1
|
Song Y, Han N, Guo Z, Li H, Guo M, Dou M, Ye J, Peng Z, Lu X, Li M, Wang X, Bai J, Du S. Baicalein-modified chitosan nanofiber membranes with antioxidant and antibacterial activities for chronic wound healing. Int J Biol Macromol 2024; 279:134902. [PMID: 39168207 DOI: 10.1016/j.ijbiomac.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Diabetic foot ulcers, burns and many other trauma can lead to the formation of skin wounds, which often remain open for a long period of time, seriously affecting the quality of patient's life. Oxidative stress and infection are the main factors affecting the healing of chronic wounds, so it is important to develop dressings with dual antioxidant and antimicrobial properties for wound management. In this study, functionalized chitosan was synthesized by modifying chitosan with antioxidant baicalein to enhance the antimicrobial and antioxidant activities of chitosan. Then the obtained baicalein-modified chitosan was prepared into nanofibrous membranes by electrospinning. The membrane structures were characterized, and the antioxidant and antibacterial activities were evaluated by in vivo and in vitro experiments. The results showed that the prepared wound dressings had excellent antioxidant and antibacterial activities and significantly accelerated the wound process. This study provided a reference for the development of novel dressing materials to promote wound healing.
Collapse
Affiliation(s)
- Yang Song
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Mingxue Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minhang Dou
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ziwei Peng
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinying Lu
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minghui Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinran Wang
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- Beijing university of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Ren Y, Wang Q, Xu W, Yang M, Guo W, He S, Liu W. Alginate-based hydrogels mediated biomedical applications: A review. Int J Biol Macromol 2024; 279:135019. [PMID: 39182869 DOI: 10.1016/j.ijbiomac.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
With the development in the field of biomaterials, research on alternative biocompatible materials has been initiated, and alginate in polysaccharides has become one of the research hotspots due to its advantages of biocompatibility, biodegradability and low cost. In recent years, with the further understanding of microscopic molecular structure and properties of alginate, various physicochemical methods of cross-linking strategies, as well as organic and inorganic materials, have led to the development of different properties of alginate hydrogels for greatly expanded applications. In view of the potential application prospects of alginate-based hydrogels, this paper reviews the properties and preparation of alginate-based hydrogels and their major achievements in delivery carrier, dressings, tissue engineering and other applications are also summarized. In addition, the combination of alginate-based hydrogel and new technology such as 3D printing are also involved, which will contribute to further research and exploration.
Collapse
Affiliation(s)
- Yazhen Ren
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wanlin Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Mingcheng Yang
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Wenhui Guo
- Henan Academy of Sciences Isotope Institute Co., Ltd.7 Songshan South Road, Zhengzhou 450015, People's Republic of China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
3
|
Liu M, Ma C, Dong X, Gu M, Wang Z, Gao Q, Guo X. Nursing bibliometric analysis of wound infections. Medicine (Baltimore) 2024; 103:e40256. [PMID: 39470503 PMCID: PMC11521017 DOI: 10.1097/md.0000000000040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND This paper aims to perform a bibliometric analysis of research pertaining to the nursing care of infected wounds. It also aims to examine the current focal points and trends in research development. The paper offers research references that may be useful for practitioners interested in related areas. METHODS The Web of Science Core Collection database was queried for publications pertaining to infected wound care. Publication trends and proportions were analyzed using Graphpad Prism v8.0.2. CiteSpace (6.2.4R [64-bit]) and VOSviewer (version 1.6.18) were employed to assess the literature and conduct mapping. RESULTS The Web of Science Core Collection database contains 3868 literature related to wound infection care, including 3327 articles and 541 reviews. The literature concerned 117 countries and territories, 4673 institutions, and 20,161 authors. The growth rate of literature was relatively slow before 2015 and markedly accelerated after 2016. Among them, the United States occupies the absolute dominance in research in this field, publishing 37.25% of the papers, and the United States occupies 8 of the top 10 scientific institutions that publish papers. The University of Harvard has published the largest number of papers. Keyword analysis shows a total of 1125 keywords, and through reference literature and time clustering analysis shows that wound healing, sepsis, spine surgery, postoperative infection, nanocrystalline silver, beta lactamase are the current research hotspots. CONCLUSION The escalating rate of literary expansion since 2016 suggests that this domain is garnering an increasingly significant amount of interest. Minimizing the risk of patient wound infection is crucial in reducing patients' discomfort and facilitating their prompt recovery. The literature analysis presented in this study serves as a valuable resource for comprehending the current state of the subject and identifying the current areas of focus.
Collapse
Affiliation(s)
- Mengdi Liu
- Nurse-Led Clinics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Cuifang Ma
- Wound Repair Care Clinic, Laoling People’s Hospital, Laoling, Shandong, PR China
| | - Xiaowei Dong
- Obstetrics and Gynaecology Clinic, Laoling People’s Hospital, Laoling, Shandong, PR China
| | - Mengyi Gu
- Wound Repair Care Clinic, Laoling People’s Hospital, Laoling, Shandong, PR China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, Shandong, PR China
| | - Qian Gao
- Nurse-Led Clinics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Xiaoyu Guo
- Nurse-Led Clinics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| |
Collapse
|
4
|
Maurya R, Misro L, Boini T, Radhakrishnan T, Nair PG, Gaidhani SN, Jain A. Transforming Medicinal Oil into Advanced Gel: An Update on Advancements. Gels 2024; 10:342. [PMID: 38786260 PMCID: PMC11121385 DOI: 10.3390/gels10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
The present study delves into the evolution of traditional Ayurvedic oil preparations through innovative strategies to develop advanced gel formulations, aiming at amplifying their therapeutic efficacy. Ayurvedic oils have a rich historical context in healing practices, yet their conversion into contemporary gel-based formulations represents a revolutionary approach to augment their medicinal potential. The primary objective of this transformation is to leverage scientific advancements and modern pharmaceutical techniques to enhance the application, absorption, and overall therapeutic impact of these traditional remedies. By encapsulating the essential constituents of Ayurvedic oils within gel matrices, these novel strategies endeavor to improve their stability, bioavailability, and targeted delivery mechanisms. This review highlights the fusion of traditional Ayurvedic wisdom with cutting-edge pharmaceutical technology, paving the way for more effective and accessible utilization of these revered remedies in modern healthcare.
Collapse
Affiliation(s)
- Rahul Maurya
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Lakshminarayana Misro
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thirupataiah Boini
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thulasi Radhakrishnan
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Parvathy G. Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
5
|
Deus WFD, Lima CLS, Negreiros ALB, Luz PKD, Machado RDS, Silva GRFD. Nanocomposites used in the treatment of skin lesions: a scoping review. Rev Esc Enferm USP 2024; 58:e20230338. [PMID: 38743957 PMCID: PMC11110158 DOI: 10.1590/1980-220x-reeusp-2023-0338en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE To map the nanocomposites used in the treatment of skin lesions. METHOD A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). RESULTS 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. CONCLUSION Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.
Collapse
Affiliation(s)
| | | | | | - Phellype Kayyaã da Luz
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Bom Jesus, Bom Jesus, PI, Brazil
| | - Raylane da Silva Machado
- Universidade Federal do Piauí, Teresina, PI, Brazil
- Colégio Técnico de Floriano, Floriano, PI, Brazil
| | | |
Collapse
|
6
|
Chelly JE, Goel SK, Kearns J, Kopac O, Sadhasivam S. Nanotechnology for Pain Management. J Clin Med 2024; 13:2611. [PMID: 38731140 PMCID: PMC11084313 DOI: 10.3390/jcm13092611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction: In the context of the current opioid crisis, non-pharmacologic approaches to pain management have been considered important alternatives to the use of opioids or analgesics. Advancements in nano and quantum technology have led to the development of several nanotransporters, including nanoparticles, micelles, quantum dots, liposomes, nanofibers, and nano-scaffolds. These modes of nanotransporters have led to the development of new drug formulations. In pain medicine, new liposome formulations led to the development of DepoFoam™ introduced by Pacira Pharmaceutical, Inc. (Parsippany, NJ, USA). This formulation is the base of DepoDur™, which comprises a combination of liposomes and extended-release morphine, and Exparel™, which comprises a combination of liposomes and extended-release bupivacaine. In 2021, Heron Therapeutics (San Diego, CA, USA) created Zynrelef™, a mixture of bupivacaine and meloxicam. Advancements in nanotechnology have led to the development of devices/patches containing millions of nanocapacitors. Data suggest that these nanotechnology-based devices/patches reduce acute and chronic pain. Methods: Google and PubMed searches were conducted to identify studies, case reports, and reviews of medical nanotechnology applications with a special focus on acute and chronic pain. This search was based on the use of keywords like nanotechnology, nano and quantum technology, nanoparticles, micelles, quantum dots, liposomes, nanofibers, nano-scaffolds, acute and chronic pain, and analgesics. This review focuses on the role of nanotechnology in acute and chronic pain. Results: (1) Nanotechnology-based transporters. DepoDur™, administered epidurally in 15, 20, or 25 mg single doses, has been demonstrated to produce significant analgesia lasting up to 48 h. Exparel™ is infiltrated at the surgical site at the recommended dose of 106 mg for bunionectomy, 266 mg for hemorrhoidectomy, 133 mg for shoulder surgery, and 266 mg for total knee arthroplasty (TKA). Exparel™ is also approved for peripheral nerve blocks, including interscalene, sciatic at the popliteal fossa, and adductor canal blocks. The injection of Exparel™ is usually preceded by an injection of plain bupivacaine to initiate analgesia before bupivacaine is released in enough quantity from the depofoarm to be pharmacodynamically effective. Finally, Zynrelef™ is applied at the surgical site during closure. It was initially approved for open inguinal hernia, abdominal surgery requiring a small-to-medium incision, foot surgery, and TKA. (2) Nanotechnology-based devices/patches. Two studies support the use of nanocapacitor-based devices/patches for the management of acute and chronic pain. A randomized study conducted on patients undergoing unilateral primary total knee (TKA) and total hip arthroplasty (THA) provided insight into the potential value of nanocapacitor-based technology for the control of postoperative acute pain. The results were based on 2 studies, one observational and one randomized. The observational study was conducted in 128 patients experiencing chronic pain for at least one year. This study suggested that compared to baseline, the application of a nanocapacitor-based Kailo™ pain relief patch on the pain site for 30 days led to a time-dependent decrease in pain and analgesic use and an increase in well-being. The randomized study compared the effects of standard of care treatment to those of the same standard of care approach plus the use of two nanocapacitor-based device/patches (NeuroCuple™ device) placed in the recovery room and kept in place for three days. The study demonstrated that the use of the two NeuroCuple™ devices was associated with a 41% reduction in pain at rest and a 52% decrease in the number of opioid refills requested by patients over the first 30 days after discharge from the hospital. Discussion: For the management of pain, the use of nano-based technology has led to the development of nano transporters, especially focus on the use of liposome and nanocapacitors. The use of liposome led to the development of DepoDur™, bupivacaine Exparel™ and a mixture of bupivacaine and meloxicam (Zynrelef™) and more recently lidocaine liposome formulation. In these cases, the technology is used to prolong the duration of action of drugs included in the preparation. Another indication of nanotechnology is the development of nanocapacitor device or patches. Although, data obtained with the use of nanocapacitors are still limited, evidence suggests that the use of nanocapacitors devices/patches may be interesting for the treatment of both acute and chronic pain, since the studies conducted with the NeuroCuple™ device and the based Kailo™ pain relief patch were not placebo-controlled, it is clear that additional placebo studies are required to confirm these preliminary results. Therefore, the development of a placebo devices/patches is necessary. Conclusions: Increasing evidence supports the concept that nanotechnology may represent a valuable tool as a drug transporter including liposomes and as a nanocapacitor-based device/patch to reduce or even eliminate the use of opioids in surgical patients. However, more studies are required to confirm this concept, especially with the use of nanotechnology incorporated in devices/patches.
Collapse
Affiliation(s)
- Jacques E. Chelly
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; (S.K.G.); (J.K.); (O.K.); (S.S.)
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Shiv K. Goel
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; (S.K.G.); (J.K.); (O.K.); (S.S.)
| | - Jeremy Kearns
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; (S.K.G.); (J.K.); (O.K.); (S.S.)
| | - Orkun Kopac
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; (S.K.G.); (J.K.); (O.K.); (S.S.)
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; (S.K.G.); (J.K.); (O.K.); (S.S.)
| |
Collapse
|
7
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Sanjarnia P, Picchio ML, Polegre Solis AN, Schuhladen K, Fliss PM, Politakos N, Metterhausen L, Calderón M, Osorio-Blanco ER. Bringing innovative wound care polymer materials to the market: Challenges, developments, and new trends. Adv Drug Deliv Rev 2024; 207:115217. [PMID: 38423362 DOI: 10.1016/j.addr.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
The development of innovative products for treating acute and chronic wounds has become a significant topic in healthcare, resulting in numerous products and innovations over time. The growing number of patients with comorbidities and chronic diseases, which may significantly alter, delay, or inhibit normal wound healing, has introduced considerable new challenges into the wound management scenario. Researchers in academia have quickly identified promising solutions, and many advanced wound healing materials have recently been designed; however, their successful translation to the market remains highly complex and unlikely without the contribution of industry experts. This review article condenses the main aspects of wound healing applications that will serve as a practical guide for researchers working in academia and industry devoted to designing, evaluating, validating, and translating polymer wound care materials to the market. The article highlights the current challenges in wound management, describes the state-of-the-art products already on the market and trending polymer materials, describes the regulation pathways for approval, discusses current wound healing models, and offers a perspective on new technologies that could soon reach consumers. We envision that this comprehensive review will significantly contribute to highlighting the importance of networking and exchanges between academia and healthcare companies. Only through the joint of these two actors, where innovation, manufacturing, regulatory insights, and financial resources act in harmony, can wound care products be developed efficiently to reach patients quickly and affordably.
Collapse
Affiliation(s)
- Pegah Sanjarnia
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Agustin N Polegre Solis
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Katharina Schuhladen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Patricia M Fliss
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Nikolaos Politakos
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Lutz Metterhausen
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ernesto R Osorio-Blanco
- Beiersdorf AG, Research & Development Department, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.
| |
Collapse
|
9
|
Koshy J, Sangeetha D. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration. Int J Biol Macromol 2024; 257:128594. [PMID: 38056744 DOI: 10.1016/j.ijbiomac.2023.128594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/12/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Natural polymers and its mixtures in the form of films, sponges and hydrogels are playing a major role in tissue engineering and regenerative medicine. Hydrogels have been extensively investigated as standalone materials for drug delivery purposes as they enable effective encapsulation and sustained release of drugs. Biopolymers are widely utilised in the fabrication of hydrogels due to their safety, biocompatibility, low toxicity, and regulated breakdown by human enzymes. Among all the biopolymers, polysaccharide-based polymer is well suited to overcome the limitations of traditional wound dressing materials. Pectin is a polysaccharide which can be extracted from different plant sources and is used in various pharmaceutical and biomedical applications including cartilage regeneration. Pectin itself cannot be employed as scaffolds for tissue engineering since it decomposes quickly. This article discusses recent research and developments on pectin polysaccharide, including its types, origins, applications, and potential demands for use in AI-mediated scaffolds. It also covers the materials-design process, strategy for implementation to material selection and fabrication methods for evaluation. Finally, we discuss unmet requirements and current obstacles in the development of optimal materials for wound healing and bone-tissue regeneration, as well as emerging strategies in the field.
Collapse
Affiliation(s)
- Jijo Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - D Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
Huang SW, Wu YF, Ahmed T, Pan SC, Cheng CM. Point-of-care detection devices for wound care and monitoring. Trends Biotechnol 2024; 42:74-90. [PMID: 37563037 DOI: 10.1016/j.tibtech.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Healthcare resources are heavily burdened by infections that impede the wound-healing process. A wide range of advanced technologies have been developed for detecting and quantifying infection biomarkers. Finding a timely, accurate, non-invasive diagnostic alternative that does not require a high level of training is a critical step toward arresting common clinical patterns of wound health decline. There is growing interest in the development of innovative diagnostics utilizing a variety of emerging technologies, and new biomarkers have been investigated as potential indicators of wound infection. In this review, we summarize diagnostics available for wound infection, including those used in clinics and still under development.
Collapse
Affiliation(s)
- Shu-Wei Huang
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Feng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tanvir Ahmed
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shin-Chen Pan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, National Cheng Kung University Hospital, College of Medicine, International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
11
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Feferbaum-Leite S, Santos IA, Grosche VR, da Silva GCD, Jardim ACG. Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Arch Microbiol 2023; 205:334. [PMID: 37730918 DOI: 10.1007/s00203-023-03660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.
Collapse
Affiliation(s)
- Shiraz Feferbaum-Leite
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science (ICBIM), Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
- Sao Paulo State University, Sao Jose do Rio Preto, Sao Paulo, Brazil.
| |
Collapse
|
13
|
Munir F, Tahir HM, Ali S, Ali A, Tehreem A, Zaidi SDES, Adnan M, Ijaz F. Characterization and Evaluation of Silk Sericin-Based Hydrogel: A Promising Biomaterial for Efficient Healing of Acute Wounds. ACS OMEGA 2023; 8:32090-32098. [PMID: 37692226 PMCID: PMC10483651 DOI: 10.1021/acsomega.3c04178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023]
Abstract
The present study was aimed to prepare the potent silk sericin-based hydrogels in combination with plant extracts (curcumin and banana peel powder) and silver nanoparticles (AgNPs) to accelerate the acute wound healing process. Experimental excision wounds were created in mice by biopsy puncture, and the wound healing potential of silk sericin (2%)-based hydrogel and its combinations with curcumin (2%), banana peel powder (2%), and AgNPs (2%) was estimated by calculating the percent wound contraction, healing time, histology of skin tissues, and different biochemical tests. The results showed that the mice treated with sericin-based hydrogels showed significantly (P < 0.001) high percent wound contraction as compared to negative control, and wounds were healed in 11 days. The histological evaluation also showed that wounds covered with hydrogels were healed more than the uncovered wounds. Furthermore, the results of biochemical tests revealed that the treatment groups showed a significant (P < 0.001) decrease in the serum level of pro-inflammatory cytokines (IL-6). A significant (P < 0.001) increase in anti-inflammatory cytokines (IL-10) and anti-oxidant enzymes was observed in treatment groups. The highest wound healing potential was observed by sericin-based hydrogel containing banana peel powder, leaving behind the commercially available ointment polyfax (positive control). It can be concluded that the silk sericin-based hydrogels in combination with plant extract and AgNPs can be used as natural biomaterials in wound dressing for the rapid healing of acute wounds.
Collapse
Affiliation(s)
- Fariha Munir
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | - Aamir Ali
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | - Ayesha Tehreem
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | | | - Muhammad Adnan
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| | - Fatima Ijaz
- Department of Zoology, Government
College University Lahore, Lahore 54000, Pakistan
| |
Collapse
|
14
|
Arshad R, Razlansari M, Maryam Hosseinikhah S, Tiwari Pandey A, Ajalli N, Ezra Manicum AL, Thorat N, Rahdar A, Zhu Y, Tabish TA. Antimicrobial and anti-biofilm activities of bio-inspired nanomaterials for wound healing applications. Drug Discov Today 2023; 28:103673. [PMID: 37331691 DOI: 10.1016/j.drudis.2023.103673] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa.
| | - Nanasaheb Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
15
|
Hemmati J, Azizi M, Asghari B, Arabestani MR. Multidrug-Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8854311. [PMID: 37521436 PMCID: PMC10386904 DOI: 10.1155/2023/8854311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Multidrug-resistant pathogens are one of the common causes of death in burn patients and have a high risk of nosocomial infections, especially pneumonia, urinary tract infections, and cellulitis. The role of prolonged hospitalization and empirical antibiotics administration in developing multidrug-resistant pathogens is undeniable. In the early days of admitting burn patients, Gram-positive bacteria were the dominant isolates with a more sensitive antibiotic pattern. However, the emergence of Gram-negative bacteria that are more resistant later occurs. Trustworthy guideline administration in burn wards is one of the strategies to prevent multidrug-resistant pathogens. Also, a multidisciplinary therapeutic approach is an effective way to avoid antibiotic resistance that involves infectious disease specialists, pharmacists, and burn surgeons. However, the emerging resistance to conventional antimicrobial approaches (such as systemic antibiotic exposure, traditional wound dressing, and topical antibiotic ointments) among burn patients has challenged the treatment of multidrug-resistant infections, and using nanoparticles is a suitable alternative. In this review article, we will discuss different aspects of multidrug-resistant pathogens in burn wounds, emphasizing the full role of these pathogens in burn wounds and discussing the application of nanotechnology in dealing with them. Also, some advances in various types of nanomaterials, including metallic nanoparticles, liposomes, hydrogels, carbon quantum dots, and solid lipid nanoparticles in burn wound healing, will be explained.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
17
|
Priyadarsini SL, Suresh M, Nikhila G. Assessment framework for the selection of a potential interactive dressing material for diabetic foot ulcer. Heliyon 2023; 9:e16476. [PMID: 37292346 PMCID: PMC10245162 DOI: 10.1016/j.heliyon.2023.e16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic foot ulcer is a chronic health issue leading to lower leg amputations in approximately 15% of patients with diabetics. There are many factors directly or indirectly involved in the physiology of wound healing but being a multisystem disorder, wound healing in diabetic patients retard or worsen with heavy exudates and severe microbial infections. Wound management is of prime importance and is an emerging area to incorporate wound regenerative materials in natural or synthetic dressing materials along with proper microbial control. The article aim to identify suitable dressing materials which exhibit inherent wound healing properties at the same time flexible to be used as drug carriers for slow, consistent and effective delivery of 'functional drugs' to the wound environment. The authors selected nine materials from the popular and well accepted dressings of patient choice, analyzed them using graph theoretic approach and ranked them on the basis of graph index values obtained. A critical review has also been done on the basis of their ranking, providing insights to the advantages, disadvantage and potential of top 5 ranked candidate materials. Alginate, Honey, Medifoam, Saline, and Hydrogel dressings were the top five candidate materials ranked respectively, even then, the authors suggests that 'modified hydrogels' can have the potential to be used as a future candidate in DFU treatment as it is the only material (among the top ranked ones) which can effectively used as regenerative drug carrier, while providing all other wound healing properties in relative proportions. The proposed framework can be modified and applied in the selection and ranking of materials for any kind of applications both in industry and medical fields by identifying factors influencing the final outcome of study and by listing the characteristics of the materials selected.
Collapse
Affiliation(s)
| | - M. Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - G. Nikhila
- Government Victoria College, University of Calicut, Palakkad, 678001, Kerala, India
| |
Collapse
|
18
|
Yaşayan G, Nejati O, Ceylan AF, Karasu Ç, Kelicen Ugur P, Bal-Öztürk A, Zarepour A, Zarrabi A, Mostafavi E. Tackling chronic wound healing using nanomaterials: advancements, challenges, and future perspectives. APPLIED MATERIALS TODAY 2023; 32:101829. [DOI: 10.1016/j.apmt.2023.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Umam N, Ahmad M, Kushwaha P. Design and fabrication of Sesamol-loaded transfersomal gel for wound healing: physicochemical characterization and in-vivo evaluation. Drug Dev Ind Pharm 2023; 49:159-167. [PMID: 36931230 DOI: 10.1080/03639045.2023.2191726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
OBJECTIVE In the present study, an attempt has been made to develop SL-loaded transfersomal gel for the effective treatment of delayed wound healing. SIGNIFICANCE The wound healing process consists of a complex series of biochemical events and changes in cellular activity that restore the integrity of the skin and the subcutaneous tissue. Sesamol (SL), which is a natural phenolic compound, is known for its antioxidant properties, anti-inflammatory properties, and wound-healing abilities. METHODS A thin-film hydration method was used to prepare SL-loaded transfersomes. Different formulations containing Tween-80 and Span-80 as edge activators were prepared and optimized. Various characteristics of vesicles were assessed, such as size, shape, loading efficiency, deformability, and in vitro skin penetration. The optimized formulation was then incorporated into 1% carbopol 940 gel. An in vivo wound healing potential of the selected formulation was assessed by an excision wound model. RESULTS The SL-loaded transfersomal gel displayed improved skin penetration and better skin deposition. Wound healing studies showed that the highest wound contraction was observed with SL-loaded transfersomes. Following 21 days of application of the transfersomal gel, a marked improvement in skin histological architecture was found. CONCLUSION The study findings suggest that transfersomal gel has great potential as a therapeutic option in wound healing.
Collapse
Affiliation(s)
- Nida Umam
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | |
Collapse
|
20
|
Biopolymers in diabetic wound care management: a potential substitute to traditional dressings. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
21
|
Development of electrospun Plectranthus amboinicus loaded PCL polymeric nanofibrous scaffold for skin wound healing application: in-vitro and in-silico analysis. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
22
|
Humaira, Raza Bukhari SA, Shakir HA, Khan M, Saeed S, Ahmad I, Muzammil K, Franco M, Irfan M, Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front Chem 2022; 10:1092123. [PMID: 36618861 PMCID: PMC9816904 DOI: 10.3389/fchem.2022.1092123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Hyaluronan is a biodegradable, biopolymer that represents a major part of the extracellular matrix and has the potential to be fabricated in a fibrous form conjugated with other polymers via electrospinning. Unique physicochemical features such as viscoelasticity, conductivity, and biological activity mainly affected by molecular weight attracted the attention of biomedical researchers to utilize hyaluronan for designing novel HA-based nano-devices. Particularly HA-based nanofibers get focused on a diverse range of applications in medical like tissue implants for regeneration of damaged tissue or organ repair, wound dressings, and drug delivery carriers to treat various disorders. Currently, electrospinning represents an effective available method for designing highly porous, 3D, HA-based nanofibers with features similar to that of the extra-cellular matrix making them a promising candidate for designing advanced regenerative medicines. This review highlights the structural and physicochemical features of HA, recently cited protocols in literature for HA production via microbial fermentation with particular focus on electrospun fabrication of HA-based nanofibers and parameters affecting its synthesis, current progress in medical applications of these electrospun HA-based nanofibers, their limitations and future perspective about the potential of these HA-based nanofibers in medical field.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Muhammad Khan
- Institute of Zoology, University of the Punjab New Campus, Lahore, Pakistan
| | - Shagufta Saeed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Marcelo Franco
- Department of Exact Science and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Kun Li
- School of Medicine, Dalian University, Dalian, China
| |
Collapse
|
23
|
Different Curcumin-Loaded Delivery Systems for Wound Healing Applications: A Comprehensive Review. Pharmaceutics 2022; 15:pharmaceutics15010038. [PMID: 36678665 PMCID: PMC9862251 DOI: 10.3390/pharmaceutics15010038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Curcumin or turmeric is the active constituent of Curcuma longa L. It has marvelous medicinal applications in many diseases. When the skin integrity is compromised due to either acute or chronic wounds, the body initiates several steps leading to tissue healing and skin barrier function restoration. Curcumin has very strong antibacterial and antifungal activities with powerful wound healing ability owing to its antioxidant activity. Nevertheless, its poor oral bioavailability, low water solubility and rapid metabolism limit its medical use. Tailoring suitable drug delivery systems for carrying curcumin improves its pharmaceutical and pharmacological effects. This review summarizes the most recent reported curcumin-loaded delivery systems for wound healing purposes, chiefly hydrogels, films, wafers, and sponges. In addition, curcumin nanoformulations such as nanohydrogels, nanoparticles and nanofibers are also presented, which offer better solubility, bioavailability, and sustained release to augment curcumin wound healing effects through stimulating the different healing phases by the aid of the small carrier.
Collapse
|
24
|
Alginate-pectin microparticles loaded with nanoemulsions as nanocomposites for wound healing. Drug Deliv Transl Res 2022; 13:1343-1357. [PMID: 36512287 PMCID: PMC10102150 DOI: 10.1007/s13346-022-01257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/14/2022]
Abstract
AbstractThis work combines natural polymers with nanoemulsions (NEs) to formulate nanocomposites as an innovative wound dressing. Spray-drying has been used to produce alginate-pectin in situ gelling powders as carriers for NEs loaded with curcumin (CCM), a model antimicrobial drug. The influence of NEs encapsulation in polymer-based microparticles was studied in terms of particle size distribution, morphology, and stability after spray-drying. NEs loading did not affect the size of microparticles which was around 3.5 µm, while the shape and surface morphology analyzed using scanning electron microscope (SEM) changed from irregular to spherical. Nanocomposites as dried powders were able to form a gel in less than 5 min when in contact with simulated wound fluid (SWF), while the value of moisture transmission of the in situ formed hydrogels allowed to promote good wound transpiration. Moreover, rheologic analyses showed that in situ formed gels loaded with NEs appeared more elastic than blank formulations. The in situ formed gel allowed the prolonged release of CCM-loaded NEs in the wound bed, reaching 100% in 24 h. Finally, powders cytocompatibility was confirmed by incubation with keratinocyte cells (HaCaT), proving that such nanocomposites can be considered a potential candidate for wound dressings.
Graphical Abstract
Collapse
|
25
|
A silver iodide nanoparticle containing plant extract-based gelatinous composite for antibacterial coating applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, El-moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats. Pharmaceutics 2022; 14:1792. [PMID: 36145540 PMCID: PMC9503070 DOI: 10.3390/pharmaceutics14091792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the healing activity of amitriptyline (Amitrip) in rat diabetic wounds. A nanoformula of the drug was prepared as Amitrip-based biodegradable PEG-PLGA self-assembled nanoparticles (Amitrip-NPs) with a mean particle size of 67.4 nm. An in vivo investigation was conducted to evaluate the wound-healing process of Amitrip-NPs in streptozotocin-induced diabetic rats. Wound contraction was accelerated in rats treated with Amitrip-NPs. Histological examinations confirmed these findings, with expedited remodeling and collagen deposition in the NPs-treated animals. The formula showed anti-inflammatory activities as demonstrated by inhibition of interleukin-6 (IL-6) expression and tumor necrosis factor-α (TNF-α) expression, as well as enhanced expression of interleukin-10 (IL-10). In addition, Amitrip-NPs protected against malondialdehyde (MDA) buildup and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. The pro-collagen activity of Amitrip-NPs was confirmed by the observed enhancement of hydroxyproline wounded skin content, upregulation of Col 1A1 mRNA expression and immune expression of collagen type IV expression. Further, Amitrip-NPs significantly increased expression transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), platelet-derived growth factor-B (PDGF-B) and cluster of differentiation 31 (CD31). In conclusion, the developed Amitrip-NPs expedited wound healing in diabetic rats. This involves anti-inflammatory, antioxidant, pro-collagen and angiogenic activities of the prepared NPs. This opens the gate for evaluating the usefulness of other structurally related tricyclic antidepressants in diabetic wounds.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. El-moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Ferrara F, Benedusi M, Cervellati F, Sguizzato M, Montesi L, Bondi A, Drechsler M, Pula W, Valacchi G, Esposito E. Dimethyl Fumarate-Loaded Transethosomes: A Formulative Study and Preliminary Ex Vivo and In Vivo Evaluation. Int J Mol Sci 2022; 23:ijms23158756. [PMID: 35955900 PMCID: PMC9369351 DOI: 10.3390/ijms23158756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, transethosomes were investigated as potential delivery systems for dimethyl fumarate. A formulative study was performed investigating the effect of the composition of transethosomes on the morphology and size of vesicles, as well as drug entrapment capacity, using cryogenic transmission electron microscopy, photon correlation spectroscopy, and HPLC. The stability of vesicles was evaluated, both for size increase and capability to control the drug degradation. Drug release kinetics and permeability profiles were evaluated in vitro using Franz cells, associated with different synthetic membranes. The in vitro viability, as well as the capacity to improve wound healing, were evaluated in human keratinocytes. Transmission electron microscopy enabled the evaluation of transethosome uptake and intracellular fate. Based on the obtained results, a transethosome gel was further formulated for the cutaneous application of dimethyl fumarate, the safety of which was evaluated in vivo with a patch test. It was found that the phosphatidylcholine concentration affected vesicle size and lamellarity, influencing the capacity to control dimethyl fumarate’s chemical stability and release kinetics. Indeed, phosphatidylcholine 2.7% w/w led to multivesicular vesicles with 344 nm mean size, controlling the drug’s chemical stability for at least 90 days. Conversely, phosphatidylcholine 0.9% w/w resulted in 130 nm sized unilamellar vesicles, which maintained 55% of the drug over 3 months. These latest kinds of transethosomes were able to improve wound healing in vitro and were easily internalised by keratinocytes. The selected transethosome gel, loading 25 mg/mL dimethyl fumarate, was not irritant after cutaneous application under occlusion, suggesting its possible suitability in the treatment of wounds caused by diabetes mellitus or peripheral vascular diseases.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Leda Montesi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI) Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
28
|
Renuka RR, Julius A, Yoganandham ST, Umapathy D, Ramadoss R, Samrot AV, Vijay DD. Diverse nanocomposites as a potential dressing for diabetic wound healing. Front Endocrinol (Lausanne) 2022; 13:1074568. [PMID: 36714604 PMCID: PMC9874089 DOI: 10.3389/fendo.2022.1074568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a programmed process of continuous events which is impaired in the case of diabetic patients. This impaired process of healing in diabetics leads to amputation, longer hospitalisation, immobilisation, low self-esteem, and mortality in some patients. This problem has paved the way for several innovative strategies like the use of nanotechnology for the treatment of wounds in diabetic patients. The use of biomaterials, nanomaterials have advanced approaches in tissue engineering by designing multi-functional nanocomposite scaffolds. Stimuli-responsive scaffolds that interact with the wound microenvironment and controlled release of bioactive molecules have helped in overcoming barriers in healing. The use of different types of nanocomposite scaffolds for faster healing of diabetic wounds is constantly being studied. Nanocomposites have helped in addressing specific issues with respect to healing and improving angiogenesis. Method: A literature search was followed to retrieve the articles on strategies for wound healing in diabetes across several databases like PubMed, EMBASE, Scopus and Cochrane database. The search was performed in May 2022 by two researchers independently. They keywords used were "diabetic wounds, nanotechnology, nanocomposites, nanoparticles, chronic diabetic wounds, diabetic foot ulcer, hydrogel". Exclusion criteria included insulin resistance, burn wound, dressing material.
Collapse
Affiliation(s)
- Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
- *Correspondence: Remya Rajan Renuka, ; Danis D. Vijay,
| | - Angeline Julius
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Suman Thodhal Yoganandham
- Department of Environmental Engineering, Institute of Industrial Technology Changwon National University, Changwon, Gyeongsangnamdo, Republic of Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo, Republic of Korea
| | - Dhamodharan Umapathy
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, Madhuranthagam, Tamilnadu, India
| | - Ramya Ramadoss
- Department of Oral Biology, Saveetha Dental College, Chennai, Tamilnadu, India
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Danis D. Vijay
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, Madhuranthagam, Tamilnadu, India
- *Correspondence: Remya Rajan Renuka, ; Danis D. Vijay,
| |
Collapse
|
29
|
Li G, Sun L, Qiu Y, Hou Y, Du L, Zhao K, Qian J, Liu J, Ma T. Efficacy of nano-modified Runji ointment in the treatment of mild and moderate psoriasis with blood dryness syndrome: a study protocol for a double-blind randomized controlled trial. Medicine (Baltimore) 2021; 100:e28178. [PMID: 34967353 PMCID: PMC8718181 DOI: 10.1097/md.0000000000028178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Psoriasis is a common, recurrent, immune skin disease, which seriously affects patients' quality of life. In clinical practice, modified Runji ointment can effectively treat mild-to-moderate psoriasis with blood dryness syndrome, but there is a lack of high-quality evidence-based medical evidence. This trial aims to evaluate the efficacy and safety of nano-modified Runji ointment in the treatment of mild-to-moderate psoriasis with blood dryness syndrome. METHODS/DESIGN This study will be a randomized double-blind placebo-controlled trial. A total of 80 patients will be recruited and randomly divided into an intervention group (nano-modified Runji ointment group) and a placebo group at a ratio of 1:1. All included patients will receive 8 weeks of nano-modified Runji ointment or placebo ointment respectively, twice a day. The primary outcome will be the change in psoriasis area and disease severity index score at week 8 compared to baseline. The secondary outcomes will be rash area score, pruritus score, Dermatology Life Quality Index score, traditional Chinese medicine symptom score and adverse events. DISCUSSION This study may provide high-quality evidence for the efficacy of nano-modified Runji ointment in the treatment of mild to moderate psoriasis with blood dryness syndrome. The results of this study will be published in peer-reviewed journals. TRIAL REGISTRATION ChiCTR, ChiCTR2000034292. Registered July 1, 2020, https://www.chictr.org.cn/edit.aspx?pid=55884&htm=4.
Collapse
Affiliation(s)
- Guanru Li
- Department of Dermatology, Beijing Traditional Chinese Medicine Hospital Shunyi Hospital, Shunyi District, Beijing, China
| | - Liyun Sun
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Dongcheng District, Beijing, China
| | - Yue Qiu
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Dongcheng District, Beijing, China
| | - Yaquan Hou
- Dongcheng District Yongdingmenwai Community Health Center, Beijing, China
| | - Libo Du
- Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Kaixuan Zhao
- Department of Dermatology, Handan Mingren Hospital, Hebei Province, China
| | - Jiali Qian
- Department of Dermatology, Beijing Traditional Chinese Medicine Hospital Shunyi Hospital, Shunyi District, Beijing, China
| | - Jiuli Liu
- Department of Dermatology, Beijing Traditional Chinese Medicine Hospital Shunyi Hospital, Shunyi District, Beijing, China
| | - Tengfei Ma
- Department of Dermatology, Beijing Traditional Chinese Medicine Hospital Shunyi Hospital, Shunyi District, Beijing, China
| |
Collapse
|
30
|
Hussain Z, Jamal Ahmed D, Mohammed Alkabra R, Thu HE, Khan S, Sohail M, Sarfraz RM, Ramli NA. Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dalya Jamal Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Ranim Mohammed Alkabra
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Hnin Ei Thu
- Innoscience Ressearch Sdn, Subang Jaya, Malaysia
- Research and Innovation Department, Lincoln University College, Petaling Jaya, Malaysia
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, Austin, TX, USA
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Nor Amlizan Ramli
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia
| |
Collapse
|
31
|
Di Martino JS, Akhter T, Bravo-Cordero JJ. Remodeling the ECM: Implications for Metastasis and Tumor Dormancy. Cancers (Basel) 2021; 13:4916. [PMID: 34638400 PMCID: PMC8507703 DOI: 10.3390/cancers13194916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/24/2022] Open
Abstract
While most primary tumors can be effectively treated, therapeutics fail to efficiently eliminate metastases. Metastases arise from cancer cells that leave the primary tumor and seed distant sites. Recent studies have shown that cancer cells disseminate early during tumor progression and can remain dormant for years before they resume growth. In these metastatic organs, cancer cells reside in microenvironments where they interact with other cells, but also with the extracellular matrix (ECM). The ECM was long considered to be an inert, non-cellular component of tissues, providing their architecture. However, in recent years, a growing body of evidence has shown that the ECM is a key driver of cancer progression, and it can exert effects on tumor cells, regulating their metastatic fate. ECM remodeling and degradation is required for the early steps of the metastatic cascade: invasion, tumor intravasation, and extravasation. Similarly, ECM molecules have been shown to be important for metastatic outgrowth. However, the role of ECM molecules on tumor dormancy and their contribution to the dormancy-supportive niches is not well understood. In this perspective article, we will summarize the current knowledge of ECM and its role in tumor metastasis and dormancy. We will discuss how a better understanding of the individual components of the ECM niche and their roles mediating the dormant state of disseminated tumor cells (DTCs) will advance the development of new therapies to target dormant cells and prevent metastasis outgrowth.
Collapse
Affiliation(s)
| | | | - Jose Javier Bravo-Cordero
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.S.D.M.); (T.A.)
| |
Collapse
|
32
|
Development of a Topical Insulin Polymeric Nanoformulation for Skin Burn Regeneration: An Experimental Approach. Int J Mol Sci 2021; 22:ijms22084087. [PMID: 33920964 PMCID: PMC8071315 DOI: 10.3390/ijms22084087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 01/30/2023] Open
Abstract
Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process-however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.
Collapse
|
33
|
Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021; 19:md19020112. [PMID: 33672056 PMCID: PMC7919482 DOI: 10.3390/md19020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Collapse
|
34
|
Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.
Collapse
|
35
|
Wang Y, Armato U, Wu J. Targeting Tunable Physical Properties of Materials for Chronic Wound Care. Front Bioeng Biotechnol 2020; 8:584. [PMID: 32596229 PMCID: PMC7300298 DOI: 10.3389/fbioe.2020.00584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds caused by infections, diabetes, and radiation exposures are becoming a worldwide growing medical burden. Recent progress highlighted the physical signals determining stem cell fates and bacterial resistance, which holds potential to achieve a better wound regeneration in situ. Nanoparticles (NPs) would benefit chronic wound healing. However, the cytotoxicity of the silver NPs (AgNPs) has aroused many concerns. This review targets the tunable physical properties (i.e., mechanical-, structural-, and size-related properties) of either dermal matrixes or wound dressings for chronic wound care. Firstly, we discuss the recent discoveries about the mechanical- and structural-related regulation of stem cells. Specially, we point out the currently undocumented influence of tunable mechanical and structural properties on either the fate of each cell type or the whole wound healing process. Secondly, we highlight novel dermal matrixes based on either natural tropoelastin or synthetic elastin-like recombinamers (ELRs) for providing elastic recoil and resilience to the wounded dermis. Thirdly, we discuss the application of wound dressings in terms of size-related properties (i.e., metal NPs, lipid NPs, polymeric NPs). Moreover, we highlight the cytotoxicity of AgNPs and propose the size-, dose-, and time-dependent solutions for reducing their cytotoxicity in wound care. This review will hopefully inspire the advanced design strategies of either dermal matrixes or wound dressings and their potential therapeutic benefits for chronic wounds.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China
- Department of Burn and Plastic Surgery, Air Force Hospital of PLA Central Theater Command, Datong, China
| | - Ubaldo Armato
- Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona Medical School Verona, Verona, Italy
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Jun Wu
- Department of Burn and Plastic Surgery, Second People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| |
Collapse
|