1
|
Lectin Histochemistry of the Normal Feline Kidney. Vet Sci 2022; 10:vetsci10010026. [PMID: 36669026 PMCID: PMC9866344 DOI: 10.3390/vetsci10010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Lectins have a strict binding specificity to carbohydrate moieties of cellular components, and can thus indicate changes in the glycosylation of cells in diseases. However, lectin-binding patterns in nephron segments of feline kidneys have not been fully surveyed. The present study reported lectin-binding patterns in normal feline kidneys by histochemical investigations of eight commercially available lectin detection kits. Kidneys from four normal cats (intact males, 23-27 months old) were fixed in 4% paraformaldehyde, and embedded in paraffin; lectin histochemistry was performed for WGA, s-WGA, RCA-I, ConA, PNA, SBA, DBA, and UEA-I lectins. WGA, RCA, and ConA binding was observed from Bowman's capsule to the collecting ducts, while only WGA was detected in the glomerular capillary. s-WGA was observed from the proximal tubules to the collecting ducts, showing discriminative heterogeneous binding. PNA and SBA were detected in the distal nephrons, such as the thin limbs of the loops of Henle, distal tubules, and collecting ducts. UEA-I binding was observed in the thick ascending limbs of the loops of Henle, especially in the macula densa regions. DBA lectin showed no positive labeling in nephrons. The observed binding patterns may prove beneficial for the analysis of changes in glycosylation in feline kidney diseases.
Collapse
|
2
|
Song YT, Li YQ, Tian MX, Hu JG, Zhang XR, Liu PC, Zhang XZ, Zhang QY, Zhou L, Zhao LM, Li-Ling J, Xie HQ. Application of antibody-conjugated small intestine submucosa to capture urine-derived stem cells for bladder repair in a rabbit model. Bioact Mater 2022; 14:443-455. [PMID: 35415280 PMCID: PMC8978277 DOI: 10.1016/j.bioactmat.2021.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023] Open
Abstract
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes. Biomaterials such as submucosa of small intestine (SIS) have been widely used as patches for bladder repair, but the outcomes are not fully satisfactory. To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization. In this study, we have developed an anti-CD29 antibody-conjugated SIS scaffold (AC-SIS) which is capable of specifically capturing urine-derived stem cells (USCs) in situ for tissue repair and regeneration. The scaffold has exhibited effective capture capacity and sound biocompatibility. In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration. The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches. We developed an anti-CD29 antibody-crosslinked submucosa of small intestine scaffold (AC-SIS). AC-SIS is capable of specifically capturing urine-derived stem cells (USCs) as well as possesses a sound biocompatibility. AC-SIS promotes in situ tissue regeneration by facilitating the repair of bladder epithelium, smooth muscle and angiogenesis. Design and application of endogenous stem cell capturing scaffolds provides a new strategy for bladder repair.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Qing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mao-Xuan Tian
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Aesthetic Surgery, The People's Hospital of Pengzhou, Chengdu, Sichuan, 611930, China
| | - Jun-Gen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Ru Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, Henan, 450000, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Medical Genetics and Prenatal Diagnosis, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Kawakita C, Mise K, Onishi Y, Sugiyama H, Yoshida M, Yamada M, Wada J. Novel urinary glycan profiling by lectin array serves as the biomarkers for predicting renal prognosis in patients with IgA nephropathy. Sci Rep 2021; 11:3394. [PMID: 33564009 PMCID: PMC7873239 DOI: 10.1038/s41598-020-77736-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
In IgA nephropathy (IgAN), IgA1 molecules are characterized by galactose deficiency in O-glycans. Here, we investigated the association between urinary glycosylation profile measured by 45 lectins at baseline and renal prognosis in 142 patients with IgAN. The primary outcome was estimated glomerular filtration rate (eGFR) decline (> 4 mL/min/1.73 m2/year), or eGFR ≥ 30% decline from baseline, or initiation of renal replacement therapies within 3 years. During follow-up (3.4 years, median), 26 patients reached the renal outcome (Group P), while 116 patients were with good renal outcome (Group G). Multivariate logistic regression analyses revealed that lectin binding signals of Erythrina cristagalli lectin (ECA) (odds ratio [OR] 2.84, 95% confidence interval [CI] 1.11–7.28) and Narcissus pseudonarcissus lectin (NPA) (OR 2.32, 95% CI 1.11–4.85) adjusted by age, sex, eGFR, and urinary protein were significantly associated with the outcome, and they recognize Gal(β1-4)GlcNAc and high-mannose including Man(α1-6)Man, respectively. The addition of two lectin-binding glycan signals to the interstitial fibrosis/tubular atrophy score further improved the model fitness (Akaike’s information criterion) and incremental predictive abilities (c-index, net reclassification improvement, and integrated discrimination improvement). Urinary N-glycan profiling by lectin array is useful in the prediction of IgAN prognosis, since ECA and NPA recognize the intermediate glycans during N-glycosylation of various glycoproteins.
Collapse
Affiliation(s)
- Chieko Kawakita
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Koki Mise
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yasuhiro Onishi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hitoshi Sugiyama
- Department of Human Resource Development of Dialysis Therapy for Kidney Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Yoshida
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
4
|
Zhou LT, Lv LL, Qiu S, Yin Q, Li ZL, Tang TT, Ni LH, Feng Y, Wang B, Ma KL, Liu BC. Bioinformatics-based discovery of the urinary BBOX1 mRNA as a potential biomarker of diabetic kidney disease. J Transl Med 2019; 17:59. [PMID: 30819181 PMCID: PMC6394064 DOI: 10.1186/s12967-019-1818-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD) in the world. Emerging evidence has shown that urinary mRNAs may serve as early diagnostic and prognostic biomarkers of DKD. In this article, we aimed to first establish a novel bioinformatics-based methodology for analyzing the “urinary kidney-specific mRNAs” and verify their potential clinical utility in DKD. Methods To select candidate mRNAs, a total of 127 Affymetrix microarray datasets of diabetic kidney tissues and other tissues from humans were compiled and analyzed using an integrative bioinformatics approach. Then, the urinary expression of candidate mRNAs in stage 1 study (n = 82) was verified, and the one with best performance moved on to stage 2 study (n = 80) for validation. To avoid potential detection bias, a one-step Taqman PCR assay was developed for quantification of the interested mRNA in stage 2 study. Lastly, the in situ expression of the selected mRNA was further confirmed using fluorescent in situ hybridization (FISH) assay and bioinformatics analysis. Results Our bioinformatics analysis identified sixteen mRNAs as candidates, of which urinary BBOX1 (uBBOX1) levels were significantly upregulated in the urine of patients with DKD. The expression of uBBOX1 was also increased in normoalbuminuric diabetes subjects, while remained unchanged in patients with urinary tract infection or bladder cancer. Besides, uBBOX1 levels correlated with glycemic control, albuminuria and urinary tubular injury marker levels. Similar results were obtained in stage 2 study. FISH assay further demonstrated that BBOX1 mRNA was predominantly located in renal tubular epithelial cells, while its expression in podocytes and urothelium was weak. Further bioinformatics analysis also suggested that tubular BBOX1 mRNA expression was quite stable in various types of kidney diseases. Conclusions Our study provided a novel methodology to identify and analyze urinary kidney-specific mRNAs. uBBOX1 might serve as a promising biomarker of DKD. The performance of the selected urinary mRNAs in monitoring disease progression needs further validation. Electronic supplementary material The online version of this article (10.1186/s12967-019-1818-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le-Ting Zhou
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China.,Wuxi People's Hospital Affiliated To Nanjing Medical University, Wuxi, Jiangsu, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Shen Qiu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Li-Hua Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, No. 87 Dingjiaqiao Rd, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Kim K, Cha HJ, Joo D, Choi SJ, An IS, An S. Sophora japonica extracts accelerates keratinocyte differentiation through miR-181a. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-017-0011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Bostwick DG, Hossain D. Does subdivision of the “atypical” urine cytology increase predictive accuracy for urothelial carcinoma? Diagn Cytopathol 2014; 42:1034-44. [DOI: 10.1002/dc.23159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/23/2014] [Accepted: 03/18/2014] [Indexed: 11/08/2022]
|
7
|
Karavana VN, Gakiopoulou H, Lianos EA. Expression of Ser729 phosphorylated PKCepsilon in experimental crescentic glomerulonephritis: an immunohistochemical study. Eur J Histochem 2014; 58:2308. [PMID: 24998921 PMCID: PMC4083321 DOI: 10.4081/ejh.2014.2308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 01/27/2023] Open
Abstract
PKCε, a DAG-dependent, Ca2+- independent kinase attenuates extent of fibrosis following tissue injury, suppresses apoptosis and promotes cell quiescence. In crescentic glomerulonephritis (CGN), glomerular epithelial cells (GEC) contribute to fibro-cellular crescent formation while they also transdifferentiate to a mesenchymal phenotype. The aim of this study was to assess PKCε expression in CGN. Using an antibody against PKC-ε phosphorylated at Ser729, we assessed its localization in rat model of immune-mediated rapidly progressive CGN. In glomeruli of control animals, pPKCε was undetectable. In animals with CGN, pPKCε was expressed exclusively in glomerular epithelial cells (GEC) and in GEC comprising fibrocellular crescents that had acquired a myofibroblast-type phenotype. In non-immune GEC injury induced by puromycin aminonucleoside and resulting in proteinuria of similar magnitude as in CGN, pPKCε expression was absent. There was constitutive pPKCε expression in distal convoluted tubules, collecting ducts and thick segments of Henley's loops in both control and experimental animals. We propose that pPKCε expression occurring in GEC and in fibrocellular crescentic lesions in CGN may facilitate PKCε dependent pathologic processes.
Collapse
Affiliation(s)
- V N Karavana
- 1st Intensive Care Clinic, "Evangelismos" Hospital.
| | | | | |
Collapse
|
8
|
Chatterjee P, Mathur SR, Dinda AK, Guleria S, Mahajan S, Iyer V, Arora V. Analysis of urine sediment for cytology and antigen expression in acute renal allograft rejection: an alternative to renal biopsy. Am J Clin Pathol 2012; 137:816-24. [PMID: 22523222 DOI: 10.1309/ajcpqfz0gelh5zpn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Acute rejection in renal transplant recipients is diagnosed by renal biopsy at an advanced disease stage. There is no modality for sequential monitoring of graft status. We studied the role of urine cytology in predicting acute cellular rejection (ACR) and its ability to correctly diagnose ACR and differentiate it from drug toxicity (DT). Urine samples from 203 renal transplant recipients were studied to determine the cellular composition using cytology and immunocytochemistry for HLA-DR, intercellular adhesion molecule (ICAM)-1, and interleukin (IL)-2R. In a 3-month follow-up period, there were 36 episodes of graft dysfunction, of which 28 occurred due to ACR and 8 due to DT. The cytology results showed a significantly increased percentage of lymphocytes and polymorphonuclear cells in samples obtained before and during the clinical manifestations of ACR. A greater level of expression of antigens was observed before and during ACR. The use of IL2-R-, ICAM-1-, and HLA class II-specific monoclonal antibodies gave very high specificity, sensitivity, and positive predictive values in diagnosing rejection through urine cytology, suggesting that routine cytology along with immunocytochemistry of urine sediment has clinical potential for early diagnosis and management of ACR and DT.
Collapse
|
9
|
Yabuki A, Mitani S, Mizukami K, Yamato O. Nephron segment identification in the normal canine kidney by using lectin histochemistry. Res Vet Sci 2012; 93:560-4. [PMID: 22217909 DOI: 10.1016/j.rvsc.2011.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/06/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
Lectin-binding patterns in normal canine kidneys were histochemically investigated using eight lectins. WGA, ConA, and RCA-I showed positive signals in glomerular capillary walls, with signals for RCA-I being detected heterogeneously. In tubular segments, signals for WGA, s-WGA, ConA, and RCA-I were distributed widely from proximal tubules to collecting ducts, whereas those for SBA, PNA, DBA, and UEA-I were localized in thin limbs of the loop of Henle, thick ascending limbs, distal tubules, or collecting ducts. Apart from PNA and UEA-I, lectins showed heterogeneous bindings in collecting ducts with the heterogeneity. UEA-I-positive reactions were restricted to those parts of the distal tubules in close proximity to the glomeruli, and in these parts, signals in the macula densa were markedly stronger than in other regions. Based on the present findings, lectin probes, singly or in combination, could be utilized to identify the affected nephron segment in canine renal pathology.
Collapse
Affiliation(s)
- Akira Yabuki
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Kagoshima University, Japan.
| | | | | | | |
Collapse
|
10
|
Shan Z, Zhou Z, Chen H, Zhang Z, Zhou Y, Wen A, Oakes KD, Servos MR. PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 881-882:63-8. [DOI: 10.1016/j.jchromb.2011.11.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/15/2011] [Accepted: 11/27/2011] [Indexed: 11/28/2022]
|
11
|
Lo YH, Lin RD, Lin YP, Liu YL, Lee MH. Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:625-629. [PMID: 19422905 DOI: 10.1016/j.jep.2009.04.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 04/17/2009] [Accepted: 04/25/2009] [Indexed: 05/27/2023]
Abstract
AIM OF THE STUDY There is greater consumer awareness of plant-based skin-care products. Sophora japonica L. (Fabaceae) has been used traditionally as a hemostatic agent and also has skin-care and whitening benefits. The effect of the isolated active compounds of Sophora japonica L. (Fabaceae) that inhibits tyrosinase activity in human epidermal melanocytes (HEMn) was examined. MATERIALS AND METHODS We used the mushroom tyrosinase inhibitory assay to isolate active constituents from the extracts. The structures of these constituents were characterized by physical and spectroscopic analyses. Cellular tyrosinase kinetics were analyzed and showed by Lineweaver-Burk plot. RESULTS A new compound, N-feruloyl-N'-cis-feruloyl-putrescine (8), together with four flavonoids and three putrescine derivatives were obtained after assay-guided isolation of S. japonica. In HEMn, compound 8 was minimally cytotoxic (cell viability >90% at 100 microM) and the IC(50) value for suppression of cellular tyrosinase activity was estimated as 85.0 microM. Zymography analysis demonstrated the compound's concentration-dependent effects and the kinetic analysis indicated the compound's mixed-inhibitory action. CONCLUSIONS We concluded that the new compound 8 is the most potent component of S. japonica yet discovered. Its pigment inhibition activity may be exploitable cosmetically.
Collapse
Affiliation(s)
- Yuan-Hsin Lo
- Department of Dermatology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Dörrenhaus A, Müller T, Roos PH. Increased CYP1A1 expression in human exfoliated urothelial cells of cigarette smokers compared to non-smokers. Arch Toxicol 2006; 81:19-25. [PMID: 16947004 DOI: 10.1007/s00204-006-0134-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 07/11/2006] [Indexed: 11/25/2022]
Abstract
Polycyclic aromatic hydrocarbons, arylamines and nitrosamines, constituents of cigarette smoke, are known inducers of bladder cancer. The biochemical response of the target tissue, the bladder urothelium, following inhalation of cigarette smoke has not been studied so far. We used exfoliated transitional urothelial cells from human urine samples to analyze effects of smoking on induction of the cytochrome P450 enzyme CYP1A1. Samples of 40 subjects, including male and female smokers and non-smokers, were examined. A prerequisite for the immunofluorescence microscopic analysis of the cells was the enrichment of the urothelial cell population. This was achieved by a new method which is based on magnetic cell sorting exploiting specific binding of immobilized Griffonia simplicifolia lectin to the surface of urothelial cells. Immunostaining of the final cell preparation with a monoclonal antibody to CYP1A1 showed that about 6% of the urothelial cells of non-smokers stained positive for CYP1A1. However, this fraction of positive cells was more than 44% of the urothelial cells in samples from cigarette smokers. In spite of the individual variation, the difference was statistically significant. There were no gender-related differences in the portion of CYP1A1 expressing urothelial cells of smokers and non-smokers. In essence, we show for the first time that human urothelial cells respond to cigarette smoking by induction of CYP1A1. The approach opens new fields of mechanistic and biomarker research with respect to the pathogenetic processes of cancer development in the human bladder.
Collapse
Affiliation(s)
- Angelika Dörrenhaus
- Institute for Occupational Physiology at University Dortmund, Ardeystr 67, 44139 Dortmund, Germany
| | | | | |
Collapse
|
13
|
Heemskerk S, Pickkers P, Bouw MPWJM, Draisma A, van der Hoeven JG, Peters WHM, Smits P, Russel FGM, Masereeuw R. Upregulation of Renal Inducible Nitric Oxide Synthase during Human Endotoxemia and Sepsis Is Associated with Proximal Tubule Injury. Clin J Am Soc Nephrol 2006; 1:853-62. [PMID: 17699297 DOI: 10.2215/cjn.00490206] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The incidence and the mortality of septic acute kidney injury are high, partly because the pathogenesis of sepsis-induced renal dysfunction is not clear. The objective of this study was to investigate the upregulation of renal inducible nitric oxide synthase (iNOS) in human endotoxemia and sepsis and the effect of NO on tubular integrity. Septic patients and endotoxemia that was induced by a bolus injection of 2 ng/kg Escherichia coli LPS in human volunteers were studied. In addition, the effect of co-administration of the selective iNOS inhibitor aminoguanidine was evaluated. The urinary excretion of the cytosolic glutathione-S-transferase-A1 (GSTA1-1) and GSTP1-1, markers for proximal and distal tubule damage, respectively, was determined. In septic patients, an almost 40-fold induction of iNOS mRNA in cells that were isolated from urine was found accompanied by a significant increase in NO metabolites in blood. The mRNA expression of iNOS was induced 34-fold after endotoxin administration. LPS-treated healthy volunteers showed a higher urinary excretion of NO metabolites compared with control subjects. Urinary NO metabolite excretion correlated with urinary GSTA1-1 excretion, indicating proximal tubule damage, whereas no distal tubular damage was observed. Co-administration of aminoguanidine reduced the upregulation of iNOS mRNA, urinary NO metabolite, and GSTA1-1 excretion, indicating that upregulation of iNOS and subsequent NO production may be responsible for renal proximal tubule damage observed.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Greene EL, Farell G, Yu S, Matthews T, Kumar V, Lieske JC. Renal cell adaptation to oxalate. ACTA ACUST UNITED AC 2005; 33:340-8. [PMID: 16284879 DOI: 10.1007/s00240-005-0491-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Renal manifestations of chronic hyperoxaluria include nephrolithiasis and, when extreme, interstitial scarring and progressive loss of function. Exposure of cultured renal cells to oxalate has been reported to cause cell death, as well as proliferation. The current study was performed to assess the time course and cell-type specificity of these responses. Proximal (LLC-PK(1)) and distal [cIMCD and primary human renal (HRC1)] renal epithelial cells, as well as interstitial KNRK cells, were exposed to oxalate (0.5-2.0 mM) for 24-72 h. The generation of reactive oxygen species (ROS) was measured using the fluorescent probe DCF, and cell number was determined with CyQuant reagent. HSP-70 expression was assessed via real time PCR and quantitative Western blot. In response to all oxalate concentrations (0.5-2.0 mM) and lengths of exposure (15 min-2 h), cultured proximal and distal renal epithelial cells and renal fibroblasts generated ROS. After 24 h, cells demonstrated initial cell death and decrease in cell numbers, but by 48-72 h adapted and grew, despite the continued presence of oxalate. This response was associated with increased expression of HSP-70 mRNA and protein. Renal cells in vivo may possess adaptive mechanisms to withstand chronic hyperoxaluria, including increased expression of chaperone molecules such as HSP-70.
Collapse
Affiliation(s)
- Eddie L Greene
- Division of Nephrology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wilmer MJG, de Graaf-Hess A, Blom HJ, Dijkman HBPM, Monnens LA, van den Heuvel LP, Levtchenko EN. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells. Biochem Biophys Res Commun 2005; 337:610-4. [PMID: 16202976 DOI: 10.1016/j.bbrc.2005.09.094] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/09/2005] [Indexed: 11/17/2022]
Abstract
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.
Collapse
Affiliation(s)
- Martijn J G Wilmer
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Mazal PR, Schaufler R, Altenhuber-Müller R, Haitel A, Watschinger B, Kratzik C, Krupitza G, Regele H, Meisl FT, Zechner O, Kerjaschki D, Susani M. Derivation of nephrogenic adenomas from renal tubular cells in kidney-transplant recipients. N Engl J Med 2002; 347:653-9. [PMID: 12200552 DOI: 10.1056/nejmoa013413] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Nephrogenic adenomas are benign, tumor-like lesions within the urothelial mucosa of the urinary tract that are not uncommon in renal-transplant recipients. We investigated the origin of nephrogenic adenomas in renal-transplant recipients. METHODS Tissue sections were analyzed by fluorescence in situ hybridization with the use of probes for the X and Y chromosomes, by immunohistochemical methods with the use of antibodies to renal tubular antigens, and by lectin histochemical methods. Forty-six nephrogenic adenomas from 29 patients were analyzed. RESULTS All nephrogenic adenomas in 14 female recipients of transplants from male donors and 10 male recipients of transplants from female donors showed the same sex-chromosome status as the donor kidney, but not the same sex-chromosome status as the recipient's surrounding bladder tissue. The nephrogenic adenomas from all 6 female recipients of transplants from female donors showed female chromosomes, and those from the 16 male recipients of transplants from male donors showed male chromosomes. The presence of aquaporin 1, PAX2, and lectin-binding capacity for peanut agglutinin, Lotus tetragonolobus agglutinin, and Sophora japonica agglutinin in nephrogenic adenomas indicated an origin from renal tubular cells. CONCLUSIONS Nephrogenic adenomas in renal-transplant recipients are derived from tubular cells of the renal transplants and are not metaplastic proliferations of the recipient's bladder urothelium.
Collapse
Affiliation(s)
- Peter R Mazal
- Department of Clinical Pathology and Center of Excellence in Clinical and Experimental Oncology, University of Vienna General Hospital, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Grupp C, Hemprich U, John H, Braun F, Lorf T, Armstrong VW, Ringe B, Müller GA. Lectin staining for urine cytologic monitoring after kidney transplantation. Transplant Proc 2002; 34:1751-2. [PMID: 12176562 DOI: 10.1016/s0041-1345(02)03053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- C Grupp
- Abteilung Nephrologie and Rheumatologie, Georg-August-Universität Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yi SM, Harson RE, Zabner J, Welsh MJ. Lectin binding and endocytosis at the apical surface of human airway epithelia. Gene Ther 2001; 8:1826-32. [PMID: 11821935 DOI: 10.1038/sj.gt.3301598] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Accepted: 09/17/2001] [Indexed: 11/08/2022]
Abstract
The specificity of lectin binding to distinct saccharides makes them valuable reagents for investigation and identification of cells within complex tissues and potentially for delivery of agents into cells. Therefore we examined lectin binding to airway epithelia. We used an in vitro model of primary cultures of well-differentiated human airway epithelia and applied the lectins to the apical surface of living epithelia. This approach limited binding specifically to the extracellular surface of the apical membrane. Of 32 lectins studied, we found 15 that bound to the apical membrane. The pattern varied from diffuse binding to the surface of nearly all the cells, to binding to a small subset of the cells. Our data combined with earlier studies identify lectins that may be used to detect specific populations of epithelial cells. Because lectins may be used to deliver a variety of agents, including gene transfer vectors, to airway cells, we examined endocytosis of lectins. We found that several lectins bound to the apical surface were actively taken up into the cells. These data may be of value for studies of airway epithelial structure and may facilitate the targeting of the epithelial apical surface.
Collapse
Affiliation(s)
- S M Yi
- Department of Otolaryngology, Head and Neck Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
19
|
Oreopoulos DG, Blake P. Declining utilization of peritoneal dialysis: time to stop imposing our biases on the patients and let them be dialyzed with the modality of their choice. ASAIO J 2001; 47:312-5. [PMID: 11482476 DOI: 10.1097/00002480-200107000-00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|