1
|
Moussa AY, Siddiqui SA, Elhawary EA, Guo K, Anwar S, Xu B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem 2024; 459:140363. [PMID: 39089196 DOI: 10.1016/j.foodchem.2024.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Annona squamosa L. (Annonaceae) is a versatile tree with an edible fruit showing abundant medicinal and industrial applications. The nutritional values of this plant are due to carbohydrates, proteins, amino acids, and vitamins. Ethnopharmacological uses referred to treatment of dysentery, headlice, cancer sores, purgative, and tonic effects. The main reported biological activities for A. squamosa L. were cytotoxic, antidiabetic, antimicrobial, antiparasitic, antioxidant, antimalarial, molluscidal, anthelmintic and insecticidal activities, and its chemical classes encompassed alkaloids, diterpenes, acetogenins, and cyclopeptides. The nutritional content of A. squamosa L. and their main chemical components, biological effects, and the different applications were discussed in this review. This comprehensive review strived to compile all the relevant data in the period between 1990 and 2023 covering databases PubMed, ScienceDirect, Web of Science, Googlescholar and Reaxys concerning A. squamosa L. different parts with their reported phytochemical constituents and biological activities to integrate a better understanding of the medicinal values.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | | | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Kai Guo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China
| | - Sidra Anwar
- Swinburne University of Technology, Melbourne, Australia
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
2
|
Ghosh D, Khan A, Bag S, Mallick AI, De P. Dual stimuli-responsive biotinylated polymer-drug conjugate for dual drug delivery. J Mater Chem B 2024. [PMID: 39439369 DOI: 10.1039/d4tb01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stimuli-responsive nanoscale polymer-drug conjugates are one of the most promising alternatives in the realm of advanced therapeutics, rendering several characteristics such as spatio-temporal control over drug release, reduced off-target toxicity, enhanced bioavailability, and longer blood circulation time of the drug. Fostered by the aforementioned conceptualization, our quest to develop an ideal polymer-drug conjugate has originated the present investigation of developing a reactive oxygen species (ROS) and esterase-responsive self-assembled polymer-drug (chlorambucil, CBL) conjugate with biotin pendants (DP2) for cancer cell targeting, surrogating another antineoplastic drug, doxorubicin (DOX) via physical encapsulation (DP2@DOX). The ROS and esterase trigger not only released the covalently stitched CBL but also resulted in DOX release by dismantling the amphiphilic balance of the nanoaggregates. Biotinylation-mediated enhancement of cellular uptake of DP2@DOX was reflected in the synergistic anticancer activity of both the drugs (CBL and DOX) in HeLa cells (biotin receptor-positive cells) compared to HEK 293T cells (biotin receptor-negative cells). Furthermore, the selective internalization of the fluorophore-tagged DOX-loaded polymer (DP4@DOX) in HeLa cells compared to HEK 293T cells was confirmed by confocal microscopy and flow cytometry. In summary, the present investigation demonstrates a state-of-the-art self-assembled polymer-drug conjugate as a next-generation dual stimuli-responsive drug delivery vehicle.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
3
|
Sang YH, Luo CY, Huang BT, Wu S, Shu J, Lan CG, Zhang F. Elevated origin recognition complex subunit 6 expression promotes non-small cell lung cancer cell growth. Cell Death Dis 2024; 15:700. [PMID: 39349930 PMCID: PMC11442828 DOI: 10.1038/s41419-024-07081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Exploring novel targets for non-small cell lung cancer (NSCLC) remains of utmost importance. This study focused on ORC6 (origin recognition complex subunit 6), investigating its expression and functional significance within NSCLC. Analysis of the TCGA-lung adenocarcinoma database revealed a notable increase in ORC6 expression in lung adenocarcinoma tissues, correlating with reduced overall survival, advanced disease stages, and other key clinical parameters. Additionally, in patients undergoing surgical resection of NSCLC at a local hospital, ORC6 mRNA and protein levels were elevated in NSCLC tissues while remaining low in adjacent normal tissues. Comprehensive bioinformatics analyses across various cancers suggested that ORC6 might play a significant role in crucial cellular processes, such as mitosis, DNA synthesis and repair, and cell cycle progression. Knocking down ORC6 using virus-delivered shRNA in different NSCLC cells, both primary and immortalized, resulted in a significant hindrance to cell proliferation, cell cycle progression, migration and invasion, accompanied by caspase-apoptosis activation. Similarly, employing CRISPR-sgRNA for ORC6 knockout (KO) exhibited significant anti-NSCLC cell activity. Conversely, increasing ORC6 levels using a viral construct augmented cell proliferation and migration. Silencing or knockout of ORC6 in primary NSCLC cells led to reduced expression of several key cyclins, including Cyclin A2, Cyclin B1, and Cyclin D1, whereas their levels increased in NSCLC cells overexpressing ORC6. In vivo experiments demonstrated that intratumoral injection of ORC6 shRNA adeno-associated virus markedly suppressed the growth of primary NSCLC cell xenografts. Reduced ORC6 levels, downregulated cyclins, and increased apoptosis were evident in ORC6-silenced NSCLC xenograft tissues. In summary, elevated ORC6 expression promotes NSCLC cell growth.
Collapse
Affiliation(s)
- Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Ying Luo
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China
| | - Bing-Tao Huang
- Department of Thoracic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Jian Shu
- Department of Thoracic and Cardiovascular Surgery, Taicang Affiliated Hospital of Soochow University The First People's Hospital of Taicang, Taicang, China.
| | - Chang-Gong Lan
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities and Key Laboratory of Molecular Pathology in Tumors of Guangxi Higher Education Institutions, Baise, China.
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, The First People's Hospital of Nantong, Nantong, China.
| |
Collapse
|
4
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
5
|
Chang YY, Yang TY, Sheu GT. Association of Wild-Type TP53 with Downregulation of Lovastatin Sensitivity in Human Non-Small Cell Lung Cancer Cells. Curr Issues Mol Biol 2024; 46:10130-10139. [PMID: 39329956 PMCID: PMC11430132 DOI: 10.3390/cimb46090604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, and reduce cholesterol synthesis. They also have been demonstrated to improve prognosis in patients with various cancers, suggesting a potential anti-cancer effect of statins. However, there is no consensus on the molecular targets of statins for their anti-cancer effects. Docetaxel (DOC) is a microtubule-stabilizing agent currently used as a chemotherapeutic drug in several cancers, including lung cancer. Interestingly, the anti-cancer effects of either drug that are related to abnormal or wild-type TP53 gene have been implied. Therefore, the drug sensitivity of DOC and lovastatin in human lung cancer cells was evaluated. We found that H1355 (mutant TP53-E285K), CL1 (mutant TP53-R248W), and H1299 (TP53-null) human non-small cell lung cancer cells were more sensitive to lovastatin than A549 and H460 cells expressing wild-type TP53. Conversely, A549 and H460 cells showed higher sensitivity to DOC than H1299 and CL1 cells, as demonstrated by the MTT assay. When endogenous TP53 activity was inhibited by pifithrin-α in A549 and H460 cells, lovastatin sensitivities significantly increased, and cancer cell viabilities markedly reduced. These results indicate that TP53 status is associated with the anti-cancer effect of statins in human lung cancer cells. Mutated or null TP53 status is correlated with higher statin sensitivity. Furthermore, DOC-resistant H1299 (H1299/D8) cells showed significant sensitivity to lovastatin treatment compared to DOC-resistant A549 (A549/D16) cells, indicating a potential application of statins/chemotherapy combination therapy to control wild-type and abnormal TP53-containing human lung tumors.
Collapse
Affiliation(s)
- Yu-Yao Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 500, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, No. 1650, Sect. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 402, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| |
Collapse
|
6
|
Liao YC, Wang LH, Hung MC, Cheng TC, Lin YC, Chang J, Tu SH, Wu CH, Yen Y, Hsieh YC, Chen LC, Ho YS. Investigation of the α9-nicotinic receptor single nucleotide polymorphisms induced oncogenic properties and molecular mechanisms in breast cancer. Hum Mol Genet 2024:ddae132. [PMID: 39251229 DOI: 10.1093/hmg/ddae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404328, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ying-Chi Lin
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Chen Hsieh
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
7
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
8
|
Ji H, He Z, Huang Y, Cao X, Zhu Q. Delivery of 5-fluorouracil for cancer therapy using aptamer-based nonlinear hybridization chain reaction. Int J Pharm 2024; 662:124539. [PMID: 39074647 DOI: 10.1016/j.ijpharm.2024.124539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
5-Fluorouracil (5-FU) is a conventional nucleotide analogue used for cancer treatment. However, its clinical application faces challenges such as low stability and non-specific toxicity. With the remarkable advancements in DNA nanotechnology, DNA-based self-assembled nanocarriers have emerged as powerful tools for delivering nucleotide drugs. In this study, we have designed a non-linear hybrid chain reaction involving a fuel strand with AS1411 aptamer sequence to construct a dendritic structure capable of carrying 5-FU. This structure specifically targets cancer cells with overexpressed nucleolin on their surface, allowing the 5-FU to exert its anticancer effects and achieve therapeutic outcomes. Furthermore, we have also investigated the mechanistic action of this drug delivery system, aiming to establish a novel therapeutic platform for 5-FU treatment.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Zhilin He
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Ying Huang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Xiuen Cao
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
9
|
Su Q, Pan J, Wang C, Zhang M, Cui H, Zhao X. Curcumin and Baicalin Co-Loaded Nanoliposomes for Synergistic Treatment of Non-Small Cell Lung Cancer. Pharmaceutics 2024; 16:973. [PMID: 39204318 PMCID: PMC11359521 DOI: 10.3390/pharmaceutics16080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Currently, the treatment of patients with advanced non-small cell lung cancer (NSCLC) mainly relies on traditional chemotherapeutic drugs; however, most of them have limited therapeutic effects and high toxicity. Some natural products with good therapeutic efficacy and low toxicity and side effects are limited in clinical application due to their low solubility and bioavailability. In this study, a nanoliposome drug-carrying system (Lip-Cur/Ba) was developed for the co-delivery of curcumin (Cur) and baicalin (Ba) using the thin-film hydration method. In vitro experiments demonstrated that Lip-Cur/Ba had a strong killing effect on A549 cells, and the inhibitory effect of Lip-Cur/Ba on A549 cells was enhanced by 67.8% and 51.9% relative to that of the single-carrier system, which could reduce the use of a single-drug dose (Lip-Cur and Lip-Ba), delay the release rate of the drug and improve the bioavailability. In vivo experiments demonstrated the antitumor activity of Lip-Cur/Ba by intravitreal injection in BALB/c mice, and there were no obvious toxic side effects. This study provides a new idea for curcumin and baicalin to be used in the co-treatment of NSCLC by constructing a new vector.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiang Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (J.P.); (C.W.); (M.Z.); (H.C.)
| |
Collapse
|
10
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
11
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
12
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
13
|
Bhuia MS, Chowdhury R, Akter MA, Ali MA, Afroz M, Akbor MS, Sonia FA, Mubarak MS, Islam MT. A mechanistic insight into the anticancer potentials of resveratrol: Current perspectives. Phytother Res 2024. [PMID: 38768953 DOI: 10.1002/ptr.8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol is a widely recognized polyphenolic phytochemical found in various plants and their fruits, such as peanuts, grapes, and berry fruits. It is renowned for its several health advantages. The phytochemical is well known for its anticancer properties, and a substantial amount of clinical evidence has also established its promise as a chemotherapeutic agent. This study focuses on assessing the anticancer properties of resveratrol and gaining insight into the underlying molecular mechanisms. It also evaluates the biopharmaceutical, toxicological characteristics, and clinical utilization of resveratrol to determine its suitability for further development as a reliable anticancer agent. Therefore, the information about preclinical and clinical studies was collected from different electronic databases up-to-date (2018-2023). Findings from this study revealed that resveratrol has potent therapeutic benefits against various cancers involving different molecular mechanisms, such as induction of oxidative stress, cytotoxicity, inhibition of cell migration and invasion, autophagy, arresting of the S phase of the cell cycle, apoptotic, anti-angiogenic, and antiproliferative effects by regulating different molecular pathways including PI3K/AKT, p38/MAPK/ERK, NGFR-AMPK-mTOR, and so on. However, the compound has poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of resveratrol). Clinical application also showed therapeutic benefits in several types of cancer with no serious adverse effects. We suggest additional extensive studies to further check the efficacy, safety, and long-term hazards. This could involve a larger number of clinical samples to establish the compound as a reliable drug in the treatment of cancer.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Mst Asma Akter
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Arman Ali
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
14
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
15
|
Lee CY, Chen YC, Huang YH, Lien Y, Huang CY. Cytotoxicity and Multi-Enzyme Inhibition of Nepenthes miranda Stem Extract on H838 Human Non-Small Cell Lung Cancer Cells and RPA32, Elastase, Tyrosinase, and Hyaluronidase Proteins. PLANTS (BASEL, SWITZERLAND) 2024; 13:797. [PMID: 38592804 PMCID: PMC10974603 DOI: 10.3390/plants13060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
The carnivorous pitcher plants of the genus Nepenthes have long been known for their ethnobotanical applications. In this study, we prepared various extracts from the pitcher, stem, and leaf of Nepenthes miranda using 100% ethanol and assessed their inhibitory effects on key enzymes related to skin aging, including elastase, tyrosinase, and hyaluronidase. The cytotoxicity of the stem extract of N. miranda on H838 human lung carcinoma cells were also characterized by effects on cell survival, migration, proliferation, apoptosis induction, and DNA damage. The cytotoxic efficacy of the extract was enhanced when combined with the chemotherapeutic agent 5-fluorouracil (5-FU), indicating a synergistic effect. Flow cytometry analysis suggested that the stem extract might suppress H838 cell proliferation by inducing G2 cell cycle arrest, thereby inhibiting carcinoma cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 15 most abundant compounds in the stem extract of N. miranda. Notably, the extract showed a potent inhibition of the human RPA32 protein (huRPA32), critical for DNA replication, suggesting a novel mechanism for its anticancer action. Molecular docking studies further substantiated the interaction between the extract and huRPA32, highlighting bioactive compounds, especially the two most abundant constituents, stigmast-5-en-3-ol and plumbagin, as potential inhibitors of huRPA32's DNA-binding activity, offering promising avenues for cancer therapy. Overall, our findings position the stem extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and anti-skin-aging treatments, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Ching-Yi Lee
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yu-Cheng Chen
- Department of Internal Medicine, Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
16
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
17
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
18
|
Hudáková T, Šemeláková M, Očenáš P, Kožurková M, Krochtová K, Sovová S, Tóthová Z, Guľášová Z, Popelka P, Solár P. Chili pepper extracts, capsaicin, and dihydrocapsaicin as potential anticancer agents targeting topoisomerases. BMC Complement Med Ther 2024; 24:96. [PMID: 38383414 PMCID: PMC10880293 DOI: 10.1186/s12906-024-04394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
DNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs. Complete inhibition of Topo II was observed for samples TMS, HR, and HMR. Extracts J and SP had the lowest capsaicin and dihydrocapsaicin content compared to other peppers. HR, HMR, TMS, J, S, HRS, BJ, JR extracts showed the anticancer effect, examined by MTS and xCell assay on the in vitro culture of human colon carcinoma cell line HCT116.
Collapse
Affiliation(s)
- Terézia Hudáková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Očenáš
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Kristína Krochtová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Simona Sovová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01, Košice, Slovakia
| | - Zuzana Tóthová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Zuzana Guľášová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11, Košice, Slovakia.
| |
Collapse
|
19
|
Lee YG, Kim TH, Kwon JE, Kim H, Kang SC. Cytotoxic Effects of Ardisiacrispin A from Labisia pumila on A549 Human Lung Cancer Cells. Life (Basel) 2024; 14:276. [PMID: 38398785 PMCID: PMC10890250 DOI: 10.3390/life14020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Lung cancer is the predominant cause of cancer-related fatalities. This prompted our exploration into the anti-lung cancer efficacy of Labisia pumila, a species meticulously selected from the preliminary screening of 600 plants. METHODS Through the strategic implementation of activity-guided fractionation, ardisiacrispin A (1) was isolated utilizing sequential column chromatography. Structural characterization was achieved employing various spectroscopic methods, including nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared spectroscopy (IR). RESULTS L. pumila 70% EtOH extract showed significant toxicity in A549 lung cancer cells, with an IC50 value of 57.04 ± 10.28 µg/mL, as well as decreased expression of oncogenes and induced apoptosis. Compound 1, ardisiacrispin A, induced a 50% cell death response in A549 cells at a concentration of 11.94 ± 1.14 µg/mL. CONCLUSIONS The present study successfully investigated ardisiacrispin A extracted from L. pumila leaves, employing a comprehensive spectroscopic approach encompassing NMR, IR, and MS analyses. The anti-lung cancer efficacy of ardisiacrispin A and L. pumila extract was successfully demonstrated for the first time, to the best of our knowledge.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea; (Y.-G.L.); (T.H.K.); (J.E.K.)
| | - Tae Hyun Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea; (Y.-G.L.); (T.H.K.); (J.E.K.)
| | - Jeong Eun Kwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea; (Y.-G.L.); (T.H.K.); (J.E.K.)
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea; (Y.-G.L.); (T.H.K.); (J.E.K.)
| |
Collapse
|
20
|
Huang X, Arjsri P, Srisawad K, Yodkeeree S, Dejkriengkraikul P. Exploring the Anticancer Potential of Traditional Thai Medicinal Plants: A Focus on Dracaena loureiri and Its Effects on Non-Small-Cell Lung Cancer. PLANTS (BASEL, SWITZERLAND) 2024; 13:290. [PMID: 38256842 PMCID: PMC10820207 DOI: 10.3390/plants13020290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is renowned for its aggressive and highly metastatic nature. In recent years, there has been a surge in interest regarding the therapeutic potential of traditional medicinal plants. Dracaena loureirin (D. loureirin), Ficus racemosa Linn. (F. racemosa), and Harrisonia perforata (Blanco) Merr. (H. perforata) are prominent traditional medicinal herbs in Thailand, recognized for their diverse biological activities, including antipyretic and anti-inflammatory effects. However, their prospective anti-cancer properties against NSCLC remain largely unexplored. This study aimed to evaluate the anti-cancer attributes of ethanolic extracts obtained from D. loureiri (DLEE), F. racemosa (FREE), and H. perforata (HPEE) against the A549 lung adenocarcinoma cell lines. Sulforhodamine B (SRB) assay results revealed that only DLEE exhibited cytotoxic effects on A549 cells, whereas FREE and HPEE showed no such cytotoxicity. To elucidate the anti-cancer mechanisms of DLEE, cell cycle and apoptosis assays were performed. The findings demonstrated that DLEE inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase in A549 cells through the downregulation of key cell cycle regulator proteins, including cyclin D1, CDK-2, and CDK-4. Furthermore, DLEE treatment facilitated apoptosis in A549 cells by suppressing anti-apoptotic proteins (Bcl-2, Bcl-xl, and survivin) and enhancing apoptotic proteins (cleaved-caspase-3 and cleaved-PARP-1). In summary, our study provides novel insights into the significant anti-cancer properties of DLEE against A549 cells. This work represents the first report suggesting that DLEE has the capability to impede the growth of A549 lung adenocarcinoma cells through the induction of apoptosis.
Collapse
Affiliation(s)
- Xiaomin Huang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Singh S, Sachan K, Verma S, Singh N, Singh PK. Cubosomes: An Emerging and Promising Drug Delivery System for Enhancing Cancer Therapy. Curr Pharm Biotechnol 2024; 25:757-771. [PMID: 37929730 DOI: 10.2174/0113892010257937231025065352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Cancer and other diseases can be treated with cubosomes, which are lyotropic nonlamellar liquid crystalline nanoparticles (LCNs). These cubosomes can potentially be a highly versatile carrier with theranostic efficacy, as they can be ingested, applied topically, or injected intravenously. Recent years have seen substantial progress in the synthesis, characterization, regulation of drug release patterns, and target selectivity of loaded anticancer bioactive compounds. However, its use in clinical settings has been slow and necessitates additional proof. Recent progress and roadblocks in using cubosomes as a nanotechnological intervention against various cancers are highlighted. In the last few decades, advances in biomedical nanotechnology have allowed for the development of "smart" drug delivery devices that can adapt to external stimuli. By improving therapeutic targeting efficacy and lowering the negative effects of payloads, these well-defined nanoplatforms can potentially promote patient compliance in response to specific stimuli. Liposomes and niosomes, two other well-known vesicular systems, share a lipid basis with cubosomes. Possible applications include a novel medication delivery system for hydrophilic, lipophilic, and amphiphilic drugs. We evaluate the literature on cubosomes, emphasizing their potential use in tumor-targeted drug delivery applications and critiquing existing explanations for cubosome self-assembly, composition, and production. As cubosome dispersion has bioadhesive and compatible features, numerous drug delivery applications, including oral, ocular, and transdermal, are also discussed in this review.
Collapse
Affiliation(s)
- Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| | - Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Suryakant Verma
- School of Pharmacy, Bharat Institute of Technology, Meerut, India
| | - Nidhi Singh
- Sunder Deep Pharmacy College, Dasna, Ghaziabad, India
| | - Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, India
| |
Collapse
|
22
|
Kiruthiga C, Niharika K, Devi KP. Phytol and α-Bisabolol Synergy Induces Autophagy and Apoptosis in A549 Cells and Additional Molecular Insights through Comprehensive Proteome Analysis via Nano LC-MS/MS. Anticancer Agents Med Chem 2024; 24:773-788. [PMID: 38415491 DOI: 10.2174/0118715206289038240214102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Non-Small Cell Lung Cancer (NSCLC) is a malignancy with a significant prevalence and aggressive nature, posing a considerable challenge in terms of therapeutic interventions. Autophagy and apoptosis, two intricate cellular processes, are integral to NSCLC pathophysiology, each affecting the other through shared signaling pathways. Phytol (Phy) and α-bisabolol (Bis) have shown promise as potential anticancer agents individually, but their combined effects in NSCLC have not been extensively investigated. OBJECTIVE The present study was to examine the synergistic impact of Phy and Bis on NSCLC cells, particularly in the context of autophagy modulation, and to elucidate the resulting differential protein expression using LCMS/ MS analysis. METHODS The A549 cell lines were subjected to the patented effective concentration of Phy and Bis, and subsequently, the viability of the cells was evaluated utilizing the MTT assay. The present study utilized real-time PCR analysis to assess the expression levels of crucial apoptotic genes, specifically Bcl-2, Bax, and Caspase-9, as well as autophagy-related genes, including Beclin-1, SQSTM1, Ulk1, and LC3B. The confirmation of autophagy marker expression (Beclin-1, LC3B) and the autophagy-regulating protein SQSTM1 was achieved through the utilization of Western blot analysis. Differentially expressed proteins were found using LC-MS/MS analysis. RESULTS The combination of Phy and Bis demonstrated significant inhibition of NSCLC cell growth, indicating their synergistic effect. Real-time PCR analysis revealed a shift towards apoptosis, with downregulation of Bcl-2 and upregulation of Bax and Caspase-9, suggesting a shift towards apoptosis. Genes associated with autophagy regulation, including Beclin-1, SQSTM1 (p62), Ulk1, and LC3B, showed significant upregulation, indicating potential induction of autophagy. Western blot analysis confirmed increased expression of autophagy markers, such as Beclin-1 and LC3B, while the autophagy-regulating protein SQSTM1 exhibited a significant decrease. LC-MS/MS analysis revealed differential expression of 861 proteins, reflecting the modulation of cellular processes. Protein-protein interaction network analysis highlighted key proteins involved in apoptotic and autophagic pathways, including STOML2, YWHAB, POX2, B2M, CDA, CAPN2, TXN, ECHS1, PEBP1, PFN1, CDC42, TUBB1, HSPB1, PXN, FGF2, and BAG3, emphasizing their crucial roles. Additionally, PANTHER pathway analysis uncovered enriched pathways associated with the differentially expressed proteins, revealing their involvement in a diverse range of biological processes, encompassing cell signaling, metabolism, and cellular stress responses. CONCLUSION The combined treatment of Phy and Bis exerts a synergistic inhibitory effect on NSCLC cell growth, mediated through the interplay of apoptosis and autophagy. The differential protein expression observed, along with the identified proteins and enriched pathways, provides valuable insights into the underlying molecular mechanisms. These findings offer a foundation for further exploration of the therapeutic potential of Phy and Bis in the management of NSCLC.
Collapse
Affiliation(s)
| | - Kambati Niharika
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
23
|
Salawu KM, Ogbole OO, Abiodun OO, Wang Y. Isolation and Characterization of Cytotoxic Compounds from Detarium microcarpum Guill. and Perr. Stem Bark. Anticancer Agents Med Chem 2024; 24:1295-1304. [PMID: 39051584 DOI: 10.2174/0118715206317259240722113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Globally, about 8.2 million cancer-related deaths are recorded annually. Sadly, most of the deaths result from the toxicity of most chemotherapeutic agents. Hence, there are growing demands for chemotherapeutic agents with high specificity and selectivity. This study was designed to assess the cytotoxic potential of Detarium microcarpum and isolate cytotoxic compounds with better selectivity profiles. METHODS Detarium microcarpum Stem bark (DMS) was collected and authenticated at the Forest Herbarium Ibadan (FHI), and a voucher (FHI-111954) was issued. Dried DMS was pulverized and extracted into 70% methanol. The extract was partitioned into hexane, dichloromethane, and ethyl acetate fractions. The cytotoxicities of the extract, fractions, and isolated compounds were determined. The cytotoxicity of the isolated compounds was tested against different cell lines, including human breast (AU565 and MDA MB231), oral adenosquamous (CAL27), and cervical (HeLa) cancer cells, as well as healthy (3T3) non-cancer cells. RESULTS Methyl gallate, eriodictyol, quercetin, quebrachitol, catechin, catechin gallate, and gallic acid, isolated from dichloromethane and ethyl acetate fractions, displayed weak cytotoxicity against breast (AU565 and MDAMD- 231) and cervical (HeLa) cancer cell lines. Interestingly, all the compounds, except gallic acid (48.91±4.51% inhibition), displayed potent cytotoxicity on oral cancer cells. Methyl gallate and quercetin displayed the highest activity, with IC50 values of 89.57±1.98μM and 78.19±1.49μM, respectively. Interestingly, all the compounds were not toxic to healthy non-cancer (3T3) cells. CONCLUSION The compounds displayed anticancer activity specific to oral cancer cells and were highly selective for cancer cells without causing significant toxicity to healthy non-cancer cells.
Collapse
Affiliation(s)
| | | | | | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), Karachi, Pakistan
| |
Collapse
|
24
|
Cavaleri F, Chattopadhyay S, Palsule V, Kar PK, Chatterjee R. Study of Drug Targets Associated With Oncogenesis and Cancer Cell Survival and the Therapeutic Activity of Engineered Ashwagandha Extract Having Differential Withanolide Constitutions. Integr Cancer Ther 2024; 23:15347354231223499. [PMID: 38281118 PMCID: PMC10823841 DOI: 10.1177/15347354231223499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024] Open
Abstract
Ashwagandha (Withania somnifera) has gained worldwide popularity for a multitude of health benefits inclusive of cancer-preventive and curative effects. Despite numerous research data supporting the benefits of this wonder herb, the actual use of ashwagandha for cancer treatment in clinics is limited. The primary reason for this is the inconsistent therapeutic outcome due to highly variable composition and constitution of active ingredients in the plant extract impacting ashwagandha's pharmacology. We investigate here an engineered yield: an ashwagandha extract (Oncowithanib) that has a unique and fixed portion of active ingredients to achieve consistent and effective therapeutic activity. Using the MCF7 cell line, Oncowithanib was studied for its anti-neoplastic efficacy and drug targets associated with cell cycle regulation, translation machinery, and cell survival and apoptosis. Results demonstrate a dose-dependent decline in Oncowithanib-treated MCF7 cell viability and reduced colony-forming ability. Treated cells showed increased cell death as evidenced by enhancement of Caspase 3 enzyme activity and decreased expressions of cell proliferation markers such as Ki67 and Aurora Kinase A. Oncowithanib treatment was also found to be associated with expressional suppression of key cellular kinases such as RSK1, Akt1, and mTOR in MCF7 cells. Our findings indicate that Oncowithanib decreases MCF7 cell survival and propagation, and sheds light on common drug targets that might be good candidates for the development of cancer therapeutics. Further in-depth investigations are required to fully explore the potency and pharmacology of this novel extract. This study also highlights the importance of the standardization of herbal extracts to get consistent therapeutic activity for the disease indication.
Collapse
Affiliation(s)
- Franco Cavaleri
- Biologic Pharmamedical Research, Surrey, BC, Canada
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | | | | | - Pradip Kumar Kar
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Ritam Chatterjee
- Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|
25
|
Aryal S, Park S, Park H, Park C, Kim WC, Thakur D, Won YJ, Key J. Clinical Trials for Oral, Inhaled and Intravenous Drug Delivery System for Lung Cancer and Emerging Nanomedicine-Based Approaches. Int J Nanomedicine 2023; 18:7865-7888. [PMID: 38146467 PMCID: PMC10749572 DOI: 10.2147/ijn.s432839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023] Open
Abstract
Lung cancer is one of the most common malignant tumors worldwide and is characterized by high morbidity and mortality rates and a poor prognosis. It is the leading cause of cancer-related death in the United States and worldwide. Most patients with lung cancer are treated with chemotherapy, radiotherapy, or surgery; however, effective treatment options remain limited. In this review, we aim to provide an overview of clinical trials, ranging from Phase I to III, conducted on drug delivery systems for lung cancer treatment. The trials included oral, inhaled, and intravenous administration of therapeutics. Furthermore, the study also talks about the evolving paradigm of targeted therapy and immunotherapy providing promising directions for personalized treatment. In addition, we summarize the best results and limitations of these drug delivery systems and discuss the potential capacity of nanomedicine.
Collapse
Affiliation(s)
- Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Hyungkyu Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Deepika Thakur
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| | - Young-Joo Won
- Division of Health Administration, College of Software Digital Healthcare Convergence, Yonsei University, Wonju, Gangwon State, 26493, Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon Province, 26493, Korea
| |
Collapse
|
26
|
Al Khatib AO, El-Tanani M, Al-Obaidi H. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2777. [PMID: 38140117 PMCID: PMC10748026 DOI: 10.3390/pharmaceutics15122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout the years, considerable progress has been made in methods for delivering drugs directly to the lungs, which offers enhanced precision in targeting specific lung regions. Currently, for treatment of lung cancer, the prevalent routes for drug administration are oral and parenteral. These methods, while effective, often come with side effects including hair loss, nausea, vomiting, susceptibility to infections, and bleeding. Direct drug delivery to the lungs presents a range of advantages. Notably, it can significantly reduce or even eliminate these side effects and provide more accurate targeting of malignancies. This approach is especially beneficial for treating conditions like lung cancer and various respiratory diseases. However, the journey towards perfecting inhaled drug delivery systems has not been without its challenges, primarily due to the complex structure and functions of the respiratory tract. This comprehensive review will investigate delivery strategies that target lung cancer, specifically focusing on non-small-cell lung cancer (NSCLC)-a predominant variant of lung cancer. Within the scope of this review, active and passive targeting techniques are covered which highlight the roles of advanced tools like nanoparticles and lipid carriers. Furthermore, this review will shed light on the potential synergies of combining inhalation therapy with other treatment approaches, such as chemotherapy and immunotherapy. The goal is to determine how these combinations might amplify therapeutic results, optimizing patient outcomes and overall well-being.
Collapse
Affiliation(s)
- Arwa Omar Al Khatib
- School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
| | - Mohamed El-Tanani
- Faculty of Pharmacy, Al Ahliyya Amman University, Amman 19111, Jordan
- College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | |
Collapse
|
27
|
Kim TM, Girard N, Low GKM, Zhuo J, Yu DY, Yang Y, Murota M, Lim CTK, Kleinman NJ, Cho BC. Amivantamab compared with real-world therapies in patients with advanced non-small cell lung cancer EGFR Exon 20 insertion mutations after platinum-based chemotherapy. Acta Oncol 2023; 62:1689-1697. [PMID: 37938161 DOI: 10.1080/0284186x.2023.2254479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/04/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND In the single-arm CHRYSALIS trial, advanced non-small cell lung cancer patients harboring epidermal growth factor receptor (EGFR) exon 20 insertion (Exon 20ins) showed durable responses to amivantamab, an EGFR-MET bispecific antibody targeting tumors with EGFR Exon 20ins. This study compared the effectiveness of amivantamab to real-world systemic anti-cancer therapies in Japan. PATIENTS AND METHODS External control patients were selected by applying CHRYSALIS eligibility to Japanese patients from LC-SCRUM-Asia. External control patients were included for every qualifying line of therapy after platinum-based chemotherapy. Propensity score weighting was applied to external control patients to adjust for differences in baseline characteristics. Outcomes were compared between external control patients, and all and Asian-only CHRYSALIS patients using weighted Cox proportional hazards regression models for progression-free survival (PFS), time to next therapy (TTNT), and overall survival (OS), and generalized estimating equations with repeated measurements for overall response rate (ORR). RESULTS One hundred fifteen CHRYSALIS and 94 external control patients were identified. Compared to external control patients, amivantamab-treated patients had significantly longer OS (median OS 19.88 vs 14.09 months, HR [95% CI] 0.59 [0.40-0.88]), PFS (median PFS 6.74 vs 4.73 months, HR 0.59 [0.45-0.78]), TTNT (median TTNT 12.16 vs 5.09 months, HR 0.39 [0.29-0.53]), and significantly higher ORR (41.7% vs 14.1%). Analyses of amivantamab-treated Asian patients (n = 61) showed similar clinical benefits. CONCLUSION In the absence of clinical evidence from randomized clinical trials, this study reflects the benefit of amivantamab after platinum-based chemotherapy for advanced non-small cell lung cancer patients harboring EGFR Exon 20ins, compared to current real-world therapies.
Collapse
Affiliation(s)
- Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nicolas Girard
- Institut Curie, Institute du Thorax Curie-Montsouris, Paris, France
| | - Grace Kah Mun Low
- Medical Affairs, Janssen Asia Pacific Medical Affairs, a division of Johnson & Johnson International (Singapore) Pte. Ltd
| | - Jianmin Zhuo
- Statistics and Decision Science, Janssen China Research & Development, China
| | - Dae Young Yu
- Real World Evidence, Janssen Asia Pacific, Republic of Korea
| | - Yishen Yang
- Statistics and Decision Science, Janssen China Research & Development, China
| | - Maiko Murota
- Global Development, Medical Affair Operations, Janssen Research & Development, Tokyo, Japan
| | | | - Nora J Kleinman
- Real World Solutions, IQVIA Hong Kong, Kwai Fong, Hong Kong, P.R. China
| | - Byoung Chul Cho
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
28
|
Al-Balushi RA, Haque A, Saeed M, Al-Harthy T, Al-Hinaai M, Al-Hashmi S. Unlocking the Anticancer Potential of Frankincense Essential Oils (FEOs) Through Nanotechnology: A Review. Mol Biotechnol 2023:10.1007/s12033-023-00918-5. [PMID: 37914864 DOI: 10.1007/s12033-023-00918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a group of heterogeneous diseases that occur when cells in the body proliferate and divide uncontrollably. As the current treatment modalities have pros and cons, the discovery of new chemotherapeutic agents with the least side effects is one of the most investigated research areas. In this context, plant-based natural products are a rich source of drugs and have served humanity for ages. Frankincense essential oils (FEOs) are among the most promising plant-based oils in Gulf countries. In addition to their high cultural value, FEOs are also famous for their engaging biological activities, including anti-cancerous. However, the practical application of FEOs is often hindered/by their low water solubility, limited bioavailability, high volatility, and sensitivity toward heat, humidity, light, or oxygen. Thus, a significant demand for technological advancement would improve their ability to target particular cells and tissues. Nanotechnology emerged as an exciting approach in this context. Through suitable nano-formulation (functionalization or encapsulation into a nanostructure), issues arising due to solubility, targeting capability, and delivery can be controlled.
Collapse
Affiliation(s)
- Rayya A Al-Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman.
| | - Ashanul Haque
- Department of Chemistry, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia.
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Mohammed Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| | - Salim Al-Hashmi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra, 400, Sultanate of Oman
| |
Collapse
|
29
|
Tafenzi HA, Choulli F, Adjade G, Baladi A, Afani L, Fadli ME, Essaadi I, Belbaraka R. Development of a well-defined tool to predict the overall survival in lung cancer patients: an African based cohort. BMC Cancer 2023; 23:1016. [PMID: 37864151 PMCID: PMC10589978 DOI: 10.1186/s12885-023-11355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/31/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Nomogram is a graphic representation containing the expressed factor of the mathematical formula used to define a particular phenomenon. We aim to build and internally validate a nomogram to predict overall survival (OS) in patients diagnosed with lung cancer (LC). METHODS We included 1200 LC patients from a single institution registry diagnosed from 2013 to 2021. The independent prognostic factors of LC patients were identified via cox proportional hazard regression analysis. Based on the results of multivariate cox analysis, we constructed the nomogram to predict the OS of LC patients. RESULTS We finally included a total of 1104 LC patients. Age, medical urgency at diagnosis, performance status, radiotherapy, and surgery were identified as prognostic factors, and integrated to build the nomogram. The model performance in predicting prognosis was measured by receiver operating characteristic curve. Calibration plots of 6-, 12-, and 24- months OS showed optimal agreement between observations and model predictions. CONCLUSION We have developed and validated a unique predictive tool that can offer patients with LC an individual OS prognosis. This useful prognostic model could aid doctors in making decisions and planning therapeutic trials.
Collapse
Affiliation(s)
- Hassan Abdelilah Tafenzi
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco.
- Faculty of Medicine and Pharmacy, Biosciences and Health Laboratory, Cadi Ayyad University, Marrakech, Morocco.
| | - Farah Choulli
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
- Faculty of Medicine and Pharmacy, Biosciences and Health Laboratory, Cadi Ayyad University, Marrakech, Morocco
| | - Ganiou Adjade
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
| | - Anas Baladi
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
| | - Leila Afani
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
| | - Mohammed El Fadli
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
| | - Ismail Essaadi
- Faculty of Medicine and Pharmacy, Biosciences and Health Laboratory, Cadi Ayyad University, Marrakech, Morocco
- Medical Oncology Department, Avicenna Military Hospital of Marrakech, Marrakech, Morocco
| | - Rhizlane Belbaraka
- Medical Oncology Department, Mohammed VI University Hospital of Marrakech, Marrakech, Morocco
- Faculty of Medicine and Pharmacy, Biosciences and Health Laboratory, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
30
|
Adnan M, Siddiqui AJ, Ashraf SA, Ashraf MS, Alomrani SO, Alreshidi M, Tepe B, Sachidanandan M, Danciu C, Patel M. Saponin-Derived Silver Nanoparticles from Phoenix dactylifera (Ajwa Dates) Exhibit Broad-Spectrum Bioactivities Combating Bacterial Infections. Antibiotics (Basel) 2023; 12:1415. [PMID: 37760712 PMCID: PMC10525761 DOI: 10.3390/antibiotics12091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Syed Amir Ashraf
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, TR-79000 Kilis, Turkey
| | - Manojkumar Sachidanandan
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Oral Radiology, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
31
|
Kawak P, Sawaftah NMA, Pitt WG, Husseini GA. Transferrin-Targeted Liposomes in Glioblastoma Therapy: A Review. Int J Mol Sci 2023; 24:13262. [PMID: 37686065 PMCID: PMC10488197 DOI: 10.3390/ijms241713262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor, and its treatment is further complicated by the high selectivity of the blood-brain barrier (BBB). The scientific community is urgently seeking innovative and effective therapeutic solutions. Liposomes are a promising new tool that has shown potential in addressing the limitations of chemotherapy, such as poor bioavailability and toxicity to healthy cells. However, passive targeting strategies based solely on the physicochemical properties of liposomes have proven ineffective due to a lack of tissue specificity. Accordingly, the upregulation of transferrin receptors (TfRs) in brain tissue has led to the development of TfR-targeted anticancer therapeutics. Currently, one of the most widely adopted methods for improving drug delivery in the treatment of GBM and other neurological disorders is the utilization of active targeting strategies that specifically target this receptor. In this review, we discuss the role of Tf-conjugated liposomes in GBM therapy and present some recent studies investigating the drug delivery efficiency of Tf-liposomes; in addition, we address some challenges currently facing this approach to treatment and present some potential improvement possibilities.
Collapse
Affiliation(s)
- Paul Kawak
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour M. Al Sawaftah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | - Ghaleb A. Husseini
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| |
Collapse
|
32
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
33
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
34
|
Kiran A, Altaf A, Sarwar M, Malik A, Maqbool T, Ali Q. Phytochemical profiling and cytotoxic potential of Arnebia nobilis root extracts against hepatocellular carcinoma using in-vitro and in-silico approaches. Sci Rep 2023; 13:11376. [PMID: 37452082 PMCID: PMC10349071 DOI: 10.1038/s41598-023-38517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Hepatocellular carcinoma is the fifth most prevalent cancer worldwide. The emergence of drug resistance and other adverse effects in available anticancer options are challenging to explore natural sources. The current study was designed to decipher the Arnebia nobilis (A. nobilis) extracts for detecting phytochemicals, in-vitro evaluation of antioxidative and cytotoxic potentials, and in-silico prediction of potent anticancer compounds. The phytochemical analysis revealed the presence of flavonoids, phenols, tannins, alkaloids, quinones, and cardiac glycosides, in the ethanol (ANE) and n-hexane (ANH) extracts of A. nobilis. ANH extract exhibited a better antioxidant potential to scavenge DPPH, nitric oxide and superoxide anion radicals than ANE extract, which showed better potential only against H2O2 radicals. In 24 h treatment, ANH extract revealed higher cytotoxicity (IC50 value: 22.77 µg/mL) than ANH extract (IC50 value: 46.74 µg/mL) on cancer (HepG2) cells without intoxicating the normal (BHK) cells using MTT assay. A better apoptotic potential was observed in ANH extract (49.10%) compared to ANE extract (41.35%) on HepG2 cells using the annexin V/PI method. GCMS analysis of ANH extract identified 35 phytocompounds, from which only 14 bioactive compounds were selected for molecular docking based on druggability criteria and toxicity filters. Among the five top scorers, deoxyshikonin exhibited the best binding affinities of - 7.2, - 9.2, - 7.2 and - 9.2 kcal/mol against TNF-α, TGF-βR1, Bcl-2 and iNOS, respectively, followed by ethyl cholate and 2-Methyl-6-(4-methylphenyl)hept-2-en-4-one along with their desirable ADMET properties. The phytochemicals of ANH extract could be used as a promising drug candidate for liver cancer after further validations.
Collapse
Affiliation(s)
- Asia Kiran
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Awais Altaf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan.
| | - Muhammad Sarwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
35
|
Alam SSM, Samanta A, Uddin F, Ali S, Hoque M. Tanshinone IIA targeting cell signaling pathways: a plausible paradigm for cancer therapy. Pharmacol Rep 2023:10.1007/s43440-023-00507-y. [PMID: 37440106 DOI: 10.1007/s43440-023-00507-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Natural compounds originating from plants offer a wide range of pharmacological potential and have traditionally been used to treat a wide range of diseases including cancer. Tanshinone IIA (Tan IIA), a bioactive molecule found in the roots of the Traditional Chinese Medicine (TCM) herb Salvia miltiorrhiza, has been shown to have remarkable anticancer properties through several mechanisms, such as inhibition of tumor cell growth and proliferation, metastasis, invasion, and angiogenesis, as well as induction of apoptosis and autophagy. It has demonstrated excellent anticancer efficacy against cell lines from breast, cervical, colorectal, gastric, lung, and prostate cancer by modulating multiple signaling pathways including PI3K/Akt, JAK/STAT, IGF-1R, and Bcl-2-Caspase pathways. This review focuses on the role of Tan IIA in the treatment of various cancers, as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Arijit Samanta
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Faizan Uddin
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Safdar Ali
- Clinical and Applied Genomics (CAG) Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India
| | - Mehboob Hoque
- Applied Biochemistry Laboratory, Department of Biological Sciences, Aliah University, Kolkata, 700160, India.
| |
Collapse
|
36
|
Avcı CB, Sogutlu F, Pinar Ozates N, Shademan B, Gunduz C. Enhanced Anti-cancer Potency Using a Combination of Oleanolic Acid and Maslinic Acid to Control Treatment Resistance in Breast Cancer. Adv Pharm Bull 2023; 13:611-620. [PMID: 37646060 PMCID: PMC10460813 DOI: 10.34172/apb.2023.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/ mTOR) pathway is a complex intracellular metabolic pathway that leads to cell growth and tumor proliferation and plays a key role in drug resistance in breast cancer. Therefore, the anti-cancer effects of oleanolic acid (OA), maslinic acid (MA), and their combination were investigated to improve the performance of the treatment strategy. Methods We investigated the effect of OA and MA on cell viability using the WST-1 method. The synergistic effect of the combination was analyzed by isobologram analysis. In addition, the effects of the two compounds, individually and in combination, on apoptosis, autophagy, and the cell cycle were investigated in MCF7 cells. In addition, changes in the expression of PI3K/AKT/mTOR genes involved in apoptosis, cell cycle and metabolism were determined by quantitative RT-PCR. Results MA, OA, and a combination of both caused G0/G1 arrest. Apoptosis also increased in all treated groups. The autophagosomal LC3-II formation was induced 1.74-fold in the MA-treated group and 3.25-fold in the MA-OA-treated group. The combination treatment resulted in increased expression of genes such as GSK3B, PTEN, CDKN1B and FOXO3 and decreased expression of IGF1, PRKCB and AKT3 genes. Conclusion The results showed that the combination of these two substances showed the highest synergistic effect at the lowest dose and using MA-OA caused cancer cells to undergo apoptosis. The use of combination drugs may reduce the resistance of cancer cells to treatment.
Collapse
Affiliation(s)
- Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | | | | | | | | |
Collapse
|
37
|
Eslami SS, Jafari D, Ghotaslou A, Amoupour M, Asri Kojabad A, Jafari R, Mousazadeh N, Tarighi P, Sadeghizadeh M. Combined Treatment of Dendrosomal-Curcumin and Daunorubicin Synergistically Inhibit Cell Proliferation, Migration and Induce Apoptosis in A549 Lung Cancer Cells. Adv Pharm Bull 2023; 13:539-550. [PMID: 37646049 PMCID: PMC10460814 DOI: 10.34172/apb.2023.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Chemotherapy drugs used to treat lung cancer are associated with drug resistance and severe side effects. There have been rising demands for new therapeutic candidates and novel approaches, including combination therapy. Here, we aimed to investigate the combinatorial effect of a dendrosomal formulation of curcumin (DNC) and daunorubicin (DNR) on the A549 lung cancer cell line. Methods We performed cytotoxicity, apoptosis, cell migration, colony-formation capacity, and gene expression analysis to interpret the mechanism of action for a combination of DNC and DNR on A549 cells. Results Our results revealed that the combination of DNC and DNR could synergistically inhibit the A549 cells' growth. This synergistic cytotoxicity was further approved by flow cytometry, migration assessment, colony-forming capacity and gene expression analysis. DNR combination with DNC resulted in increased apoptosis to necrosis ratio compared to DNR alone. In addition, the migration and colony-forming capacity were at the minimal range when DNC was combined with DNR. Combined treatment decreased the expression level of MDR-1, hTERT and Bcl-2 genes significantly. In addition, the ratio of Bax/Bcl2 gene expression significantly increased. Our analysis by free curcumin, dendrosomes and DNC also showed that dendrosomes do not have any significant cytotoxic effect on the A549 cells, suggesting that this carrier has a high potential for enhancing the curcumin's biological effects. Conclusion Our observations suggest that the DNC formulation of curcumin synergistically enhances the antineoplastic effect of DNR on the A549 cell line through the modulation of apoptosis/necrosis ratio, as well as Bax/Bcl2 ratio, MDR-1 and hTERT gene expression.
Collapse
Affiliation(s)
- Seyed Sadegh Eslami
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Ghotaslou
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Navid Mousazadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Chinnakorn A, Nuansing W, Bodaghi M, Rolfe B, Zolfagharian A. Recent progress of 4D printing in cancer therapeutics studies. SLAS Technol 2023; 28:127-141. [PMID: 36804175 DOI: 10.1016/j.slast.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a critical cause of global human death. Not only are complex approaches to cancer prognosis, accurate diagnosis, and efficient therapeutics concerned, but post-treatments like postsurgical or chemotherapeutical effects are also followed up. The four-dimensional (4D) printing technique has gained attention for its potential applications in cancer therapeutics. It is the next generation of the three-dimensional (3D) printing technique, which facilitates the advanced fabrication of dynamic constructs like programmable shapes, controllable locomotion, and on-demand functions. As is well-known, it is still in the initial stage of cancer applications and requires the insight study of 4D printing. Herein, we present the first effort to report on 4D printing technology in cancer therapeutics. This review will illustrate the mechanisms used to induce the dynamic constructs of 4D printing in cancer management. The recent potential applications of 4D printing in cancer therapeutics will be further detailed, and future perspectives and conclusions will finally be proposed.
Collapse
Affiliation(s)
- Atchara Chinnakorn
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wiwat Nuansing
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Bernard Rolfe
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
39
|
Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, Jawhar ZH, Ramírez-Coronel AA, Farhood B. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell Int 2023; 23:88. [PMID: 37165384 PMCID: PMC10173635 DOI: 10.1186/s12935-023-02936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Physical Education, University of Jammu, Srinagar, Jammu, India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
40
|
Peng L, Xu Q, Yin S, Zhang Y, Wu H, Liu Y, Chen L, Hu Y, Yuan J, Peng K, Lin Q. The emerging nanomedicine-based technology for non-small cell lung cancer immunotherapy: how far are we from an effective treatment. Front Oncol 2023; 13:1153319. [PMID: 37182180 PMCID: PMC10172578 DOI: 10.3389/fonc.2023.1153319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent etiology of cancer-related mortality. The heterogeneous nature of this disease impedes its accurate diagnosis and efficacious treatment. Consequently, constant advancements in research are imperative in order to comprehend its intricate nature. In addition to currently available therapies, the utilization of nanotechnology presents an opportunity to enhance the clinical outcomes of NSCLC patients. Notably, the burgeoning knowledge of the interaction between the immune system and cancer itself paves the way for developing novel, emerging immunotherapies for treating NSCLC in the early stages of the disease. It is believed that with the novel engineering avenues of nanomedicine, there is a possibility to overcome the inherent limitations derived from conventional and emerging treatments, such as off-site drug cytotoxicity, drug resistance, and administration methods. Combining nanotechnology with the convergence points of current therapies could open up new avenues for meeting the unmet needs of NSCLC treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qin Lin
- Department of Thoracic Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
41
|
Purohit MP, Kar AK, Kumari M, Ghosh D, Patnaik S. Heparin Biofunctionalized Selenium Nanoparticles as Potential Antiangiogenic-Chemotherapeutic Agents for Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19904-19920. [PMID: 37046174 DOI: 10.1021/acsami.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combining antiangiogenic and chemotherapeutic agents has shown promising clinical benefits in cancer cures when the therapeutic intervention takes into account the tissue and molecular targets. Moreover, the risk of induced drug resistance is minimized when multiple pathways are involved in the treatment regimen, yielding a better therapeutic outcome. Nanodrug delivery systems have proven to be a prudent approach to treating complex disease pathologies. As such, combining antiangiogenic and chemotherapeutic drugs within multimodal nanocarriers synergistically augments the clinical efficiency of the drugs. This study reports the combinatorial efficacy of heparin (Hep), selenium NPs (SeNPs), and doxorubicin (Dox) to inhibit tumor growth and progression. Both Se@Hep-NPs and Se@Hep-Dox-NPs with excellent water dispersity having a size and charge in the range of 250 ± 5 and 253 ± 5 nm and -53 ± 0.4 and -48.4 ± 6.4 mV, respectively, showed strong anticancer potential assessed through in vitro assays like cell viability, specificity, colony formation, and wound scratch in MCF7 cells. Strong synergistic interactions among SeNPs, Hep, and Dox in Se@Hep-Dox-NPs render it to be an antiangiogenic and proapoptotic cancer cell death inducers. In vivo imaging highlights the dual-mode attributes of Se@Hep-NPs with desirable passive tumor targeting and biomedical imaging ability when tagged with Cy7.5, while Se@Hep-Dox-NPs significantly reduce the tumor burden and prolong the longevity of subcutaneous EAC-bearing mice. Histopathology studies reveal no signs of toxicity in major organs. Collectively, these results qualify Se@Hep-Dox-NPs as a plausible clinical therapeutic candidate.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manisha Kumari
- Nucleic Acid Research Lab, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Luck now, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
42
|
Oh ES, Ryu HW, Song YN, Kang MJ, Huh YH, Park JY, Oh SM, Lee SY, Park YJ, Kim DY, Ro H, Hong ST, Lee SU, Moon DO, Kim MO. Diplacone Isolated from Paulownia tomentosa Mature Fruit Induces Ferroptosis-Mediated Cell Death through Mitochondrial Ca 2+ Influx and Mitochondrial Permeability Transition. Int J Mol Sci 2023; 24:7057. [PMID: 37108220 PMCID: PMC10138418 DOI: 10.3390/ijms24087057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Myung-Ji Kang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Yang Hoon Huh
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea;
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Seon Min Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Su-Yeon Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Yhun Jung Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea;
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (E.S.O.); (H.W.R.); (Y.N.S.); (M.-J.K.); (J.-Y.P.); (S.M.O.); (S.-Y.L.); (Y.J.P.); (D.-Y.K.); (S.U.L.)
| |
Collapse
|
43
|
Yang Y, Zheng Q, Wang X, Zhao S, Huang W, Jia L, Ma C, Liu S, Zhang Y, Xin Q, Sun Y, Zheng S. Iruplinalkib (WX‑0593), a novel ALK/ROS1 inhibitor, overcomes crizotinib resistance in preclinical models for non-small cell lung cancer. Invest New Drugs 2023; 41:254-266. [PMID: 37036582 PMCID: PMC10140010 DOI: 10.1007/s10637-023-01350-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023]
Abstract
Despite remarkable initial responses of anaplastic lymphoma kinase (ALK) inhibitors in ALK-positive non-small cell lung cancer (NSCLC) patients, cancers eventually develop resistance within one to two years. This study aimed to compare the properties of iruplinalkib (WX‑0593) with other ALK inhibitors and report the comprehensive characterization of iruplinalkib against the crizotinib resistance. The inhibitory effect of iruplinalkib on kinase activity was detected. A kinase screen was performed to evaluate the selectivity of iruplinalkib. The effect of iruplinalkib on related signal transduction pathways of ALK and c-ros oncogene 1 (ROS1) kinases was examined. The cellular and in vivo activities of ALK inhibitors were compared in engineered cancer-derived cell lines and in mice xenograft models, respectively. Human hepatocytes derived from three donors were used for evaluating hepatic enzyme inducing activity. HEK293 cell lines expressing transportors were used to invesigated the drug interaction potential mediated by several transporters. The results showed iruplinalkib potently inhibited the tyrosine autophosphorylation of wild-type ALK, ALKL1196M, ALKC1156Y and epidermal growth factor receptor (EGFR)L858R/T790M. The inhibitory effects of iruplinalkib in patient-derived xenograft and cell line-derived xenograft models were observed. Moreover, iruplinalkib showed robust antitumor effects in BALB/c nude mice xenograft models with ALK-/ROS1-positive tumors implanted subcutaneously, and the tumor suppressive effects in crizotinib-resistant model was significantly better than that of brigatinib. Iruplinalkib did not induce CYP1A2, CYP2B6 and CYP3A4 at therapeutic concentration, and was also a strong inhibitor of MATE1 and MATE2K transporters, as well as P-gp and BCRP. In conclusion, iruplinalkib, a highly active and selective ALK/ROS1 inhibitor, exhibited strong antitumor effects in vitro and in crizotinib-resistant models.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Qingmei Zheng
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Xinmei Wang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shuyong Zhao
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Wenshu Huang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Linchao Jia
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Cuicui Ma
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shicong Liu
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yongpeng Zhang
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Qianqian Xin
- Department of Nonclinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Yan Sun
- Department of Clinical Development, Qilu Pharmaceutical Co., Ltd., Jinan, 250104, China
| | - Shansong Zheng
- Department of Clinical Pharmacology, Qilu Pharmaceutical Co., Ltd., 8888 Lvyou Road, High-tech Zone, Jinan, 250104, China.
| |
Collapse
|
44
|
Benjamin I, Louis H, Okon GA, Qader SW, Afahanam LE, Fidelis CF, Eno EA, Ejiofor EE, Manicum ALE. Transition Metal-Decorated B 12N 12-X (X = Au, Cu, Ni, Os, Pt, and Zn) Nanoclusters as Biosensors for Carboplatin. ACS OMEGA 2023; 8:10006-10021. [PMID: 36969422 PMCID: PMC10035017 DOI: 10.1021/acsomega.2c07250] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
Theoretical studies on the adsorption, sensibility, and reactivity of a boron nitride nanocage decorated with Au, Cu, Ni, Os, Pt, and Zn metals as a biosensor material were carried out for the adsorption of carboplatin by applying the density functional theory computation at the B3LYP-GD3BJ/def2svp level of theory. All the optimized structures, as well as the calculations as regards the studied objective including electronic properties, geometry optimization parameters, adsorption energy studies, natural bond orbital analysis, topology studies, sensor mechanistic parameters, and thermodynamic properties (ΔG and ΔH), were investigated herein. As a result, the noticeable change in the energy gap of the studied surfaces when interacting with carboplatin accounted for the surfaces' reactivity, stability, conductivity, work function, and overall adsorption ability, implying that the studied decorated surfaces are good sensor materials for sensing carboplatin. Furthermore, the negative adsorption energies obtained for interacting surfaces decorated with Cu, Ni, Os, and Zn suggest that the surface has a superior ability to sense carboplatin as chemisorption was seen. Substantially, the geometric short adsorption bond length after adsorption, thermodynamically spontaneous reactions, and acceptable sensor mechanism results demonstrate that the investigated surfaces have strong sensing characteristics for sensing carboplatin.
Collapse
Affiliation(s)
- Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Gideon A. Okon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Chemical Sciences, Clifford University, Owerrinta 451101, Nigeria
| | - Suhailah W. Qader
- Department
of Medical Laboratory Science, Knowledge
University, Erbil 44001, Iraq
| | - Lucy E. Afahanam
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Chidera F. Fidelis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Ededet A. Eno
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar 540221, Nigeria
| | - Emmanuel E. Ejiofor
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Chemical Sciences, Clifford University, Owerrinta 451101, Nigeria
| | - Amanda-Lee E. Manicum
- Department
of Chemistry, Tshwane University of Technology, Pretoria 0183, South Africa
| |
Collapse
|
45
|
Tragia plukenetii-Assisted Omega-Decenol as Potential Anticancer Agent: its Isolation, Characterization, and Validation. Appl Biochem Biotechnol 2023; 195:1699-1722. [PMID: 36367619 DOI: 10.1007/s12010-022-04221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
The second most common and lethal disease is lung cancer. To combat the negative effects of today's synthetic medications, natural phytomedicines are required. Tragia plukenetii is a medicinal plant native to India that belongs to the Euphorbiaceae family. The purpose of this research is to isolate bioactive compounds from T. plukenetii leaves and then test them for anticancer property. A single compound (CH: ME-20:80) was separated using TLC, and an RF value of 0.55 was determined. Spectral analyses utilizing UV-Visible Spectrophotometer and FT-IR were used to examine the absorbance and functional groups. 13C-NMR and 1H-NMR studies revealed the tentative name of the purified phytochemical as omega-decenol (OD). Further antioxidant and anticancer properties of OD were tested for in vitro. In comparison to conventional L-ascorbic acid, the DPPH radical scavenging assay experiment yielded an IC50 of 147.48 g/ml. With an IC50 value of 24 µg/ml (Omega-decenol) and 32 µg/ml (doxorubicin), the MTT assay demonstrated the cytotoxic capability against the A549 lung cancer cell line. FACS revealed the cell cycle arrest of A549 at S phase compared to control with the high-dose IC50 (250 µg/ml) of omega-decenol. Twelve major compounds were detected in the active fraction using GC-MS analysis, where n-hexadecanoic acid was found as a major. Omega-decenol showed good binding affinity against EGFR, amongst other receptors in the in silico docking study. This research reveals the potent anticancer activity of the isolated compound omega-decenol from T. plukenetii leaves and provides a key path to understanding the molecular interaction in anticancer aspects against adenocarcinoma.
Collapse
|
46
|
Puri S, Sawant S, Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
47
|
Hanafy NAN, Eltonouby EAB, Salim EI, Mahfouz ME, Leporatti S, Hafez EH. Simultaneous Administration of Bevacizumab with Bee-Pollen Extract-Loaded Hybrid Protein Hydrogel NPs Is a Promising Targeted Strategy against Cancer Cells. Int J Mol Sci 2023; 24:3548. [PMID: 36834960 PMCID: PMC9963805 DOI: 10.3390/ijms24043548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Bevacizumab (Bev) a humanized monoclonal antibody that fights vascular endothelial growth factor A (VEGF-A). It was the first specifically considered angiogenesis inhibitor and it has now become the normative first-line therapy for advanced non-small-cell lung cancer (NSCLC). In the current study, polyphenolic compounds were isolated from bee pollen (PCIBP) and encapsulated (EPCIBP) inside moieties of hybrid peptide-protein hydrogel nanoparticles in which bovine serum albumin (BSA) was combined with protamine-free sulfate and targeted with folic acid (FA). The apoptotic effects of PCIBP and its encapsulation (EPCIBP) were further investigated using A549 and MCF-7 cell lines, providing significant upregulation of Bax and caspase 3 genes and downregulation of Bcl2, HRAS, and MAPK as well. This effect was synergistically improved in combination with Bev. Our findings may contribute to the use of EPCIBP simultaneously with chemotherapy to strengthen the effectiveness and minimize the required dose.
Collapse
Affiliation(s)
- Nemany A. N. Hanafy
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Eman Ali Bakr Eltonouby
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed I. Salim
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Magdy E. Mahfouz
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Stefano Leporatti
- CNR NANOTEC-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Ezar H. Hafez
- Department of Zoology, Research Laboratory of Molecular Carcinogenesis, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
48
|
Chemotherapy: how to reduce its adverse effects while maintaining the potency? Med Oncol 2023; 40:88. [PMID: 36735206 DOI: 10.1007/s12032-023-01954-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023]
Abstract
Chemotherapy is one of the widely used anticancer treatments that involves the use of powerful cytotoxic drugs to stop tumor growth by targeting rapidly dividing cells through various mechanisms, which will be elucidated in this review. Introduced during the early twentieth century, chemotherapy has since lengthened the longevity of innumerable cancer patients. However, the increase in lifespan is at the expense of quality of life as patients are at risk of developing short-term and long-term side effects following chemotherapy, such as alopecia (hair loss), chemotherapy-induced peripheral neuropathy, chemotherapy-induced nausea and vomiting, cardiotoxicity, diarrhea, infertility, and chemo brain. Currently, a number of these chemotherapy-induced adverse effects are managed through supportive care and approved treatments, while the rest of the side effects are unavoidable. Hence, chemotherapeutic drugs associated with inevitable side effects are only administered when their therapeutic role outweighs their chemotoxicity, thus severely limiting the potency of chemotherapy in treating malignancy. Therein, the potential approaches to alleviating side effects of chemotherapy ranging from pharmaceutical drugs to alternative therapies will be discussed in this review in hopes of increasing the tolerance and effectiveness of future chemotherapeutic treatments.
Collapse
|
49
|
Allangawi A, Sajid H, Ayub K, Gilani MA, Akhter MS, Mahmood T. High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Wu IT, Kuo CY, Su CH, Lan YH, Hung CC. Pinostrobin and Tectochrysin Conquer Multidrug-Resistant Cancer Cells via Inhibiting P-Glycoprotein ATPase. Pharmaceuticals (Basel) 2023; 16:205. [PMID: 37259354 PMCID: PMC9963356 DOI: 10.3390/ph16020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 11/19/2023] Open
Abstract
Enhanced drug efflux through ATP-binding cassette transporters, particularly P-glycoprotein (P-gp), is a key mechanism underlying multidrug resistance (MDR). In the present study, we investigated the inhibitory effects of pinostrobin and tectochrysin on P-gp in MDR cancer cells and the underlying mechanisms. Fluorescence substrate efflux assays, multidrug resistance 1 (MDR1) shift assays, P-gp ATPase activity assays, Western blotting, and docking simulation were performed. The potential of the test compounds for MDR reversal and the associated molecular mechanisms were investigated through cell viability assay, cell cycle analysis, apoptosis assay, and further determining the combination index. Results demonstrated that pinostrobin and tectochrysin were not the substrates of P-gp, nor did they affect the expression of this transporter. Both compounds noncompetitively inhibited the efflux of rhodamine 123 and doxorubicin through P-gp. Furthermore, they resensitized MDR cancer cells to chemotherapeutic drugs, such as vincristine, paclitaxel, and docetaxel; thus, they exhibited strong MDR reversal effects. Our findings indicate that pinostrobin and tectochrysin are effective P-gp inhibitors and promising candidates for resensitizing MDR cancer cells.
Collapse
Affiliation(s)
- I-Ting Wu
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231405, Taiwan
| | - Ching-Hui Su
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Yu-Hsuan Lan
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
| | - Chin-Chuan Hung
- Department of Pharmacy, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun District, Taichung 406040, Taiwan
- Department of Pharmacy, China Medical University Hospital, No. 2, Yude Rd., North District, Taichung 404332, Taiwan
- Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| |
Collapse
|