1
|
Barthes J, Cazzola M, Muller C, Dollinger C, Debry C, Ferraris S, Spriano S, Vrana NE. Controlling porous titanium/soft tissue interactions with an innovative surface chemical treatment: Responses of macrophages and fibroblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110845. [DOI: 10.1016/j.msec.2020.110845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
|
2
|
In situ synthesized TiO 2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111043. [PMID: 32993998 DOI: 10.1016/j.msec.2020.111043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/04/2020] [Accepted: 04/30/2020] [Indexed: 12/23/2022]
Abstract
The in vitro endothelial response of human umbilical vein endothelial cells was investigated on a poly (caprolactone)-based polyurethane surface vs an in situ TiO2-polyurethane nanocomposite surface, which has been produced as scaffolds for artificial vascular graft. The in situ synthesis of TiO2 nanoparticles in polyurethane provided surface properties that facilitated cellular adhesion, cell sensing, cell probing and especially cell migration. Cells on the nanocomposite surface have elongated morphology and were able to produce more extracellular matrix. All of these advantages led to an increase in the rate of endothelialization of the nanocomposite scaffold surface vs pure polyurethane. The presence of TiO2 nanoparticles with very good distribution in polyurethane increased the degradability of the scaffolds by increasing the phase separation and hydrophilicity in the nanocomposite film. The results showed that the degradation mechanism of nanocomposite films prompted the interconnectivity of spaces inside structures that probably could give extra chances to improve migration and proliferation of cells, as well as, the delivery of nutrients and metabolites inside the pores of the scaffold. The outcomes revealed that the rate of endothelialization of the nanocomposite scaffold after 7 days of in vitro cell culture was 1.5 times and the rate of degradation of the nanocomposite film was 2 times after 8 weeks of immersion scaffolds in PBS compared to the polyurethane scaffolds. In addition, the nanocomposite scaffold possessed good mechanical properties. Despite its high modulus, it was flexible with a 500% elongation at break.
Collapse
|
3
|
Production of High Silicon-Doped Hydroxyapatite Thin Film Coatings via Magnetron Sputtering: Deposition, Characterisation, and In Vitro Biocompatibility. COATINGS 2020. [DOI: 10.3390/coatings10020190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, it has been found that small weight percent additions of silicon to HA can be used to enhance the initial response between bone tissue and HA. A large amount of research has been concerned with bulk materials, however, only recently has the attention moved to the use of these doped materials as coatings. This paper focusses on the development of a co-RF and pulsed DC magnetron sputtering methodology to produce a high percentage Si containing HA (SiHA) thin films (from 1.8 to 13.4 wt.%; one of the highest recorded in the literature to date). As deposited thin films were found to be amorphous, but crystallised at different annealing temperatures employed, dependent on silicon content, which also lowered surface energy profiles destabilising the films. X-ray photoelectron spectroscopy (XPS) was used to explore the structure of silicon within the films which were found to be in a polymeric (SiO2; Q4) state. However, after annealing, the films transformed to a SiO44−, Q0, state, indicating that silicon had substituted into the HA lattice at higher concentrations than previously reported. A loss of hydroxyl groups and the maintenance of a single-phase HA crystal structure further provided evidence for silicon substitution. Furthermore, a human osteoblast cell (HOB) model was used to explore the in vitro cellular response. The cells appeared to prefer the HA surfaces compared to SiHA surfaces, which was thought to be due to the higher solubility of SiHA surfaces inhibiting protein mediated cell attachment. The extent of this effect was found to be dependent on film crystallinity and silicon content.
Collapse
|
4
|
Bérces Z, Pomothy J, Horváth ÁC, Kőhidi T, Benyei É, Fekete Z, Madarász E, Pongrácz A. Effect of nanostructures on anchoring stem cell-derived neural tissue to artificial surfaces. J Neural Eng 2018; 15:056030. [DOI: 10.1088/1741-2552/aad972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Vega SL, Arvind V, Mishra P, Kohn J, Sanjeeva Murthy N, Moghe PV. Substrate micropatterns produced by polymer demixing regulate focal adhesions, actin anisotropy, and lineage differentiation of stem cells. Acta Biomater 2018; 76:21-28. [PMID: 29906627 DOI: 10.1016/j.actbio.2018.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
Stem cells are adherent cells whose multipotency and differentiation can be regulated by numerous microenvironmental signals including soluble growth factors and surface topography. This study describes a simple method for creating distinct micropatterns via microphase separation resulting from polymer demixing of poly(desaminotyrosyl-tyrosine carbonate) (PDTEC) and polystyrene (PS). Substrates with co-continuous (ribbons) or discontinuous (islands and pits) PDTEC regions were obtained by varying the ratio of PDTEC and sacrificial PS. Human mesenchymal stem cells (MSCs) cultured on co-continuous PDTEC substrates for 3 days in bipotential adipogenic/osteogenic (AD/OS) induction medium showed no change in cell morphology but exhibited increased anisotropic cytoskeletal organization and larger focal adhesions when compared to MSCs cultured on discontinuous micropatterns. After 14 days in bipotential AD/OS induction medium, MSCs cultured on co-continuous micropatterns exhibited increased expression of osteogenic markers, whereas MSCs on discontinuous PDTEC substrates showed a low expression of adipogenic and osteogenic differentiation markers. Substrates with graded micropatterns were able to reproduce the influence of local underlying topography on MSC differentiation, thus demonstrating their potential for high throughput analysis. This work presents polymer demixing as a simple, non-lithographic technique to produce a wide range of micropatterns on surfaces with complex geometries to influence cellular and tissue regenerative responses. STATEMENT OF SIGNIFICANCE A better understanding of how engineered microenvironments influence stem cell differentiation is integral to increasing the use of stem cells and materials in a wide range of tissue engineering applications. In this study, we show the range of topography obtained by polymer demixing is sufficient for investigating how surface topography affects stem cell morphology and differentiation. Our findings show that co-continuous topographies favor early (3-day) cytoskeletal anisotropy and focal adhesion maturation as well as long-term (14-day) expression of osteogenic differentiation markers. Taken together, this study presents a simple approach to pattern topographies that induce divergent responses in stem cell morphology and differentiation.
Collapse
|
6
|
Yang KH, Nguyen AK, Goering PL, Sumant AV, Narayan RJ. Ultrananocrystalline diamond-coated nanoporous membranes support SK-N-SH neuroblastoma epithelial [corrected] cell attachment. Interface Focus 2018; 8:20170063. [PMID: 29696093 DOI: 10.1098/rsfs.2017.0063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 02/03/2023] Open
Abstract
Ultrananocrystalline diamond (UNCD) has been demonstrated to have attractive features for biomedical applications and can be combined with nanoporous membranes for applications in drug delivery systems, biosensing, immunoisolation and single molecule analysis. In this study, free-standing nanoporous UNCD membranes with pore sizes of 100 or 400 nm were fabricated by directly depositing ultrathin UNCD films on nanoporous silicon nitride membranes and then etching away silicon nitride using reactive ion etching. Successful deposition of UNCD on the substrate with a novel process was confirmed with Raman spectroscopy, X-ray photoelectron spectroscopy, cross-section scanning electron microscopy (SEM) and transmission electron microscopy. Both sample types exhibited uniform geometry and maintained a clear hexagonal pore arrangement. Cellular attachment of SK-N-SH neuroblastoma endothelial cells was examined using confocal microscopy and SEM. Attachment of SK-N-SH cells onto UNCD membranes on both porous regions and solid surfaces was shown, indicating the potential use of UNCD membranes in biomedical applications such as biosensors and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Kai-Hung Yang
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexander K Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA.,Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Peter L Goering
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Anirudha V Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Roger J Narayan
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Giordano C, Sandrini E, Busini V, Chiesa R, Fumagalli G, Giavaresi G, Fini M, Giardino R, Cigada A. A New Chemical Etching Process to Improve Endosseous Implant Osseointegration: In Vitro Evaluation on Human Osteoblast-Like Cells. Int J Artif Organs 2018; 29:772-80. [PMID: 16969755 DOI: 10.1177/039139880602900807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development of novel mechanical and chemical surface modification treatments to improve the osteointegration properties of osseointegrated dental implants is nowadays a topic of great applicative interest. The aim of the present study was to analyse the role of surface topography and chemistry of four different surface treatments on titanium by an in vitro human osteosarcoma immortalised cell line model (MG63). The surface treatments considered were (a) machined titanium, (b) chemical etched on machined titanium, (c) sandblasted titanium and (d) chemical etching on sandblasted titanium. Chemical and physical surface properties were investigated by Scanning Electron Microscopy, Thin Film-X ray Diffraction and by Laser Profilometry. The in vitro biological response was characterised using the MG63 cell line by elution cytotoxicity tests, cell morphology, adhesion, proliferation activity, alkaline phosphatase activity and total DNA content in order to show a relationship between osteoblast response and surface features. Chemical and physical characterisation showed that the considered treatments differently modify the surface morphology in the micro and sub-micrometric scale. Although some differences in alkaline phosphatase activity were observed in the biological characterisation, depending on the specific material's surface finishing, the results showed that cells were well responsive on all the tested materials and grew and differentiated with similar proliferation rate.
Collapse
Affiliation(s)
- C Giordano
- Department of Chemistry, Materials and Materials Engineering G. Natta, Polytechnic of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dhawan U, Pan HA, Chu YH, Huang GS, Chen PC, Chen WL. Temporal Control of Osteoblast Cell Growth and Behavior Dictated by Nanotopography and Shear Stress. IEEE Trans Nanobioscience 2016; 15:704-712. [PMID: 28029616 DOI: 10.1109/tnb.2016.2605686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biomaterial design involves assessment of cellular response to nanotopography parameters such as shape, dimension of nanotopography features. Here, the effect of nanotopography alongside the in vivo factor, shear stress, on osteoblast cell behavior, is reported. Tantalum oxide nanodots of 50 or 100 nm diameter were engineered using anodized aluminum oxide as a template. Bare tantalum nitride coated silicon substrates were taken as control (flat). MG63 (osteoblast) cells were seeded for 72 hours on flat, 50 or 100 nm nanodots and modulation in cell morphology, cell viability and expression of integrins was studied. Cells displayed a well-extended morphology on 50 nm nanodots in contrast to an elongated morphology on 100 nm nanodots, as observed by scanning electron microscopy and immunofluorescence staining, thereby confirming the cellular response to different nanotopographies. Based on quantitative real-time polymerase chain reaction data, a greater fold change in the expression of α1 , α2 , α3 , α8 , α9 , [Formula: see text], β1 , β4 , β5 , β7 and β8 integrins was observed in cells cultured on 100 nm than on 50 nm nanodots. Moreover, in the presence of a shear stress of 2 dyne/cm2, a 52% increase in the cell viability after culturing the cells for 72 hours was observed on 100 nm nanodots as compared to 50 nm nanodots, thereby validating the effect of shear stress on cell behavior. Duration-of-culture experiments revealed 100 nm nanodots to be an ideal nanotopography choice to engineer optimized implant geometries for an ideal cell response. This study highlights the in vivo factors which need to be considered while designing nanotopographies for in vivo applications, for an ideal response as the cell-nanomaterial interface. Applications in the field of Biomedical, tissue engineering and cancer research are expected.
Collapse
|
9
|
Abstract
Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.
Collapse
|
10
|
Dhawan U, Lee CH, Huang CC, Chu YH, Huang GS, Lin YR, Chen WL. Topological control of nitric oxide secretion by tantalum oxide nanodot arrays. J Nanobiotechnology 2015; 13:79. [PMID: 26553043 PMCID: PMC4640104 DOI: 10.1186/s12951-015-0144-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nitric oxide (NO) plays a very important role in the cardiovascular system as a major secondary messenger in signaling pathway. Its concentration regulates most of the important physiological indexes including the systemic blood pressure, blood flow, regional vascular tone and other cardiac functions. The effect of nanotopography on the NO secretion in cardiomyocytes has not been elucidated before. In this study, we report how the nanotopography can modulate the secretion profile of NO and attempt to elucidate the genetic pathways responsible for the same by using Tantalum Oxide nanodot arrays ranging from 10 to 200 nm. A series of nanodot arrays were fabricated with dot diameter ranging from 10 to 200 nm. Temporal NO release of cardiomyocytes was quantified when grown on different surfaces. Quantitative RT-PCR and Western blot were performed to verify the genetic pathways of NO release. RESULTS After hours 24 of cell seeding, NO release was slowly enhanced by the increase of dot diameter from 10 nm up to 50 nm, mildly enhanced to a medium level at 100 nm, and increase rapidly to a high level at 200 nm. The temporal enhancement of NO release dropped dramatically on day 3. On day 5, a topology-dependent profile was established that maximized at 50 nm and dropped to control level at 200 nm. The NO releasing profile was closely associated with the expression patterns of genes associated with Endothelial nitric oxide synthase (eNOS) pathway [GPCR, PI3K, Akt, Bad, Bcl-2, NFκB(p65), eNOS], but less associated with Inducible nitric oxide synthase (iNOS) pathway (TNF-α, ILK, Akt, IκBα, NFκB, iNOS). Western blotting of Akt, eNOS, iNOS, and NFκB further validated that eNOS pathway was modulated by nanotopology. CONCLUSIONS Based on the findings of the present study, 50, 100 nm can serve as the suitable nanotopography patterns for cardiac implant surface design. These two nanodot arrays promote NO secretion and can also promote the vascular smooth muscle relaxation. The results of this study can improve the heart stent design in the medical treatments.
Collapse
Affiliation(s)
- Udesh Dhawan
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Chia Hui Lee
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Chun-Chung Huang
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Ying Hao Chu
- Department Material Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| | - Guewha S Huang
- Hokan Life Technology, F2, 793 Fu-Ke Road, Taichung, Taiwan, ROC.
| | - Yan-Ren Lin
- Department of Emergency Medicine, Changhua Christian Hospital, 135 Nanshiao Street, Changhua, 500, Taiwan.
| | - Wen-Liang Chen
- Department of Biological Science and Technology, National Chiao Tung University Hsinchu, 1001 University Road, Hsinchu, 300, Taiwan, ROC.
| |
Collapse
|
11
|
Metavarayuth K, Sitasuwan P, Luckanagul JA, Feng S, Wang Q. Virus Nanoparticles Mediated Osteogenic Differentiation of Bone Derived Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500026. [PMID: 27980904 PMCID: PMC5115314 DOI: 10.1002/advs.201500026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/21/2015] [Indexed: 05/29/2023]
Abstract
There are few methodologies that allow manipulating a biomaterial surface at nanometer scale, which controllably influence different cellular functions. In this study, virus nanoparticles with different structural features are selected to prepare 2D substrates with defined nanoscale topographies and the cellular responses are investigated. It is demonstrated that the viral nanoparticle based substrates could accelerate and enhance osteogenesis of bone derived mesenchymal stem cells as indicated by the upregulation of osteogenic markers, including bone morphogenetic protein-2, osteocalcin, and osteopontin, at both gene and protein expression levels. Moreover, alkaline phosphatase activity and calcium mineralization, both indicators for a -successful bone formation, are also increased in cells grown on these nanoscale possessed substrates. These discoveries and developments present a new paradigm for nanoscale engineering of a biomaterial surface.
Collapse
Affiliation(s)
- Kamolrat Metavarayuth
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter Street Columbia SC 29208 USA
| | - Pongkwan Sitasuwan
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter Street Columbia SC 29208 USA
| | - Jittima Amie Luckanagul
- Department of Food and Pharmaceutical Chemistry Faculty of Pharmaceutical Sciences Chulalongkorn University 254 Phayathai Rd., Wangmai Pathumwan Bangkok 10330 Thailand
| | - Sheng Feng
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter Street Columbia SC 29208 USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina 631 Sumter Street Columbia SC 29208 USA
| |
Collapse
|
12
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Prabhakaran MP, Vatankhah E, Kai D, Ramakrishna S. Methods for Nano/Micropatterning of Substrates: Toward Stem Cells Differentiation. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.945207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Iuliano JN, Kutscha PD, Biderman NJ, Subbaram S, Groves TR, Tenenbaum SA, Hempel N. Metastatic bladder cancer cells distinctively sense and respond to physical cues of collagen fibril-mimetic nanotopography. Exp Biol Med (Maywood) 2014; 240:601-10. [PMID: 25465204 DOI: 10.1177/1535370214560973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/08/2014] [Indexed: 01/17/2023] Open
Abstract
Tumor metastasis is characterized by enhanced invasiveness and migration of tumor cells through the extracellular matrix (ECM), resulting in extravasation into the blood and lymph and colonization at secondary sites. The ECM provides a physical scaffold consisting of components such as collagen fibrils, which have distinct dimensions at the nanoscale. In addition to the interaction of peptide moieties with tumor cell integrin clusters, the ECM provides a physical guide for tumor cell migration. Using nanolithography we set out to mimic the physical dimensions of collagen fibrils using lined nanotopographical silicon surfaces and to explore whether metastatic tumor cells are uniquely able to respond to these physical dimensions. Etched silicon surfaces containing nanoscale lined patterns with varying trench and ridge sizes (65-500 nm) were evaluated for their ability to distinguish between a non-metastatic (253 J) and a highly metastatic (253 J-BV) derivative bladder cancer cell line. Enhanced alignment was distinctively observed for the metastatic cell lines on feature sizes that mimic the dimensions of collagen fibrils (65-100 nm lines, 1:1-1:1.5 pitch). Further, these sub-100 nm lines acted as guides for migration of metastatic cancer cells. Interestingly, even at this subcellular scale, metastatic cell migration was abrogated when cells were forced to move perpendicular to these lines. Compared to flat surfaces, 65 nm lines enhanced the formation of actin stress fibers and filopodia of metastatic cells. This was accompanied by increased formation of focal contacts, visualized by immunofluorescent staining of phospho-focal adhesion kinase along the protruding lamellipodia. Simple lined nanotopography appears to be an informative platform for studying the physical cues of the ECM in a pseudo-3D format and likely mimics physical aspects of collagen fibrils. Metastatic cancer cells appear distinctively well adapted to sense these features using filopodia protrusions to enhance their alignment and migration.
Collapse
Affiliation(s)
- James N Iuliano
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - Paul D Kutscha
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - N J Biderman
- Nanoengineering Constellation, College of Nanoscale Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA University at Albany, State University of New York, Albany, NY 12203, USA
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12209, USA
| | - Timothy R Groves
- Nanoengineering Constellation, College of Nanoscale Engineering, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| | - Scott A Tenenbaum
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| | - Nadine Hempel
- Nanobioscience Constellation, College of Nanoscale Science, SUNY Polytechnic Institute, State University of New York, Albany, NY 12203, USA
| |
Collapse
|
15
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
McMurray RJ, Dalby MJ, Tsimbouri PM. Using biomaterials to study stem cell mechanotransduction, growth and differentiation. J Tissue Eng Regen Med 2014; 9:528-39. [DOI: 10.1002/term.1957] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 06/11/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca J. McMurray
- Mrksich Research Group, Department of Biomedical Engineering; Northwestern University; Evanston IL USA
| | - Matthew J. Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology; University of Glasgow; UK
| | - P. Monica Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology; University of Glasgow; UK
| |
Collapse
|
17
|
The Control of Mesenchymal Stromal Cell Osteogenic Differentiation through Modified Surfaces. Stem Cells Int 2013; 2013:361637. [PMID: 23766768 PMCID: PMC3674690 DOI: 10.1155/2013/361637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/02/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells continue to receive widespread attention due to their potential to revolutionise treatments in the fields of both tissue engineering and regenerative medicine. Adult stem cells, specifically mesenchymal stromal cells (MSCs), play a vital role in the natural events surrounding bone healing and osseointegration through being stimulated to differentiate along their osteogenic lineage and in doing so, they form new cortical and trabecular bone tissue. Understanding how to control, manipulate, and enhance the intrinsic healing events modulated through osteogenic differentiation of MSCs by the use of modified surfaces and biomaterials could potentially advance the fields of both orthopaedics and dentistry. This could be by either using surface modification to generate greater implant stability and more rapid healing following implantation or the stimulation of MSCs ex vivo for reimplantation. This review aims to gather publications targeted at promoting, enhancing, and controlling the osteogenic differentiation of MSCs through biomaterials, nanotopographies, and modified surfaces for use in implant procedures.
Collapse
|
18
|
Lim JY, Siedlecki CA, Donahue HJ. Nanotopographic cell culture substrate: polymer-demixed nanotextured films under cell culture conditions. Biores Open Access 2013; 1:252-5. [PMID: 23515067 PMCID: PMC3559240 DOI: 10.1089/biores.2012.0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Modulating physical cell culture environments via nanoscale substrate topographic modification has recently been of significant interest in regenerative medicine. Many studies have utilized a polymer-demixing technique to produce nanotextured films and showed that cellular adhesion, proliferation, and differentiation could be regulated by the shape and scale of the polymer-demixed nanotopographies. However, little attention has been paid to the topographic fidelity of the polymer-demixed films when exposed to cell culture conditions. In this brief article, two polymer-demixing systems were employed to assess topographic changes in polymer-demixed films after fibronectin (FN) extracellular matrix protein adsorption and after incubation in phosphate-buffered saline at 37°C. We showed that FN adsorption induced very small variations (<2 nm) to the polystyrene/polybromostyrene (PS/PBrS)-demixed nanoisland textures, not substantially altering the nanotopographies given by the polymer demixing. In addition, poly(L-lactic acid)/PS (PLLA/PS)-demixed nanoisland topographies using PLLA with M w=50×10(3) did not show notable degradation up to day 24.
Collapse
Affiliation(s)
- Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska
| | | | | |
Collapse
|
19
|
Pfluger CA, McMahon BJ, Carrier RL, Burkey DD. Precise, Biomimetic Replication of the Multiscale Structure of Intestinal Basement Membrane Using Chemical Vapor Deposition. Tissue Eng Part A 2013; 19:649-56. [DOI: 10.1089/ten.tea.2012.0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Courtney A. Pfluger
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Brian J. McMahon
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Rebecca L. Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts
| | - Daniel D. Burkey
- Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
20
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Parikh K, Rao S, Ansari H, Zimmerman L, Lee L, Akbar S, Winter J. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Taraballi F, Wang S, Li J, Lee FYY, Venkatraman SS, Birch WR, Teoh SH, Boey FYC, Ng KW. Understanding the nano-topography changes and cellular influences resulting from the surface adsorption of human hair keratins. Adv Healthc Mater 2012. [PMID: 23184785 DOI: 10.1002/adhm.201200043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent interest in the use of human hair keratins as a biomaterial has grown, fuelled by improvements in keratin extraction methods and better understanding of keratin bioactivity. The use of keratins as a bioactive coating for in vitro cell culture studies is an attractive proposition. In this light, the surface adsorption of human hair keratins onto tissue culture polystyrene surfaces has been investigated. Keratin density, nano-topography and hydrophobicity of keratin coated surfaces were characterized. To understand the cellular influence of these coated surfaces, murine L929 fibroblasts were cultured on them and evaluated for cytotoxicity, proliferation, metabolic activity and detachment behaviors compared to collagen type 1 coated surfaces. Keratins were deposited up to a density of 650 ng/cm(2) when a coating concentration of 80 μg/ml or higher was used. The surface features formed by adsorbed keratins also changed in a coating concentration dependent manner. These surfaces improved L929 mouse fibroblast adhesion and proliferation in comparison to uncoated and collagen type 1 coated tissue culture polystyrene. Furthermore, the expression of fibronectin was accelerated on surfaces coated with solutions of higher keratin concentrations. These results suggest that human hair keratins can be used as a viable surface coating material to enhance substrate compliance for culturing cells.
Collapse
Affiliation(s)
- Francesca Taraballi
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
He XL, Nie PP, Chen BZ, Li XX, Chen L, Guo G, Zhang R. A novel method to fabricate thermoresponsive microstructures with improved cell attachment/detachment properties. J Biomed Mater Res A 2012; 100:1946-53. [PMID: 22492628 DOI: 10.1002/jbm.a.34138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 11/07/2022]
Abstract
A novel, simple, and rapid method to fabricate thermoresponsive micropatterned substrate for cell adhesion, growth, and thermally induced detachment was developed. Thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), was grafted onto the surface of polystyrene (PS) film with microstructure by plasma-induced graft polymerization technique. The thermoresponsive micropatterned films were characterized by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, hydrogen nuclear magnetic resonance ((1) H NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). These results indicated that the grafting ratio of PNIPAAm increased with increasing roughness of PS film. However, the microstructures on the substrate were not affected by grafted PNIPAAm. The optimal grafting conditions, such as plasma treatment time, monomer concentration, graft polymerization time, and graft medium were investigated. The thermoresponsive micropatterned films were investigated with the fibroblast cell (L929) adhesion, proliferation, and thermally induced detachment assay. The microstructure on the thermoresponsive micropatterned substrate facilitated cell adhesion above the lower critical solution temperature (LCST) of PNIPAAm and cell detachment below the LCST. Moreover, it can be used to regulate cell organization and tissue growth.
Collapse
Affiliation(s)
- Xiao-Ling He
- Department of Chemistry, School of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Hasirci V, Vrana E, Zorlutuna P, Ndreu A, Yilgor P, Basmanav FB, Aydin E. Nanobiomaterials: a review of the existing science and technology, and new approaches. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:1241-68. [PMID: 17176748 DOI: 10.1163/156856206778667442] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanotechnology has made great strides forward in the creation of new surfaces, new materials and new forms which also find application in the biomedical field. Traditional biomedical applications started benefiting from the use nanotechnology in an array of areas, such as biosensors, tissue engineering, controlled release systems, intelligent systems and nanocomposites used in implant design. In this manuscript a review of developments in these areas will be provided along with some applications from our laboratories.
Collapse
Affiliation(s)
- V Hasirci
- METU, Department of Biological Sciences, Biotechnology Research Unit, Ankara 06531, Turkey.
| | | | | | | | | | | | | |
Collapse
|
25
|
Titushkin I, Sun S, Cho M. Structure and Biology of the Cellular Environment: The Extracellular Matrix. NANOTECHNOLOGY FOR BIOLOGY AND MEDICINE 2012. [DOI: 10.1007/978-0-387-31296-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Langheinrich D, Yslas E, Broglia M, Rivarola V, Acevedo D, Lasagni A. Control of cell growth direction by direct fabrication of periodic micro- and submicrometer arrays on polymers. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.23017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Parkinson LG, Rea SM, Stevenson AW, Wood FM, Fear MW. The effect of nano-scale topography on keratinocyte phenotype and wound healing following burn injury. Tissue Eng Part A 2011; 18:703-14. [PMID: 21988618 DOI: 10.1089/ten.tea.2011.0307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Topographic modulation of tissue response is an important consideration in the design and manufacture of a biomaterial. In developing new tissue therapies for skin, all levels of architecture, including the nanoscale need to be considered. Here we show that keratinocyte phenotype is affected by nanoscale changes in topography with cell morphology, proliferation, and migration influenced by the pore size in anodic aluminum oxide membranes. A membrane with a pore size of 300 nm, which enhanced cell phenotype in vitro, was used as a dressing to cover a partial thickness burn injury in the pig. Wounds dressed with the membrane showed evidence of advanced healing with significantly less organizing granulation tissue and more mature epidermal layers than control wounds dressed with a standard burns dressing. The results demonstrate the importance of nanoscale topography in modulating keratinocyte phenotype and skin wound healing.
Collapse
|
28
|
Stout DA, Basu B, Webster TJ. RETRACTED: Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 2011; 7:3101-12. [PMID: 21571106 DOI: 10.1016/j.actbio.2011.04.028] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/01/2011] [Accepted: 04/28/2011] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Coordinating Editor and the Editor-in-Chief. An author-provided and previously published corrigendum updated Figures 9A and C and 10A and B. The authors had also provided a justification and an explanation for concerns raised in regards to Figure 3A. It was determined at that time that the conclusions of the publication remained the same. However, it has since been identified that parts of Figures 3, 9 and 10 are falsified and/or fabricated. The original data reported in this manuscript were not retained by the authors and the reliability of the reported results could not be confirmed. The editors regret any negative consequences that may have arisen from this matter within the scientific community.
Collapse
Affiliation(s)
- David A Stout
- School of Engineering, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
29
|
Hamilton DW, Oates CJ, Hasanzadeh A, Mittler S. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance. PLoS One 2010; 5:e15129. [PMID: 21152020 PMCID: PMC2995739 DOI: 10.1371/journal.pone.0015129] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
Considered to be the "holy grail" of dentistry, regeneration of the periodontal ligament in humans remains a major clinical problem. Removal of bacterial biofilms is commonly achieved using EDTA gels or lasers. One side effect of these treatment regimens is the etching of nanotopographies on the surface of the tooth. However, the response of periodontal ligament fibroblasts to such features has received very little attention. Using laser interference lithography, we fabricated precisely defined topographies with continuous or discontinuous nanogrooves to assess the adhesion, spreading and migration of PDL fibroblasts. PDL fibroblasts adhered to and spread on all tested surfaces, with initial spreading and focal adhesion formation slower on discontinuous nanogrooves. Cells had a significantly smaller planar area on both continuous and discontinuous nanogrooves in comparison with cells on non-patterned controls. At 24 h post seeding, cells on both types of nanogrooves were highly elongated parallel to the groove long axis. Time-lapse video microscopy revealed that PDL fibroblast movement was guided on both types of grooves, but migration velocity was not significantly different from cells cultured on non-patterned controls. Analysis of filopodia formation using time-lapse video microscopy and labeling of vinculin and F-actin revealed that on nanogrooves, filopodia were highly aligned at both ends of the cell, but with increasing time filopodia and membrane protrusions developed at the side of the cell perpendicular to the cell long axis. We conclude that periodontal ligament fibroblasts are sensitive to nanotopographical depths of 85-100 µm, which could be utilized in regeneration of the periodontal ligament.
Collapse
Affiliation(s)
- Douglas W Hamilton
- Graduate Program of Biomedical Engineering, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada.
| | | | | | | |
Collapse
|
30
|
Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proc Inst Mech Eng H 2010; 224:1487-507. [DOI: 10.1243/09544119jeim901] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A current medical challenge is the replacement of tissue which can be thought of in terms of bone tissue engineering approaches. The key problem in bone tissue engineering lies in associating bone stem cells with material supports or scaffolds that can be implanted in a patient. Beside bone tissue engineering approaches, these types of materials are used daily in orthopaedics and dental practice as permanent or transitory implants such as ceramic bone filling materials or metallic prostheses. Consequently, it is essential to better understand how bone cells interact with materials. For several years, the current authors and others have developed in vitro studies in order to elucidate the mechanisms underlying the response of human bone cells to implant surfaces. This paper reviews the current state of knowledge and proposes future directions for research in this domain.
Collapse
Affiliation(s)
- K Anselme
- Institut de Sciences des Matériaux de Mulhouse (IS2M), CNRS LRC7228, Université de Haute-Alsace, Mulhouse, France
| | - A Ponche
- Institut de Sciences des Matériaux de Mulhouse (IS2M), CNRS LRC7228, Université de Haute-Alsace, Mulhouse, France
| | - M Bigerelle
- Laboratoire Roberval, CNRS UMR6253, Centre de Recherche de Royallieu, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
31
|
Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 2010; 6:3824-46. [PMID: 20371386 DOI: 10.1016/j.actbio.2010.04.001] [Citation(s) in RCA: 467] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 12/22/2022]
Abstract
The current development of nanobiotechnologies requires a better understanding of cell-surface interactions on the nanometre scale. Recently, advances in nanoscale patterning and detection have allowed the fabrication of appropriate substrates and the study of cell-substrate interactions. In this review we discuss the methods currently available for nanoscale patterning and their merits, as well as techniques for controlling the surface chemistry of materials at the nanoscale without changing the nanotopography and the possibility of truly characterizing the surface chemistry at the nanoscale. We then discuss the current knowledge of how a cell can interact with a substrate at the nanoscale and the effect of size, morphology, organization and separation of nanofeatures on cell response. Moreover, cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids on the substrate. Many questions remain on the effect of nanotopography on protein adsorption. We review papers related to this point. As all these parameters have an influence on cell response, it is important to develop specific studies to point out their relative influence, as well as the biological mechanisms underlying cell responses to nanotopography. This will be the basis for future research in this field. An important topic in tissue engineering is the effect of nanoscale topography on bacteria, since cells have to compete with bacteria in many environments. The limited current knowledge of this topic is also discussed in the light of using topography to encourage cell adhesion while limiting bacterial adhesion. We also discuss current and prospective applications of cell-surface interactions on the nanoscale. Finally, based on questions raised previously that remain to be solved in the field, we propose future directions of research in materials science to help elucidate the relative influence of the physical and chemical aspects of nanotopography on bacteria and cell response with the aim of contributing to the development of nanobiotechnologies.
Collapse
|
32
|
Mahlstedt MM, Anderson D, Sharp JS, McGilvray R, Muñoz MDB, Buttery LD, Alexander MR, Rose FRAJ, Denning C. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol Bioeng 2010; 105:130-40. [PMID: 19718698 DOI: 10.1002/bit.22520] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Realizing the potential clinical and industrial applications of human embryonic stem cells (hESCs) is limited by the need for costly, labile, or undefined growth substrates. Here we demonstrate that trypsin passaging of the hESC lines, HUES7 and NOTT1, on oxygen plasma etched tissue culture polystyrene (PE-TCPS) in conditioned medium is compatible with pluripotency. This synthetic culture surface is stable at room temperature for at least a year and is readily prepared by placing polystyrene substrates in a radio frequency oxygen plasma generator for 5 min. Modification of the polystyrene surface chemistry by plasma etching was confirmed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), which identified elemental and molecular changes as a result of the treatment. Pluripotency of hESCs cultured on PE-TCPS was gauged by consistent proliferation during serial passage, expression of stem cell markers (OCT4, TRA1-60, and SSEA-4), stable karyotype and multi-germlayer differentiation in vitro, including to pharmacologically responsive cardiomyocytes. Generation of cost-effective, easy-to-handle synthetic, defined, stable surfaces for hESC culture will expedite stem cell use in biomedical applications.
Collapse
|
33
|
Parkinson LG, Giles NL, Adcroft KF, Fear MW, Wood FM, Poinern GE. The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair. Tissue Eng Part A 2010; 15:3753-63. [PMID: 19527180 DOI: 10.1089/ten.tea.2008.0594] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cells respond to changes in the environment by altering their phenotype. The ability to influence cell behavior by modifying their environment provides an opportunity for therapeutic application, for example, to promote faster wound healing in response to skin injury. Here, we have modified the preparation of an aluminium oxide template to generate large uniform membranes with differing nano-pore sizes. Epidermal cells (keratinocytes) and dermal cells (fibroblasts) readily adhere to these nanoporous membranes. The pore size appears to influence the rate of cell proliferation and migration, important aspects of cell behavior during wound healing. The suitability of the membrane to act as a dressing after a burn injury was assessed in vivo; application of the membrane demonstrated adherence and conformability to the skin surface of a pig, with no observed degradation or detrimental effect on the repair. Our results suggest that keratinocytes are sensitive to changes in topography at the nanoscale level and that this property may be exploited to improve wound repair after tissue injury.
Collapse
Affiliation(s)
- Leigh G Parkinson
- Department of Physics and Nanoscience, School of Engineering and Energy, Murdoch University, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Biggs MJP, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CDW, Oreffo ROC, Dalby MJ. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A 2009; 91:195-208. [PMID: 18814275 DOI: 10.1002/jbm.a.32196] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.
Collapse
Affiliation(s)
- Manus J P Biggs
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G128QQ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi JH, Zalzal S, Clair S, Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A. Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:996-1006. [PMID: 19360718 DOI: 10.1002/smll.200801186] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The human body is an intricate biochemical-mechanical system, with an exceedingly precise hierarchical organization in which all components work together in harmony across a wide range of dimensions. Many fundamental biological processes take place at surfaces and interfaces (e.g., cell-matrix interactions), and these occur on the nanoscale. For this reason, current health-related research is actively following a biomimetic approach in learning how to create new biocompatible materials with nanostructured features. The ultimate aim is to reproduce and enhance the natural nanoscale elements present in the human body and to thereby develop new materials with improved biological activities. Progress in this area requires a multidisciplinary effort at the interface of biology, physics, and chemistry. In this Review, the major techniques that have been adopted to yield novel nanostructured versions of familiar biomaterials, focusing particularly on metals, are presented and the way in which nanometric surface cues can beneficially guide biological processes, exerting influence on cellular behavior, is illustrated.
Collapse
Affiliation(s)
- Fabio Variola
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculté de Médecine Dentaire, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 2009; 30:1268-72. [DOI: 10.1016/j.biomaterials.2008.11.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 11/11/2008] [Indexed: 01/13/2023]
|
37
|
The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Biomaterials 2008; 29:4074-81. [DOI: 10.1016/j.biomaterials.2008.06.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/27/2008] [Indexed: 12/14/2022]
|
38
|
Hart A, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ. Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1211-8. [PMID: 17277969 DOI: 10.1007/s10856-007-0157-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 03/23/2006] [Indexed: 05/13/2023]
Abstract
It is considered that cells can use filopodia, or microspikes, to locate sites suitable for adhesion. This has been investigated using a number of mature cell types, but, to our knowledge, not progenitor cells. Chemical and topographical cues on the underlying substrate are a useful tool for producing defined features for cells to respond to. In this study, arrays of nanopits with different symmetries (square or hexagonal arrays with 120 nm diameters, 300 nm center-centre spacings) and osteoprogenitor cells were considered. The pits were fabricated by ultra-high precision electron-beam lithography and then reproduced in polycarbonate by injection moulding with a nickel stamp. Using scanning electron and fluorescence microscopies, the initial interactions of the cells via filopodia have been observed, as have subsequent adhesion and cytoskeletal formation. The results showed increased filopodia interaction with the surrounding nanoarchitecture leading to a decrease in cell spreading, focal adhesion formation and cytoskeletal organisation.
Collapse
Affiliation(s)
- Andrew Hart
- Centre for Cell Engineering, Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
39
|
Hsu SH, Tang CM, Chiu JJ, Liao TC, Lin CC, Iwata H. Cell Migration Rate on Poly(ɛ-caprolactone)/Poly(ethylene glycol) Diblock Copolymers and Correlation with the Material Sliding Angle. Macromol Biosci 2007; 7:482-90. [PMID: 17429810 DOI: 10.1002/mabi.200600248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nanostructure of a biomaterial surface has strong influence on cell behavior. The migration of cells on nanostructured surfaces, however, has not been investigated so far. In this study, we used PCL/PEG diblock copolymers as model surfaces to examine the effect of nanoislands on migration of different cells, including fibroblasts and endothelial cells. The water sliding angle of the substrates was measured. The cell migration rate was examined under a real-time optical microscope. It was found that a greater cell migration rate correlated with the smaller sliding angle of the substrate.
Collapse
Affiliation(s)
- Shan-hui Hsu
- Center of Tissue Engineering and Stem Cells Research, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Wood MA. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J R Soc Interface 2007; 4:1-17. [PMID: 17015295 PMCID: PMC2358954 DOI: 10.1098/rsif.2006.0149] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Substrate topography plays a vital role in cell and tissue structure and function in situ, where nanometric features, for example, the detail on single collagen fibrils, influence cell behaviour and resultant tissue formation. In vitro investigations demonstrate that nanotopography can be used to control cell reactions to a material surface, indicating its potential application in tissue engineering and implant fabrication. Developments in the catalyst, optical, medical and electronics industries have resulted in the production of nanopatterned surfaces using a variety of methods. The general protocols for nanomanufacturing require high resolution and low cost for fabricating devices. With respect to biological investigations, nanotopographies should occur across a large surface area (ensuring repeatability of experiments and patterning of implant surfaces), be reproducible (allowing for consistency in experiments), and preferably, accessible (limiting the requirement for specialist equipment). Colloidal lithography techniques fit these criteria, where nanoparticles can be utilized in combination with a functionalized substrate to produce in-plane nanotopographies. Subsequent lithographic processing of colloidal substrates utilizing, for example, reactive ion etching allows the production of modified colloidal-derived nanotopographies. In addition to two-dimensional in-plane nanofabrication, functionalized structures can be dip coated in colloidal sols, imparting nanotopographical cues to cells within a three-dimensional environment.
Collapse
Affiliation(s)
- M A Wood
- Centre for Cell Engineering, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
41
|
Choi CH, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, CJ Kim CJ. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 2007; 28:1672-9. [PMID: 17174392 DOI: 10.1016/j.biomaterials.2006.11.031] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/22/2006] [Indexed: 11/29/2022]
Abstract
Cells in their native microenvironment interact with three-dimensional (3D) nanofeatures. Despite many reports on the effects of substrate nanotopography on cells, the independent effect of 3D parameters has not been investigated. Recent advances in nanofabrication for precise control of nanostructure pattern, periodicity, shape, and height enabled this systematic study of cell interactions with 3D nanotopographies. Two distinct nanopatterns (posts and grates) with varying three-dimensionalities (50-600 nm in nanostructure height) were created, while maintaining the pattern periodicity (230 nm in pitch) and tip shape (needle- or blade-like sharp tips). Human foreskin fibroblasts exhibited significantly smaller cell size and lower proliferation on needle-like nanoposts, and enhanced elongation with alignment on blade-like nanogrates. These phenomena became more pronounced as the nanotopographical three-dimensionality (structural height) increased. The nanopost and nanograte architectures provided the distinct contact guidance for both filopodia extension and the formation of adhesion molecules complex, which was believed to lead to the unique cell behaviors observed.
Collapse
Affiliation(s)
- Chang-Hwan Choi
- Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Trofin L, LeDuc PR. Controlled geometry fabrication of polydimethylsiloxane nanofibers for biomimetics. J Appl Polym Sci 2007. [DOI: 10.1002/app.26527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Bruder JM, Monu NC, Harrison MW, Hoffman-Kim D. Fabrication of polymeric replicas of cell surfaces with nanoscale resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8266-70. [PMID: 16981733 DOI: 10.1021/la0608563] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report an approach for fabricating biomimetic surface replicas of cells with nanoscale resolution. Fixed cells serve as a template for a two-stage replica molding process. Cast from the template, the impression replica contains a reproduction of cellular topographical features indented into its surface, and cast from the impression replica, the relief replica contains a copy of these features protruding from its surface. Various polymers and cells can be utilized, and scanning electron microscopy, atomic force microscopy, and white light interferometry analyses confirm the replication of nanoscale features. These replicas are useful for investigating cellular function and for biomimetic tissue engineering.
Collapse
Affiliation(s)
- Jan M Bruder
- Department of Molecular Pharmacology, Physiology, and Biotechnology and Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|