1250-1020 1/cm while a small peak at 2786 1/cm was observed in case of pomegranate peel extract which was negligible in AgNPs synthesized from kinnow peel extract. Particle sizes of AgNPs showed no statistically significant variance with p > 0.10 and thus, 2 mM was chosen for further experimentation and modification of cellulose based packaging material as it showed smallest average particle size. Zeta potential was observed to be nearly neutral with a partial negative strength due to presence of various phenolic compounds such as presence of gallic acid which was confirmed by ultrahigh performance liquid chromatography-photodiode array(UHPLC-PDA) detector. Thermal stability analysis of green synthesised AgNPs qualified the sterilisation conditions up to 100 °C. AgNPs green synthesized from both the peel extracts had higher polyphenolic content, antioxidant and radical scavenging activity as compared to peel extracts without treatment (p < 0.05). The cellulose based food grade packaging material was enrobed by green synthesised AgNPs. The characterisation of modified cellulose wrappers showed no significant difference in thickness of modified cellulose wrappers as compared with untreated cellulose wrapper (p > 0.42) while weight and grammage increased significantly in modified cellulose wrapper (p < 0.05). The colour values on CIE scale (L*, a* and b*) showed statistically significant increase in yellow and green colour (p < 0.05) for modified cellulose wrappers as compared to control wrapper. The oxygen permeability coefficient, water vapour permeability coefficient, water absorption capacity and water behaviour characteristics (water content, swelling degree and solubility) showed significant decrease (p < 0.05) for modified cellulose wrapper as compared to control wrapper. A uniform distribution and density of green synthesised AgNPs across cellulose wrapper matrix was observed through scanning electron microscopy (SEM) images with no significant aggregation, confirming successful enrobing and stable immobilisation of nanoparticles from cellulose matrix. A seven-day storage study of bread wrapped in modified and control cellulose wrappers showed delayed occurrence of microbial, yeast and mould count in bread packaged in modified cellulose wrappers and thus, resulting in shelf life extension of bread. The results are encouraging for the potential applications of modified cellulose wrappers to replace polyethene based food packaging.
Collapse
|
3
|
Krishnani KK, Boddu VM, Chadha NK, Chakraborty P, Kumar J, Krishna G, Pathak H. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81130-81165. [PMID: 36203045 PMCID: PMC9540199 DOI: 10.1007/s11356-022-23301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 05/06/2023]
Abstract
Global agriculture is facing tremendous challenges due to climate change. The most predominant amongst these challenges are abiotic and biotic stresses caused by increased incidences of temperature extremes, drought, unseasonal flooding, and pathogens. These threats, mostly due to anthropogenic activities, resulted in severe challenges to crop and livestock production leading to substantial economic losses. It is essential to develop environmentally viable and cost-effective green processes to alleviate these stresses in the crops, livestock, and fisheries. The application of nanomaterials in farming practice to minimize nutrient losses, pest management, and enhance stress resistance capacity is of supreme importance. This paper explores innovative methods for synthesizing metallic and non-metallic nanoparticles using plants, animals, and fisheries wastes and their valorization to mitigate abiotic and biotic stresses and input use efficiency in climate-smart and stress-resilient agriculture including crop plants, livestock, and fisheries.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India.
| | - Veera Mallu Boddu
- Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana, India
| | - Gopal Krishna
- ICAR-Central Institute of Fisheries Education (Deemed University), Mumbai 400061, Versova, Andheri (W), India
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110012, India
| |
Collapse
|
4
|
Suhag R, Kumar R, Dhiman A, Sharma A, Prabhakar PK, Gopalakrishnan K, Kumar R, Singh A. Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review. Crit Rev Food Sci Nutr 2022; 63:6757-6776. [PMID: 35196934 DOI: 10.1080/10408398.2022.2043237] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.
Collapse
Affiliation(s)
- Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Rohit Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Atul Dhiman
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Arun Sharma
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pramod K Prabhakar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Krishna Gopalakrishnan
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Haryana, India
| |
Collapse
|
5
|
Jin X, Guo P, Guan P, Wang S, Lei Y, Wang G. The fabrication of paper separation channel based SERS substrate and its recyclable separation and detection of pesticides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118561. [PMID: 32521445 DOI: 10.1016/j.saa.2020.118561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
In this article, a modified paper separation channel SERS substrate was fabricated by a pen writing method for the simultaneous separation and detection of thiuram and dimethoate. The hydrophilic channel was fabricated with both sides of hydrophobic barrier by the Alkylketene dimer (AKD) modified paper substrate, of which the flow dynamic was well conformed to the Lucas-Washburn model and could be used to separate pesticides effectively. As modified by Ag nanoparticles (AgNPs) and ZnO nanoparticles (ZnONPs), the hydrophilic channel exhibited high recyclable SERS detection activity and stability. The separation and detection performance with different target proportion, channel width and sample volume were studied in detail, which have significant influence on the diffusion process. Additionally, the Raman detects intensity on the substrate also showed linear relationship from 100 to 1000 μg/L. The calculated limit of detects (LODs) under optimal experimental conditions were 54.57 and 19.16 μg/L for dimethoate and thiuram, respectively. Due to the loading of ZnONPs, the substrate could be used repeatably with good stability. The convenient preparation, effective separation and repeatability make this paper based separation channel SERS substrate have great potential application on the fast separation and simultaneous detection of various pesticides in complex field.
Collapse
Affiliation(s)
- Xiangying Jin
- Guangdong Provincial Key laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China; School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Pengran Guo
- Guangdong Provincial Key laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Peng Guan
- Guangdong Provincial Key laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Song Wang
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Yongqian Lei
- Guangdong Provincial Key laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Guanhua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Ahmad I, Zia-ur-Rehman, Waseem A, Tariq M, MacBeth C, Bacsa J, Venkataraman D, Rajakumar A, Ullah N, Tabassum S. Organotin(IV) derivatives of amide-based carboxylates: Synthesis, spectroscopic characterization, single crystal studies and antimicrobial, antioxidant, cytotoxic, anti-leishmanial, hemolytic, noncancerous, anticancer activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ali JS, Mannan A, Nasrullah M, Ishtiaq H, Naz S, Zia M. Antimicrobial, antioxidative, and cytotoxic properties ofMonotheca buxifoliaassisted synthesized metal and metal oxide nanoparticles. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1724150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joham Sarfraz Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Madeeha Nasrullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hina Ishtiaq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sania Naz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Bao Z, Lan CQ. Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms-A review. Colloids Surf B Biointerfaces 2019; 184:110519. [PMID: 31569003 DOI: 10.1016/j.colsurfb.2019.110519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 12/24/2022]
Abstract
The last decade has witnessed significant developments in the biosynthesis of noble metal nanoparticles (NMNPs) due to their distinct advantages in various practical applications. Many photosynthetic organisms, including plants, microalgae, and photosynthetic bacteria, have been explored for NMNP synthesis in an eco-friendly and cost-effective manner. These biomasses were used for NMNP biosynthesis as growing cells, non-growing cells, whole cells extract, disrupted cell extract, residual biomasses, gum solutions, etc. Different mechanisms might be involved to reduce noble metal ions to NMNP. These mechanisms include reduction of metal ions catalysed by reductases using NADH as electron donors, reduction of metal ions using biochemical molecules such as polysaccharides and proteins as electron donators, and light-dependant biosynthesis of NMNP involving pigments for light capture and water-splitting for electron supplementation. NMNP may be applied as catalyst, antibacterial, anticancer, and drug delivery vehicle.
Collapse
Affiliation(s)
- Zeqing Bao
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| | - Christopher Q Lan
- Department of Chemical and Biological Engineering, University of Ottawa, Canada.
| |
Collapse
|
9
|
Tabassum S, Zia M, Carcahe de Blanco EJ, Batool R, Aslam R, Hussain S, Wali Q, Gulzar MM. Phytochemical, in-vitro biological and chemo-preventive profiling of Arisaema jacquemontii Blume tuber extracts. Altern Ther Health Med 2019; 19:256. [PMID: 31521162 PMCID: PMC6744708 DOI: 10.1186/s12906-019-2668-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/30/2019] [Indexed: 03/12/2023]
Abstract
Background Arisaema jacquemontii is traditionally used in treatment of different diseases. In this study, phytochemical, in vitro biological and chemo-preventive screening of A. jacquemontii was carried out to explore its pharmacological potential. Methods The dried tuber of A. jacquemontii was extracted in 11 organic solvent mixture of different polarity. The extracts were screened for phytochemical assays (phenolics and flavonoids), antioxidants potential (free radical scavenging activity, total antioxidant activity, reducing power), biological activities (antibacterial, antifungal, cytotoxic, antileishmanial, protein kinase inhibition), and chemopreventive activities using different cell lines through standard protocols. Results Significant amount phenolic contents were determined in EtOH and MeOH extracts (210.3 ± 3.05 and 193.2 ± 3.15 μg GAE/mg, respectively). Maximum flavonoid content was determined in MeOH extract (22.4 ± 4.04 μg QE/mg). Noteworthy, DPPH scavenging activity was also recorded for MeOH extract (87.66%) followed by MeOH+EtOAc extract (85.11%). Considerable antioxidant capacity (7.8 ± 0.12 μg AAE/mg) and reducing power (3.1 ± 0.15 μg AAE/mg) was observed in extract of MeOH. The LC50 against brine shrimp and leishmanial parasite was found 9.01 and 12.87 μg/mL for n-Hex and CHCl3 extracts, respectively. The highest zone of inhibition against Streptomyces hyphae formation (12.5 ± 1.77 mm) by n-Hex extract. Growth zone of inhibition 13.8 ± 1.08 mm was recorded for EtOAc and MeOH extracts, respectively against Micrococcus luteus while 10.0 ± 0.11 mm for MeOH extract against Aspergillus flavus. In-vitro cytotoxic assay showed that n-Hex extract had higher cytotoxicity against DU-145 prostate cancer and HL-60 cancer cell lines. NF-kB and MTP potential showed 34.01 and 44.87 μg/mL for n-Hex and CHCl3 extracts, respectively in chemo-preventive potential. Conclusion The study concludes that Arisaema jacquemontii bears significant phytochemical activity and pharmacological activities, this plant can be further explored for isolation of active component against a number of aliments.
Collapse
|
10
|
Das G, Patra JK, Debnath T, Ansari A, Shin HS. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One 2019; 14:e0220950. [PMID: 31404086 PMCID: PMC6690543 DOI: 10.1371/journal.pone.0220950] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/27/2019] [Indexed: 01/22/2023] Open
Abstract
Currently, green nanotechnology-based approaches using waste materials from food have been accepted as an environmentally friendly and cost-effective approach with various biomedical applications. In the current study, AgNPs were synthesized using the outer peel extract of the fruit Ananas comosus (AC), which is a food waste material. Characterization was done using UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The formation of AgNPs has confirmed through UV–visible spectroscopy (at 485 nm) by the change of color owing to surface Plasmon resonance. Based on the XRD pattern, the crystalline property of AgNPs was established. The functional group existing in AC outer peel extract accountable for the reduction of Ag+ ion and the stabilization of AC-AgNPs was investigated through FT-IR. The morphological structures and elemental composition was determined by SEM and EDX analysis. With the growing application of AgNPs in biomedical perspectives, the biosynthesized AC-AgNPs were evaluated for their antioxidative, antidiabetic, and cytotoxic potential against HepG2 cells along with their antibacterial potential. The results showed that AC-AgNPs are extremely effective with high antidiabetic potential at a very low concentration as well as it exhibited higher cytotoxic activity against the HepG2 cancer cells in a dose-dependent manner. It also exhibited potential antioxidant activity and moderate antibacterial activity against the four tested foodborne pathogenic bacteria. Overall, the results highlight the effectiveness and potential applications of AC-AgNPs in biomedical fields such as in the treatment of acute illnesses as well as in drug formulation for treating various diseases such as cancer and diabetes. Further, it has applications in wound dressing or in treating bacterial related diseases.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Trishna Debnath
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, Korea
| | - Abuzar Ansari
- Department of Obstetrics and Gynecology, Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, Korea
- * E-mail:
| |
Collapse
|
11
|
Naz S, Islam M, Tabassum S, Fernandes NF, Carcache de Blanco EJ, Zia M. Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.088] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Naz S, Kazmi STB, Zia M. CeO
2
nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. J Biochem Mol Toxicol 2019; 33:e22291. [DOI: 10.1002/jbt.22291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Sania Naz
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabad Pakistan
| | | | - Muhammad Zia
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabad Pakistan
| |
Collapse
|