1
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
2
|
Szkolnicka K, Dmytrów I, Mituniewicz-Małek A, Meghzili B. Camembert-Type Cheese with Sweet Buttermilk: The Determination of Quality Properties and Microstructure. Foods 2024; 13:2515. [PMID: 39200442 PMCID: PMC11354075 DOI: 10.3390/foods13162515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Camembert is a type of surface-mold-ripened soft cheese traditionally produced from cow's milk. Buttermilk, a by-product of butter production with beneficial nutritional and technological properties, is increasingly being used in various applications, including cheesemaking. Therefore, this study aimed to use sweet buttermilk (BM) in combination with milk at concentrations of 10% (w/w) (BM10) and 20% (w/w) (BM20) for the production of Camembert-type cheese. A control cheese made entirely from milk was also produced. The cheese samples underwent a 28-day ripening process during which their composition, acidity, water activity, color, and sensory properties were examined at 1-week intervals. The microstructure of the matured Camembert-type cheese samples was analyzed using scanning electron microscopy (SEM), and their texture was evaluated. The production yield of BM20 cheese (18.03 ± 0.29 kg/100 kg) was lower (p < 0.05) than that of the control (19.92 ± 0.23 kg/100 kg), with BM10 showing the distinctly lowest yield (14.74 ± 0.35 kg/100 kg). The total solid and fat content of BM Camembert-type cheese samples was lower than the control. However, the total protein content in cheese BM20 at the end of the ripening period was the same as that of the control. The changes in acidity in all samples were typical for Camembert cheese, and water activity was high (above 0.92). The sensory properties of all samples were characteristic of the cheese type, while the color of BM cheese samples differed from the control. The microstructure of BM10 and BM20 cheese variants was similar, namely homogenous and less porous compared to the control. In terms of texture, the BM samples had significantly lower hardness, adhesiveness, and gumminess. This study indicates that sweet BM, particularly at a concentration of 20%, may be effectively used in the production of Camembert-type cheese.
Collapse
Affiliation(s)
- Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Papieża Pawła VI St. no. 3, 71-459 Szczecin, Poland; (I.D.); (A.M.-M.)
| | - Izabela Dmytrów
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Papieża Pawła VI St. no. 3, 71-459 Szczecin, Poland; (I.D.); (A.M.-M.)
| | - Anna Mituniewicz-Małek
- Department of Toxicology, Dairy Technology and Food Storage, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Papieża Pawła VI St. no. 3, 71-459 Szczecin, Poland; (I.D.); (A.M.-M.)
| | - Batoul Meghzili
- Agro-Food Engineering Laboratory (GENIAAL), Institute of Nutrition, Food and Agro-Food Technologies (INATAA), University Frères Mentouri—Constantine 1 (UFMC1), Route Ain El Bey, Constantine 25000, Algeria;
| |
Collapse
|
3
|
Winther AR, Perrin A, Nordraak AOO, Kjos M, Porcellato D. An in vitro evaluation of the effect of antimicrobial treatment on bovine mammary microbiota. Sci Rep 2024; 14:18333. [PMID: 39112607 PMCID: PMC11306798 DOI: 10.1038/s41598-024-69273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial-resistant bacteria have been an increasing problem in human medicine and animal husbandry since the introduction of antimicrobials on the market in the 1940s. Over the last decades, efforts to reduce antimicrobial usage in animal husbandry have been shown to limit the development of resistant bacteria. Despite this, antimicrobial-resistant bacteria are still commonly detected and isolated worldwide. In this study, we investigated the presence of antimicrobial-resistant bacteria in bovine milk samples using a multiple approach based on culturing and amplicon sequencing. We first enriched milk samples obtained aseptically from bovine udders in the presence of two antimicrobials commonly used to treat mastitis and then described the resistant microbiota by amplicon sequencing and isolate characterization. Our results show that several commensal species and mastitis pathogens harbor antimicrobial resistance and dominate the enriched microbiota in milk in presence of antimicrobial agents. The use of the two different antimicrobials selected for different bacterial taxa and affected the overall microbial composition. These results provide new information on how different antimicrobials can shape the microbiota which is able to survive and reestablish in the udder and point to the fact that antimicrobial resistance is widely spread also in commensal species.
Collapse
Affiliation(s)
- Anja R Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway.
| | - Aurelie Perrin
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Institute Agro Dijon, 26 Bd Dr Petitjean, 21079, Dijon, France
| | - Anne O O Nordraak
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
- Norwegian Defence Research Establishment, Kjeller, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Christian Magnus Falsens Vei 18, 1433, Ås, Norway
| |
Collapse
|
4
|
Wang Y, Wu J, Zhang H, Yang X, Gu R, Liu Y, Wu R. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39106211 DOI: 10.1080/10408398.2024.2387763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.
Collapse
Affiliation(s)
- Ying Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| | - Xujin Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, P.R. China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang, P.R. China
| |
Collapse
|
5
|
Rathnakumar K, Ortega-Anaya J, Jimenez-Flores R, Martínez-Monteagudo SI. Partition of milk phospholipids during ice cream manufacturing. J Dairy Sci 2023; 106:7501-7514. [PMID: 37641266 DOI: 10.3168/jds.2022-23145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The distribution of phospholipids (PL) within the fat and serum phase of ice cream manufacturing was evaluated through partition coefficients (KPL) after mixing, pasteurization, freezing, and hardening. Ice creams containing about 40.41 ± 3.45 (± standard deviation; control formulation) and 112.29 ± 9.06 (enriched PL formulation) mg of PL per g of fat were formulated with nonfat dry milk and β-serum, respectively. Overall, the KPL were lower than 1, indicating that the PL were predominantly found in the fat phase, and only a small amount was left in the serum and sediment. Confocal micrographs visually confirmed this generalization. The addition of PL significantly increased the viscosity of the mixes between 4- and 9-fold, depending on the shear rate. Additionally, mixes containing high PL exhibited higher yield stress than those formulated with low PL (0.15 ± 0.09 and 0.016 ± 0.08 Pa, respectively). Ice creams with high PL delayed the onset of meltdown and exhibited a slower rate of a meltdown than low-PL ice creams (18.53 ± 0.57 and 14.83 ± 0.85 min, and 1.01 ± 0.05 and 0.71 ± 0.04% min-1, respectively). This study provides useful guidelines for manufacturing ice cream enriched in milk PL. Additionally, the use of β-serum, a byproduct stream, as a source of PL is illustrated. The development will require studying the sensorial description of the product as well as consumer acceptance.
Collapse
Affiliation(s)
- Kaavya Rathnakumar
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Sergio I Martínez-Monteagudo
- Family and Consumer Sciences, New Mexico State University, Las Cruces, NM 88003; Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM 88003; Center of Excellence in Sustainable Food and Agricultural Systems, New Mexico State University, Las Cruces, NM 88003.
| |
Collapse
|
6
|
Bagel A, Bouvier-Crozier M, Canizares M, Hamadou B, Courcol L, Lopez C, Michel V, Douellou T, Sergentet D. Surface proteins of Shiga toxin-producing Escherichia coli mediate association with milk fat globules in raw milk. Front Microbiol 2023; 14:1156374. [PMID: 37426002 PMCID: PMC10328742 DOI: 10.3389/fmicb.2023.1156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction By adhering to host cells and colonizing tissues, bacterial pathogens can successfully establish infection. Adhesion is considered the first step of the infection process and bacterial adhesion to anti-adhesive compounds is now seen as a promising strategy to prevent infectious diseases. Among the natural sources of anti-adhesive molecules, the membrane of milk fat globules (MFGs) is of interest because of its compositional diversity of proteins and glycoconjugates. However, few studies have focused on the bacterial molecules involved in MFG- mediated inhibition of bacterial adhesion to enterocytes. Methods We used three pathogenic Shiga toxin-producing Escherichia coli (STEC) strains (O26:H11 str. 21765, O157:H7 str. EDL933, and O103:H3 str. PMK5) as models to evaluate whether STEC surface proteins are involved in the affinity of STEC for MFG membrane proteins (MFGMPs). The affinity of STEC for MFGMPs was assessed both indirectly by a natural raw milk creaming test and directly by an adhesion test. Mass spectrometry was used to identify enriched STEC proteins within the protein fraction of MFGMs. Bacterial mutants were constructed and their affinity to MFGs were measured to confirm the role of the identified proteins. Results We found that free STEC surface proteins inhibit the concentration of the pathogen in the MFG-enriched cream in a strain-dependent manner. Moreover, the OmpA and FliC proteins were identified within the protein fraction of MFGMs. Our results suggest that FliC protein participates in STEC adhesion to MFGMPs but other STEC molecules may also participate. Discussion For the first time, this study highlighted, the involvement of STEC surface proteins in the affinity for MFGs. The mechanism of STEC-MFG association is still not fully understood but our results confirm the existence of receptor/ligand type interactions between the bacteria and MFGs. Further studies are needed to identify and specify the molecules involved in this interaction. These studies should consider the likely involvement of several factors, including adhesion molecules, and the diversity of each STEC strain.
Collapse
Affiliation(s)
- Arthur Bagel
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR 5557 Ecologie Microbienne Lyon, CNRS, Université de Lyon, VetAgro Sup, INRAE, Marcy-l’Etoile, France
| | - Marion Bouvier-Crozier
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR 5557 Ecologie Microbienne Lyon, CNRS, Université de Lyon, VetAgro Sup, INRAE, Marcy-l’Etoile, France
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes—French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), Université de Lyon, VetAgro Sup—Campus Vétérinaire, Marcy-l’Etoile, France
| | - Mélissa Canizares
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes—French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), Université de Lyon, VetAgro Sup—Campus Vétérinaire, Marcy-l’Etoile, France
| | - Badis Hamadou
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes—French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), Université de Lyon, VetAgro Sup—Campus Vétérinaire, Marcy-l’Etoile, France
| | - Louise Courcol
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR 5557 Ecologie Microbienne Lyon, CNRS, Université de Lyon, VetAgro Sup, INRAE, Marcy-l’Etoile, France
| | | | | | - Thomas Douellou
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR 5557 Ecologie Microbienne Lyon, CNRS, Université de Lyon, VetAgro Sup, INRAE, Marcy-l’Etoile, France
| | - Delphine Sergentet
- Bacterial Opportunistic Pathogens and Environment Research Group, UMR 5557 Ecologie Microbienne Lyon, CNRS, Université de Lyon, VetAgro Sup, INRAE, Marcy-l’Etoile, France
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes—French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), Université de Lyon, VetAgro Sup—Campus Vétérinaire, Marcy-l’Etoile, France
| |
Collapse
|
7
|
Sun Y, Roos YH, Miao S. Changes in Milk Fat Globules and Membrane Proteins Prepared from pH-Adjusted Bovine Raw Milk. Foods 2022; 11:4107. [PMID: 36553849 PMCID: PMC9778015 DOI: 10.3390/foods11244107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Milk fat globules (MFGs) have tri-layer biological membrane structures, and their compositions are gaining more interest for their physiological benefits. In this study, the changes in MFGs and milk fat globule membrane (MFGM) proteins after cream separation from different pH bovine raw milk were investigated. Raw milk samples were adjusted to pH 5.30 and 6.30 using citric acid at 25 °C. The effect of pH and centrifugation on the structure of MFGs was evaluated by means of particle size, zeta potential and confocal laser scanning microscopy (CLSM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyze the proteins in the obtained fractions. It was found that both pH and centrifugation could affect the particle size of all samples. As the volume distribution (Dv; Dv (10), Dv(50)and Dv (90)) decreased, the corresponding specific surface area (SSA) increased, and span and uniformity values showed the same trend. The decrease in the zeta potential of MFG correlated with the Dv(50), which was further confirmed by CLSM observation. More butyrophilin (BTN) and periodic acid Schiff 6/7 (PAS 6/7) were lost in cream samples at pH 5.30. The findings could provide valuable knowledge for the application of MFGs ingredient in the food industry since their structures and compositions could affect their potential functional and physiological properties.
Collapse
Affiliation(s)
- Yanjun Sun
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
- Teagasc Food Research Centre, P61C996 Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, T12R229 Cork, Ireland
| | - Yrjö H. Roos
- School of Food and Nutritional Sciences, University College Cork, T12R229 Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, P61C996 Cork, Ireland
- School of Food and Nutritional Sciences, University College Cork, T12R229 Cork, Ireland
- China-Ireland International Cooperation Centre for Food Material Sciences and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
10
|
Tai P, Golding M, Singh H, Everett D. The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2015773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Patrick Tai
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matt Golding
- Riddet Institute, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | - David Everett
- Riddet Institute, Palmerston North, New Zealand
- Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
11
|
Szkolnicka K, Dmytrów I, Mituniewicz-Małek A. The Characteristics of Quark Cheese Made from Buttermilk during Refrigerated Storage. Foods 2021; 10:foods10081783. [PMID: 34441560 PMCID: PMC8392251 DOI: 10.3390/foods10081783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The dairy industry releases huge amounts of by-products. One of them is buttermilk, obtained during butter production. This by-product is characterized by high nutritional and technological value and is finding more and more applications in food production. This study aimed to produce and analyze the characteristics of quark cheese obtained entirely from buttermilk during 3-week refrigerated (4 ± 1 °C) storage. Four kinds of sour buttermilk were used: two from industrial butter production, and another two from butter production at laboratory scale. Laboratory buttermilk differs in the kind of starter culture used in the production. The evaluation of cheese quality properties included physicochemical analyses, texture measurement, and sensory assessment. The results showed that the kind of buttermilk used in production influences the acidity, total solids, textural characteristics, and fat content of the obtained quark cheeses. All obtained cheeses had very high sensory quality throughout the storage period. The study indicates that buttermilk may be successfully used as a substitution for milk in quark cheese production.
Collapse
|
12
|
Abstract
This review provides an overview of the composition, structure, and biological activities of milk fat globule membrane (MFGM) compounds with focus on the future application of this compound as a food ingredient. MFGM is a particular component of mammalian milks and is comprised of a tri-layer of polar lipids, glycolipids and proteins. In recent years, MFGM has been extensively studied for the purpose of enhancing the efficacy of infant nutrition formula. For example, infant formulas supplemented with bovine MFGM have shown promising results with regard to neurodevelopment and defense against infections. Components of MFGM have been shown to present several health benefits as the proteins of the membrane have shown antiviral activity and a reduction in the incidence of diarrhea. Moreover, the presence of sphingomyelin, a phospholipid, implies beneficial effects on human health such as enhanced neuronal development in infants and the protection of neonates from bacterial infections. The development of a lipid that is similar to human milk fat would represent a significant advance for the infant formula industry and would offer high technology formulas for those infants that depend on infant formula. The complexity of the structure of MFGM and its nutritional and technological properties is critically examined in this review with a focus on issues relevant to the dairy industry.
Collapse
|
13
|
Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms 2021; 9:341. [PMID: 33572211 PMCID: PMC7914750 DOI: 10.3390/microorganisms9020341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The milk fat globule membrane (MFGM), the component that surrounds fat globules in milk, and its constituents have gained significant attention for their gut function, immune-boosting properties, and cognitive-development roles. The MFGM can directly interact with probiotic bacteria, such as bifidobacteria and lactic acid bacteria (LAB), through interactions with bacterial surface proteins. With these interactions in mind, increasing evidence supports a synergistic effect between MFGM and probiotics to benefit human health at all ages. This important synergy affects the survival and adhesion of probiotic bacteria through gastrointestinal transit, mucosal immunity, and neurocognitive behavior in developing infants. In this review, we highlight the current understanding of the co-supplementation of MFGM and probiotics with a specific emphasis on their interactions and colocalization in dairy foods, supporting in vivo and clinical evidence, and current and future potential applications.
Collapse
Affiliation(s)
| | | | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| |
Collapse
|
14
|
Janahar JJ, Marciniak A, Balasubramaniam VM, Jimenez-Flores R, Ting E. Effects of pressure, shear, temperature, and their interactions on selected milk quality attributes. J Dairy Sci 2020; 104:1531-1547. [PMID: 33309347 DOI: 10.3168/jds.2020-19081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/09/2020] [Indexed: 01/23/2023]
Abstract
The effects of pressure, temperature, shear, and their interactions on selected quality attributes and stability of milk during ultra-shear technology (UST) were investigated. The UST experiments include pressure (400 MPa) treatment of the milk sample preconditioned at 2 different initial temperatures (25°C and 15°C) and subsequently depressurizing it via a shear valve at 2 flow rates (low: 0.15-0.36 g/s; high: 1.11-1.22 g/s). Raw milk, high-pressure processed (HPP; 400 MPa, ~40°C for 0 and 3 min) and thermal treated (72°C for 15 s) milk samples served as the controls. The effect of different process parameters on milk quality attributes were evaluated using particle size, zeta potential, viscosity, pH, creaming, lipase activity, and protein profile. The HPP treatment did not cause apparent particle size reduction but increased the sample viscosity up to 3.08 mPa·s compared with 2.68 mPa·s for raw milk. Moreover, it produced varied effects on creaming and lipase activity depending on hold time. Thermal treatment induced slight reduction in particle size and creaming as compared with raw milk. The UST treatment at 35°C reduced the effective diameter of sample particles from 3,511.76 nm (raw milk) to 291.45 nm. This treatment also showed minimum relative lipase activity (29.93%) and kept milk stable by preventing creaming. The differential effects of pressure, shear, temperature, and their interactions were evident, which would be useful information for equipment developers and food processors interested in developing improved food processes for dairy beverages.
Collapse
Affiliation(s)
- Jerish Joyner Janahar
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Alice Marciniak
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - V M Balasubramaniam
- Department of Food Science and Technology, The Ohio State University, Columbus 43210; Department of Food Agricultural and Biological Engineering, The Ohio State University, Columbus 43210.
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus 43210
| | - Edmund Ting
- Pressure BioSciences Inc., South Easton, MA 02375
| |
Collapse
|
15
|
Influence of fat substitution by inulin on fermentation process and physical properties of set yoghurt evaluated by an optical sensor. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, Raynal K, Joffre F, Meiller L, Le Barz M, Gaborit P, Caille A, Sothier M, Domingues-Faria C, Blot A, Wauquier A, Blond E, Sauvinet V, Gésan-Guiziou G, Bodin JP, Moulin P, Cheillan D, Vidal H, Morio B, Cotte E, Morel-Laporte F, Laville M, Bernalier-Donadille A, Lambert-Porcheron S, Malpuech-Brugère C, Michalski MC. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut 2020; 69:487-501. [PMID: 31189655 PMCID: PMC7034342 DOI: 10.1136/gutjnl-2018-318155] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER NCT02099032 and NCT02146339; Results.
Collapse
Affiliation(s)
- Cécile Vors
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Ketsia Raynal
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | | | - Laure Meiller
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | - Aurélie Caille
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Monique Sothier
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Carla Domingues-Faria
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Adeline Blot
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Aurélie Wauquier
- Université Clermont Auvergne, INRA, UMR 454, MEDIS, 63000, Clermont-Ferrand, France
| | - Emilie Blond
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Valérie Sauvinet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Geneviève Gésan-Guiziou
- STLO, Science et Technologie du Lait et de l’Œuf, INRA, AGROCAMPUS OUEST, 35000, Rennes, France
| | | | - Philippe Moulin
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Fédération d’Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, 69500, Bron, France
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500, Bron, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Béatrice Morio
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Eddy Cotte
- Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
- Centre Hospitalier Lyon Sud, Service de Chirurgie Digestive, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | | | - Martine Laville
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | | | - Stéphanie Lambert-Porcheron
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
- Hospices Civils de Lyon, 69000, Lyon, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| |
Collapse
|
18
|
Szkolnicka K, Dmytrów I, Mituniewicz-Małek A. Buttermilk ice cream-New method for buttermilk utilization. Food Sci Nutr 2020; 8:1461-1470. [PMID: 32180955 PMCID: PMC7063380 DOI: 10.1002/fsn3.1429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 11/11/2022] Open
Abstract
Buttermilk, the by‐product of butter production, due to good technological features and excellent nutritional and health‐promoting properties finds more and more applications in food industry. Considerable amount of polar lipids causes that buttermilk exhibits emulsifying and stabilizing effect and may be used to improve the product quality. The study aimed to design new kind of ice cream, in which all milk is substituted by buttermilk. Within the study, we compared physicochemical parameters, color, texture, and sensory properties of control milk ice cream (C), ice cream from sweet buttermilk (SB), and ice cream from cultured buttermilk (CB). Ice cream was tested on the production day, and some characteristics were tested also after 14 and 28 days of storage at −18 ± 1°C. The study showed that samples of ice cream from cultured buttermilk had the highest acidity and were the most resistant to melting. The samples did not differ in over‐run value. The use of buttermilk influenced the texture of ice cream and product from sweet buttermilk had the highest stickiness during the storage. The color analysis showed that the highest lightness parameter had ice cream from cultured buttermilk, while samples from sweet buttermilk had the most greenish‐yellow characteristics. All the obtained products had good sensory characteristics, only cultured buttermilk ice cream slightly deteriorated after 28 storage days. Good quality properties cause that buttermilk may be successfully used as substitution of milk in ice‐cream formula and may improve its quality by exhibiting of some emulsifying stabilizing effect.
Collapse
Affiliation(s)
- Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Szczecin Poland
| | - Izabela Dmytrów
- Department of Toxicology, Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Szczecin Poland
| | - Anna Mituniewicz-Małek
- Department of Toxicology, Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Szczecin Poland
| |
Collapse
|
19
|
Price N, Fei T, Clark S, Wang T. Application of zinc and calcium acetate to precipitate milk fat globule membrane components from a dairy by-product. J Dairy Sci 2019; 103:1303-1314. [PMID: 31759589 DOI: 10.3168/jds.2019-16892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
There has been a great deal of interest in developing isolated dairy lipid fractions that are rich in phospholipids (PL), due to their health benefits and functional properties. Dairy by-products that contain elevated levels of PL and milk fat globule membrane (MFGM) proteins can be an excellent source for these isolates. The β stream, a by-product of anhydrous milk fat production, is an excellent candidate because it contains a higher concentration of PL than many other dairy by-products. In this study, we investigated an economically feasible processing method to obtain these valuable components from the β stream. The use of zinc acetate and calcium acetate, along with mild heat treatment and pH adjustment, was effective in precipitating PL and proteins into a pellet fraction. With an additional extraction from the pellet using ethanol (90% at 70°C), a PL-enriched lipid fraction was obtained. The effective precipitation conditions were zinc acetate of 25 mM concentration at pH greater than 6.5 at 30°C, and calcium acetate of greater than 75 mM concentration at pH greater than 6.5 at 60°C. With ethanol extraction, PL recovery of 97.7 ± 1.7% from the zinc acetate precipitate and 94.9 ± 3.7% from calcium acetate precipitate were achieved.
Collapse
Affiliation(s)
- Nathan Price
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061
| | - Tao Fei
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061; Department of Food Science, University of Tennessee, Knoxville 37996-4539
| | - Stephanie Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061
| | - Tong Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames 50011-1061; Department of Food Science, University of Tennessee, Knoxville 37996-4539.
| |
Collapse
|
20
|
Skryplonek K, Dmytrów I, Mituniewicz‐Małek A. The use of buttermilk as a raw material for cheese production. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarzyna Skryplonek
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| | - Izabela Dmytrów
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| | - Anna Mituniewicz‐Małek
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| |
Collapse
|
21
|
Jaakamo MJ, Luukkonen TJ, Kairenius PK, Bayat AR, Ahvenjärvi SA, Tupasela TM, Vilkki JH, Shingfield KJ, Leskinen HM. The effect of dietary forage to concentrate ratio and forage type on milk fatty acid composition and milk fat globule size of lactating cows. J Dairy Sci 2019; 102:8825-8838. [PMID: 31421879 DOI: 10.3168/jds.2018-15833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/17/2019] [Indexed: 01/08/2023]
Abstract
We examined the effects of 2 grass silage-based diets differing in forage:concentrate (FC) ratio and those of a red clover silage-based diet on intake, milk production, ruminal fatty acid (FA) biohydrogenation, milk FA composition, and milk fat globule (MFG) size distribution. Ten multiparous Nordic Red cows received the following treatments: grass silage-based diets containing high (70:30, HG) or low (30:70, LG) FC ratio or a red clover silage-based diet with an FC ratio of 50:50 (RC) on a dry matter basis. Determinations of MFG were performed from fresh milk samples without addition of EDTA so the results of fat globules >1 µm in diameter are emphasized instead of the entire globule population. Lower FC ratio in grass silage-based diets increased milk production with no effect on daily fat yield, leading to 13% lower milk fat concentration. The effect of FC ratio on MFG size was moderate. It did not affect the volume-weighted diameter in grass silage-based diets, although LG lowered the volume-surface diameter of MFG in the size class >1 µm compared with HG. Compared with HG, feeding LG moderately decreased the biohydrogenation of 18:2n-6, leading to a higher level of polyunsaturated fatty acids in milk fat. Feeding RC lowered milk fat concentration and daily milk fat yield compared with grass silage-based diets. The volume-weighted diameter of MFG in the size class >1 µm was smaller in RC milk compared with grass silage-based diets. Feeding RC increased the flow of 18:3n-3 at the omasum by 2.4-fold and decreased the apparent ruminal 18:3n-3 biohydrogenation compared with grass silage-based diets despite similar intake of 18:3n-3. It also resulted in the lowest amount of saturated FA and the highest amounts of cis-9 18:1, 18:3n-3, and polyunsaturated FA in milk. In conclusion, LG decreased milk fat content and induced minor changes in MFG size distribution compared with HG, whereas RC lowered milk fat production, altered milk FA composition to nutritionally more beneficial direction, and led to smaller MFG compared with grass silage-based diets.
Collapse
Affiliation(s)
- Mari J Jaakamo
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Tytti J Luukkonen
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Piia K Kairenius
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Ali R Bayat
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Seppo A Ahvenjärvi
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Tuomo M Tupasela
- Food Processing and Quality, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Johanna H Vilkki
- Animal Genetics, Production Systems, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Kevin J Shingfield
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland
| | - Heidi M Leskinen
- Milk Production, Production Systems Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.
| |
Collapse
|
22
|
Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019; 24:E1056. [PMID: 30889812 PMCID: PMC6471601 DOI: 10.3390/molecules24061056] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the agro-food industry generates high amounts of byproducts that may possess added value compounds with high functionality and/or bioactivity. Additionally, consumers' demand for healthier foodstuffs has increased over the last years, and thus the food industry has strived to answer this challenge. Byproducts are generally secondary products derived from primary agro-food production processes and represent an interesting and cheaper source of potentially functional ingredients, such as peptides, carotenoids, and phenolic compounds, thus promoting a circular economy concept. The existing body of work has shown that byproducts and their extracts may be successfully incorporated into foodstuffs, for instance, phenolic compounds from eggplant can be potentially used as a mulfitunctional food additive with antimicrobial, antioxidant, and food colorant properties. As such, the aim of this review is to provide insights into byproducts and their potential as new sources of foodstuffs additives.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Mariana Veiga
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Pedro Sousa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Eduardo M Costa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Sara Silva
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Manuela Pintado
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| |
Collapse
|
23
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Lee H, Zavaleta N, Chen SY, Lönnerdal B, Slupsky C. Effect of bovine milk fat globule membranes as a complementary food on the serum metabolome and immune markers of 6-11-month-old Peruvian infants. NPJ Sci Food 2018; 2:6. [PMID: 31304256 PMCID: PMC6550191 DOI: 10.1038/s41538-018-0014-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022] Open
Abstract
This study builds on a previous study by this group in which 6–11-month-old Peruvian infants who were fed bovine milk fat globule membrane (MFGM) containing complementary food had significantly fewer episodes of infection-related bloody diarrhea relative to those consuming a control food (skim milk powder). Micronutrient deficiencies including zinc deficiency were prevalent in this study population. To understand the mechanism behind the health benefits of consuming MFGM, the serum metabolome and cytokine levels, as markers for systemic immune responses, were evaluated using 1H nuclear magnetic resonance-based metabolomics and a multiplex system, respectively. Combined with data on micronutrient status and anthropometry, a comparative analysis was performed. Supplementation with MFGM tended to improve micronutrient status, energy metabolism, and growth reflected as increased levels of circulating amino acids and weight gain, particularly in female infants compared to controls. Decreased levels of the microbial choline metabolite trimethylamine-N-oxide in the MFGM-supplemented group (both male and female infants) suggest a functional perturbation in the intestinal microbiota. A cytokine shift toward a less T helper type 1 response was observed in those receiving the MFGM supplement, which was mainly attributed to decreases in interleukin-2 levels. Our findings suggest that consumption of MFGM with complementary food may reverse the metabolic abnormalities found in marginally nourished infants, thereby improving metabolic regulation, which may lead to enhanced immunity. Bovine milk fat globule membrane (MFGM)-enriched complementary food has been recognized to be capable of reducing the episodes of bloody diarrhea in marginally nourished infants. However, the metabolic influence of MFGM remains unknown. Carolyn Slupsky from University of California-Davis and co-workers studied the impacts of bovine MFGM consumption on the levels of serum metabolome and immune markers. They found the supplements of MFGM improved the micronutrient status, energy metabolism, and growth, especially prominent for female infants. Moreover, MFGM complementary food lowered the level of the bacterial choline metabolite trimethylamine-N-oxide in the infants, indicating a functional perturbation to their intestinal microbiota. These findings suggest MFGM in complementary food can help to regulate the metabolic abnormalities of the infants with micronutrient deficiency, probably resulting in enhanced immunity.
Collapse
Affiliation(s)
- Hanna Lee
- 1Department of Food Science and Technology, University of California, Davis, Davis, CA USA
| | - Nelly Zavaleta
- 2Instituto de Investigación Nutricional, Lima, 18-0191 Peru
| | - Shin-Yu Chen
- 1Department of Food Science and Technology, University of California, Davis, Davis, CA USA
| | - Bo Lönnerdal
- 3Department of Nutrition, University of California, Davis, Davis, CA USA
| | - Carolyn Slupsky
- 1Department of Food Science and Technology, University of California, Davis, Davis, CA USA.,3Department of Nutrition, University of California, Davis, Davis, CA USA
| |
Collapse
|
25
|
Guerin J, Burgain J, Gomand F, Scher J, Gaiani C. Milk fat globule membrane glycoproteins: Valuable ingredients for lactic acid bacteria encapsulation? Crit Rev Food Sci Nutr 2017; 59:639-651. [PMID: 28976212 DOI: 10.1080/10408398.2017.1386158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The membrane (Milk Fat Globule Membrane - MFGM) surrounding the milk fat globule is becoming increasingly studied for its use in food applications due to proven nutritional and technological properties. This review focuses first on current researches which have been led on the MFGM structure and composition and also on laboratory and industrial purification and isolation methods developed in the last few years. The nutritional, health benefits and techno-functional properties of the MFGM are then discussed. Finally, new techno-functional opportunities of MFGM glycoproteins as a possible ingredient for Lactic Acid Bacteria (LAB) encapsulation are detailed. The ability of MFGM to form liposomes entrapping bioactive compounds has been already demonstrated. One drawback is that liposomes are too small to be used for bacteria encapsulation. For the first time, this review points out the numerous advantages to use MFGM glycoproteins as a protecting, encapsulating matrix for bacteria and especially for LAB.
Collapse
Affiliation(s)
- Justine Guerin
- a LIBio, Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine , 2, av de la Forêt de Haye, BP, Vandœuvre-lès-Nancy , France
| | - Jennifer Burgain
- a LIBio, Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine , 2, av de la Forêt de Haye, BP, Vandœuvre-lès-Nancy , France
| | - Faustine Gomand
- a LIBio, Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine , 2, av de la Forêt de Haye, BP, Vandœuvre-lès-Nancy , France
| | - Joël Scher
- a LIBio, Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine , 2, av de la Forêt de Haye, BP, Vandœuvre-lès-Nancy , France
| | - Claire Gaiani
- a LIBio, Laboratoire d'Ingénierie des Biomolécules, Université de Lorraine , 2, av de la Forêt de Haye, BP, Vandœuvre-lès-Nancy , France
| |
Collapse
|
26
|
Parrón JA, Ripollés D, Pérez MD, Calvo M, Rasmussen JT, Sánchez L. Antirotaviral Activity of Bovine and Ovine Dairy Byproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4280-4288. [PMID: 28489400 DOI: 10.1021/acs.jafc.7b01059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rotaviral gastroenteritis is associated with significant morbidity in developed countries and a high rate of infant mortality in developing countries. Diverse studies have demonstrated that a wide range of milk-derived fractions exhibit antirotaviral activity. The present study shows the antirotaviral activity of some bovine and ovine dairy byproducts, buttermilk, butter serum, and milk fat globule membrane (MFGM), and evaluates the effect of cream washing and heat treatment on that activity. Furthermore, the rotavirus-neutralizing activity was evaluated for some MFGM proteins, such as xanthine oxidase and lactophorin. Ovine and bovine buttermilk reached rotavirus-neutralizing values of 51.3 and 32.2%, at 1 mg/mL, respectively. The cream washing process led to a significant decrease in the antirotaviral activity of fractions. This activity was also influenced by heat treatment. Treatment at 75 °C for 20 s caused 24.6 and 36.1% decreases of activity in bovine and ovine buttermilk, respectively, and 85 °C for 10 min caused decreases of 80.9 and 79.0% in both fractions, respectively.
Collapse
Affiliation(s)
- José Antonio Parrón
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Daniel Ripollés
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| | - Jan Trige Rasmussen
- Protein Chemistry Laboratory, Department of Molecular Biology and Genetics, Aarhus University , Aarhus, Denmark
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA , Zaragoza, Spain
| |
Collapse
|
27
|
Gassi JY, Blot M, Beaucher E, Robert B, Leconte N, Camier B, Rousseau F, Bourlieu C, Jardin J, Briard-Bion V, Lambert S, Gésan-Guiziou G, Lopez C, Gaucheron F. Preparation and characterisation of a milk polar lipids enriched ingredient from fresh industrial liquid butter serum: Combination of physico-chemical modifications and technological treatments. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Lopez C, Cauty C, Guyomarc'h F. Organization of lipids in milks, infant milk formulas and various dairy products: role of technological processes and potential impacts. ACTA ACUST UNITED AC 2015; 95:863-893. [PMID: 26568788 PMCID: PMC4641158 DOI: 10.1007/s13594-015-0263-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 12/02/2022]
Abstract
The microstructure of milk fat in processed dairy products is poorly known despite its importance in their functional, sensorial and nutritional properties. However, for the last 10 years, several research groups including our laboratory have significantly contributed to increasing knowledge on the organization of lipids in situ in dairy products. This paper provides an overview of recent advances on the organization of lipids in the milk fat globule membrane using microscopy techniques (mainly confocal microscopy and atomic force microscopy). Also, this overview brings structural information about the organization of lipids in situ in commercialized milks, infant milk formulas and various dairy products (cream, butter, buttermilk, butter serum and cheeses). The main mechanical treatment used in the dairy industry, homogenization, decreases the size of milk fat globules, changes the architecture (composition and organization) of the fat/water interface and affects the interactions between lipid droplets and the protein network (concept of inert vs active fillers). The potential impacts of the organization of lipids and of the alteration of the milk fat globule membrane are discussed, and technological strategies are proposed, in priority to design biomimetic lipid droplets in infant milk formulas.
Collapse
Affiliation(s)
- Christelle Lopez
- INRA, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France ; Agrocampus Ouest, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France
| | - Chantal Cauty
- INRA, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France ; Agrocampus Ouest, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France
| | - Fanny Guyomarc'h
- INRA, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France ; Agrocampus Ouest, UMR1253 STLO, 65 rue de Saint Brieuc, 35000 Rennes, France
| |
Collapse
|
29
|
|
30
|
Olabi A, Jinjarak S, Jiménez-Flores R, Walker J, Daroub H. Compositional and sensory differences of products of sweet-cream and whey buttermilk produced by microfiltration, diafiltration, and supercritical CO2. J Dairy Sci 2015; 98:3590-8. [DOI: 10.3168/jds.2014-9141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022]
|
31
|
Burgain J, Scher J, Francius G, Borges F, Corgneau M, Revol-Junelles A, Cailliez-Grimal C, Gaiani C. Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv Colloid Interface Sci 2014; 213:21-35. [PMID: 25277266 DOI: 10.1016/j.cis.2014.09.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.
Collapse
|
32
|
Guyomarc'h F, Zou S, Chen M, Milhiet PE, Godefroy C, Vié V, Lopez C. Milk sphingomyelin domains in biomimetic membranes and the role of cholesterol: morphology and nanomechanical properties investigated using AFM and force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6516-6524. [PMID: 24835749 DOI: 10.1021/la501640y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Milk sphingomyelin (MSM) and cholesterol segregate into domains in the outer bilayer membrane surrounding milk fat globules. To elucidate the morphology and mechanical properties of theses domains, supported lipid bilayers with controlled molar proportions of MSM, dioleoylphosphatidylcholine (DOPC) and cholesterol were produced in buffer mimicking conditions of the milk aqueous phase. Atomic force microscopy imaging showed that (i) for T < 35 °C MSM segregated in gel phase domains protruding above the fluid phase, (ii) the addition of 20 mol % cholesterol resulted in smaller and more elongated l(o) phase domains than in equimolar MSM/DOPC membranes, (iii) the MSM/cholesterol-enriched l(o) phase domains were less salient than the MSM gel phase domains. Force spectroscopy measurements furthermore showed that cholesterol reduced the resistance of MSM/DOPC membrane to perforation. The results are discussed with respect to the effect of cholesterol on the biophysical properties of lipid membranes. The combination of AFM imaging and force mapping provides unprecedented insight into the structural and mechanical properties of milk lipid membranes, and opens perspectives for investigation of the functional properties of MSM domains during milk fat processing or digestion.
Collapse
|
33
|
Pasvolsky R, Zakin V, Ostrova I, Shemesh M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int J Food Microbiol 2014; 181:19-27. [PMID: 24801271 DOI: 10.1016/j.ijfoodmicro.2014.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.
Collapse
Affiliation(s)
- Ronit Pasvolsky
- Department of Food Quality and Safety, Agricultural Research Organization (ARO), Bet-Dagan, Israel
| | - Varda Zakin
- Department of Food Quality and Safety, Agricultural Research Organization (ARO), Bet-Dagan, Israel
| | - Ievgeniia Ostrova
- Department of Food Quality and Safety, Agricultural Research Organization (ARO), Bet-Dagan, Israel
| | - Moshe Shemesh
- Department of Food Quality and Safety, Agricultural Research Organization (ARO), Bet-Dagan, Israel.
| |
Collapse
|
34
|
Zheng H, Jiménez-Flores R, Gragson D, Everett DW. Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3236-3243. [PMID: 24641452 DOI: 10.1021/jf500093p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Giant unilamellar vesicles (GUVs) were constructed using an electroformation technique to mimic the morphology of the native milk fat globule membrane (MFGM) for the purpose of structural investigation. Bovine milk derived phospholipids were selected to manufacture GUVs which were characterized by confocal laser scanning microscopy after fluorescent staining. Circular nonfluorescent dark regions were observed in a 3/7 (mol/mol) surface mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3 phosphoethanolamine. Linear shaped dark lipid domains were found in GUVs containing sphingomyelin (SM) in the absence of cholesterol. The dark regions were interpreted as a gel phase formed by a high gel-liquid phase transition temperature (Tm) of DPPC and SM. This study provides a strategy for investigating the lipid structural organization within the native MFGM using a model lipid bilayer system and reveals that a SM and cholesterol association network is not the only requirement for nonfluorescent lipid domain formation and that PE is preferably located in the inner leaflet of the phospholipid bilayer.
Collapse
Affiliation(s)
- Haotian Zheng
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Rafael Jiménez-Flores
- Dairy Products Technology Center, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - Derek Gragson
- Department of Chemistry and Biochemistry, California Polytechnic State University , San Luis Obispo, 93407 California, United States
| | - David W Everett
- Riddet Institute , Palmerston North, 4442 Manawatu, New Zealand
- Department of Food Science, University of Otago , Dunedin, 9054 Otago, New Zealand
| |
Collapse
|
35
|
Saffon M, Richard V, Jiménez-Flores R, Gauthier SF, Britten M, Pouliot Y. Behavior of Heat-Denatured Whey: Buttermilk Protein Aggregates during the Yogurt-Making Process and Their Influence on Set-Type Yogurt Properties. Foods 2013; 2:444-459. [PMID: 28239128 PMCID: PMC5302273 DOI: 10.3390/foods2040444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to assess the impact of using heat-denatured whey:buttermilk protein aggregate in acid-set type yogurt production. Whey and buttermilk (25:75) protein concentrate was adjusted to pH 4.6, heated at 90 °C for 5 min, homogenized and freeze-dried. Set-type yogurts were prepared from skim milk standardized to 15% (w/v) total solids and 4.2% (w/v) protein using different levels of powdered skim milk or freeze-dried protein aggregate. The use of the protein aggregate significantly modified yogurt texture, but did not affect the water-holding capacity of the gel. Confocal laser-scanning microscope images showed the presence of large particles in milk enriched with protein aggregate, which directly affected the homogeneity of the clusters within the protein matrix. Thiol groups were freed during heating of the protein aggregate suspended in water, suggesting that the aggregates could interact with milk proteins during heating.
Collapse
Affiliation(s)
- Maxime Saffon
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, G1V 0A6, Canada.
| | - Véronique Richard
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, G1V 0A6, Canada.
| | - Rafael Jiménez-Flores
- Dairy Products Technology Center (DPTC), California Polytechnic State University, San Luis Obispo, CA 93405, USA.
| | - Sylvie F Gauthier
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, G1V 0A6, Canada.
| | - Michel Britten
- Food Research and Development Center (FRDC), Agriculture and Agri-Food Canada, St-Hyacinthe, QC, J2S 8E3, Canada.
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
36
|
Michalski MC, Genot C, Gayet C, Lopez C, Fine F, Joffre F, Vendeuvre JL, Bouvier J, Chardigny JM, Raynal-Ljutovac K. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Prog Lipid Res 2013; 52:354-73. [PMID: 23624223 DOI: 10.1016/j.plipres.2013.04.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/13/2013] [Accepted: 04/10/2013] [Indexed: 11/18/2022]
Abstract
On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.
Collapse
Affiliation(s)
- M C Michalski
- INRA, USC1235, INSERM U1060, CarMeN laboratory, IMBL, F-69621 Villeurbanne, France; CRNH Rhône-Alpes, CENS, F-69600 Oullins, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guri A, Griffiths M, Khursigara CM, Corredig M. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells. J Dairy Sci 2012; 95:6937-45. [PMID: 23021758 DOI: 10.3168/jds.2012-5734] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/19/2012] [Indexed: 12/16/2022]
Abstract
Milk fat globules were extracted from bovine and goat milk and incubated with HT-29 human adenocarcinoma cells to assess the attachment and internalization of Salmonella Enteritidis. Because the expression of bacterial adhesins is highly affected by the presence of antibiotic, the attachment was studied with and without antibiotic in the cell growth medium. Although no inhibitory effect of the fat globules was observed in the presence of the antibiotic, milk fat globules significantly inhibited the binding and internalization of Salmonella in medium free of antibiotic. The fat globules from both bovine and goat milk markedly reduced bacterial binding and invasion compared with controls, and the cells treated with goat milk-derived fat globules demonstrated greater protective properties than those derived from bovine milk. The effect of heat treatment on bovine fat globules was also investigated, and it was shown that the fat globules from heated milk had a higher degree of inhibition than those from unheated milk.
Collapse
Affiliation(s)
- A Guri
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
38
|
Guggisberg D, Chollet M, Schreier K, Portmann R, Egger L. Effects of heat treatment of cream on the physical–chemical properties of model oil-in-buttermilk emulsions. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
|
41
|
Brisson G, Payken HF, Sharpe JP, Jiménez-Flores R. Characterization of Lactobacillus reuteri interaction with milk fat globule membrane components in dairy products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5612-5619. [PMID: 20377223 DOI: 10.1021/jf904381s] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A set of methods has been developed to study the adhesion between four Lactobacillus reuteri strains and the milk fat globule membrane (MFGM) components in dairy products. By combining sucrose density gradient (SDG) centrifugation and bacterial DNA quantification it was found which strains of L. reuteri were more strongly associated with the dairy products, and the results were corroborated by direct binding rate and force measurements made with optical tweezers. It was determined that strong binding was associated with hydrophobicity of the bacteria and that this hydrophobicity is correlated with the presence of LiCl-extractable protein on the surface of the bacteria. Confocal laser scanning microscopy (CLSM) allowed for the visualization of interactions between bacteria and MFGM. This study demonstrates that these methods can be used in combination to characterize, both qualitatively and quantitatively, the adhesion of lactic acid bacteria strains in dairy products.
Collapse
Affiliation(s)
- Guillaume Brisson
- Dairy Products Technology Center, California Polytechnic State University, San Luis Obispo, California 93407, USA
| | | | | | | |
Collapse
|