1
|
Khan F, Khan S, Rana N, Rahim T, Arshad A, Khan I, Ogaly HA, Ahmed DAEM, Dera AA, Zaib S. Mutational analysis of consanguineous families and their targeted therapy against dwarfism. J Biomol Struct Dyn 2024:1-18. [PMID: 38321911 DOI: 10.1080/07391102.2024.2307446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Dwarfism is a medical term used to describe individuals with a height-vertex measurement that falls below two standard deviations (-2SD) or the third percentile for their gender and age. Normal development of growth is a complicated dynamic procedure that depends upon the coordination of different aspects involving diet, genetics, and biological aspects like hormones in equilibrium. Any severe or acute pathologic procedure may disturb the individual's normal rate of growth. In this research, we examined four (A-D) Pakistani consanguineous families that exhibited syndromic dwarfism, which was inherited in an autosomal recessive pattern. The genomic DNA of each family member was extracted by using phenol-chloroform and Kit methods. Whole Exome Sequencing (WES) of affected family members (IV-11, III-5, IV-4 and III-13) from each group was performed at the Department of Medical Genetics, University of Antwerp, Belgium. After filtering the exome data, the mutations in PPM1F, FGFR3, ERCC2, and PCNT genes were determined by Sanger sequencing of each gene by using specific primers. Afterward, FGFR3 was found to be a suitable drug target among all the mutations to treat achondroplasia also known as disproportionate dwarfism. BioSolveIT softwares were used to discover the lead active inhibitory molecule against FGFR3. This research will not only provide short knowledge to the concerned pediatricians, researchers, and family physicians for the preliminary assessment and management of the disorder but also provide a lead inhibitor for the treatment of disproportionate dwarfism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Sarmir Khan
- Center of Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Tariq Rahim
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Abida Arshad
- Department of Zoology Wild Life and Fishries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Physical Activity, Exercise, and Sports in Individuals with Skeletal Dysplasia: What Is Known about Their Benefits? SUSTAINABILITY 2022. [DOI: 10.3390/su14084487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There is a lack of knowledge about the practice of physical activity, exercise, and sports in people with skeletal dysplasia (SD). This study aimed to characterize the physical fitness of people with SD; investigate the benefits of physical activity, exercise, or sports programs for people with SD; identify the adapted physical activities that can be prescribed to individuals with SD; and identify the most common and effective structural characteristics and guidelines for the evaluation of individuals with SD and corresponding activity prescriptions. Electronic searches were carried out in the PubMed, Scopus, SPORTDiscus, Psycinfo, and Web of Science databases in October 2021 and March 2022 and included papers published until 3 March 2022. The search strategy terms used were “dwarfism”, “dwarf”, “skeletal dysplasia”, “achondroplasia”, “pseudoachondroplasia”, “hypochondroplasia”, “campomelic dysplasia”, “hair cartilage hypoplasia”, “x-linked hypophosphatemia”, “metaphyseal chondrodysplasia schmid type”, “multiple epiphyseal dysplasia”, “three M syndrome”, “3-M syndrome”, “hypophosphatasia”, “fibrodysplasia ossificans progressive”, “type II collagen disorders”, “type II collagenopathies”, “type II collagenopathy”, “physical activity”, “exercise”, “sport”, “training”, and “physical fitness”, with the Boolean operators “AND” or “OR”. After reading the full texts of the studies, and according to previously defined eligibility criteria, fifteen studies met the inclusion criteria; however, there was not a single intervention study with physical exercise. Several cross-sectional, review, or qualitative studies presented a set of essential aspects that future intervention studies can consider when evaluating, prescribing, and implementing physical exercise programs, as they allowed the physical characterization of the SD population. This study demonstrated an apparent scarcity in the literature of experimental studies with physical exercise implementation in the SD population.
Collapse
|
3
|
Cross-cultural selection and validation of instruments to assess patient-reported outcomes in children and adolescents with achondroplasia. Qual Life Res 2019; 28:2553-2563. [DOI: 10.1007/s11136-019-02210-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2019] [Indexed: 12/31/2022]
|
4
|
Arditi JD, Thomaidis L, Frysira H, Doulgeraki A, Chrousos GP, Kanaka-Gantenbein C. Long-term follow-up of a child with Klinefelter syndrome and achondroplasia from infancy to 16 years. J Pediatr Endocrinol Metab 2017; 30:797-803. [PMID: 28672740 DOI: 10.1515/jpem-2016-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/12/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Achondroplasia (ACH), an autosomal dominant skeletal dysplasia, occurs in approximately 1:20,000 births. On the other hand, 47,XXY aneuploidy (Klinefelter syndrome [KS]) is the most common sex chromosome disorder, with a prevalence of approximately 1:600 males. To the best of our knowledge, only five cases of patients presenting both ACH and KS have been reported to date in the international literature. However, none of these cases has been longitudinally followed during the entire childhood. CASE PRESENTATION We report a male patient with ACH and KS, diagnosed in early infancy because of his typical phenotype of ACH. The diagnosis was confirmed by molecular analysis revealing a de novo heterozygous 1138 G-to-A mutation of the FGFR3 gene. During his first assessment, a karyotype was performed, which also revealed coexistence of KS. He was followed by our pediatric endocrinology team until the age of 16 years, then he was gradually transferred to adult endocrine care. CONCLUSIONS This is the first reported case with both conditions that was diagnosed in infancy and was longitudinally followed by a pediatric endocrinology team regularly, from infancy to late adolescence. With a typical phenotype of ACH, it is striking and noteworthy that he did not develop the classical endocrine complications of a child with KS, neither did he necessitate testosterone supplementation during his pubertal development, due to his normal virilization and testosterone levels.
Collapse
|
5
|
Ajmal M, Mir A, Shoaib M, Malik SA, Nasir M. Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family. Diagn Pathol 2017; 12:47. [PMID: 28679403 PMCID: PMC5499044 DOI: 10.1186/s13000-017-0642-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 06/29/2017] [Indexed: 12/03/2022] Open
Abstract
Background The dimerization efficiency of FGFR3 transmembrane domain plays a critical role in the formation of a normal skeleton through the negative regulation of bone development. Recently, gain-of-function mutations in the transmembrane domain of FGFR3 has been described associated with an aberrant negative regulation, leading to the development of achondroplasia-group disorders, including achondroplasia (ACH), hypochondroplasia (HCH) and thanatophoric dysplasia (TD). Here, we describe a non-consanguineous Pakistani family with achondroplasia to explain hereditary basis of the disease. Methods PCR-based linkage analysis using microsatellite markers was employed to localize the disease gene. Gene specific intronic primers were used to amplify the genomic DNA from all affected as well as phenotypically healthy individuals. Amplified PCR products were then subjected to Sanger sequencing and RFLP analysis to identify a potentially pathogenic mutation. The impact of identified mutation on FGFR3 protein’s structure and stability was highlighted through different bioinformatics tools. Results Genetic screening of the family revealed a previously reported heterozygous c.1138 G > A (p.G380R) mutation in the coding exon 8 of FGFR3 gene. Identified genetic variation was confirmed in all affected individuals while healthy individuals and controls were found genotypically normal. The results were further validated by RFLP analysis as c.1138 G > A substitution generates a unique recognition site for SfcI endonuclease. Following SfcI digestion, the electrophoretic pattern of three bands/DNA fragments for each patient is indicative of heterozygous status of the disease allele. In silico studies of the mutant FGFR3 protein predicted to adversely affect the stability of FGFR3 protein. Conclusions Mutation in the transmembrane domain may adversely affect the dimerization efficiency and overall stability of the FGFR3, leading to a constitutively active protein. As a result, an uncontrolled intracellular signaling or negative bone growth regulation leads to achondroplasia. Our findings support the fact that p.G380R is a common mutation among diverse population of the world and like other countries, can be used as a molecular diagnosis marker for achondroplasia in Pakistan. Electronic supplementary material The online version of this article (doi:10.1186/s13000-017-0642-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Asif Mir
- Department of Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Shoaib
- KRL General Hospital, Orthopedic Department, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan
| | - Salman Akbar Malik
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, 44000, Pakistan
| | - Muhammad Nasir
- Institute of Biomedical and Genetic Engineering, 24-Mauve area, G-9/1, Islamabad, 44000, Pakistan.
| |
Collapse
|
6
|
Jelin AC, O'Hare E, Blakemore K, Jelin EB, Valle D, Hoover-Fong J. Skeletal Dysplasias: Growing Therapy for Growing Bones. Front Pharmacol 2017; 8:79. [PMID: 28321190 PMCID: PMC5337493 DOI: 10.3389/fphar.2017.00079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Skeletal dysplasias represent a large and diverse group of rare conditions affecting collagen and bone. They can be clinically classified based on radiographic and physical features, and many can be further defined at a molecular level (Bonafe et al., 2015). Early diagnosis is critical to proper medical management including pharmacologic treatment when available. Patients with severe skeletal dysplasias often have small chests with respiratory insufficiency or airway obstruction and require immediate intubation after birth. Thereafter a variety of orthopedic, neurosurgical, pulmonary, otolaryngology interventions may be needed. In terms of definitive treatment for skeletal dysplasias, there are few pharmacotherapeutic options available for the majority of these conditions. We sought to describe therapies that are currently available or under investigation for skeletal dysplasias.
Collapse
Affiliation(s)
- Angie C. Jelin
- Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | | | - Karin Blakemore
- Gynecology and Obstetrics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Eric B. Jelin
- Pediatric Surgery, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - David Valle
- Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Julie Hoover-Fong
- Genetics, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
7
|
Wagner MW, Poretti A, Benson JE, Huisman TAGM. Neuroimaging Findings in Pediatric Genetic Skeletal Disorders: A Review. J Neuroimaging 2016; 27:162-209. [PMID: 28000960 DOI: 10.1111/jon.12413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic skeletal disorders (GSDs) are a heterogeneous group characterized by an intrinsic abnormality in growth and (re-)modeling of cartilage and bone. A large subgroup of GSDs has additional involvement of other structures/organs beside the skeleton, such as the central nervous system (CNS). CNS abnormalities have an important role in long-term prognosis of children with GSDs and should consequently not be missed. Sensitive and specific identification of CNS lesions while evaluating a child with a GSD requires a detailed knowledge of the possible associated CNS abnormalities. Here, we provide a pattern-recognition approach for neuroimaging findings in GSDs guided by the obvious skeletal manifestations of GSD. In particular, we summarize which CNS findings should be ruled out with each GSD. The diseases (n = 180) are classified based on the skeletal involvement (1. abnormal metaphysis or epiphysis, 2. abnormal size/number of bones, 3. abnormal shape of bones and joints, and 4. abnormal dynamic or structural changes). For each disease, skeletal involvement was defined in accordance with Online Mendelian Inheritance in Man. Morphological CNS involvement has been described based on extensive literature search. Selected examples will be shown based on prevalence of the diseases and significance of the CNS involvement. CNS involvement is common in GSDs. A wide spectrum of morphological abnormalities is associated with GSDs. Early diagnosis of CNS involvement is important in the management of children with GSDs. This pattern-recognition approach aims to assist and guide physicians in the diagnostic work-up of CNS involvement in children with GSDs and their management.
Collapse
Affiliation(s)
- Matthias W Wagner
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Poretti
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jane E Benson
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thierry A G M Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Abstract
BACKGROUND Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. MATERIALS AND METHODS Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. RESULTS Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3(rd) percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. CONCLUSION Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration.
Collapse
Affiliation(s)
- Sanjay K Chilbule
- Pediatric Orthopedics Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vivek Dutt
- Pediatric Orthopedics Unit, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vrisha Madhuri
- Pediatric Orthopedics Unit, Christian Medical College, Vellore, Tamil Nadu, India,Address for correspondence: Dr. Vrisha Madhuri, Pediatric Orthopedics Unit, Christian Medical College, Vellore - 632 004, Tamil Nadu, India. E-mail:
| |
Collapse
|
9
|
Abstract
Skeletal dysplasias result from disruptions in normal skeletal growth and development and are a major contributor to severe short stature. They occur in approximately 1/5,000 births, and some are lethal. Since the most recent publication of the Nosology and Classification of Genetic Skeletal Disorders, genetic causes of 56 skeletal disorders have been uncovered. This remarkable rate of discovery is largely due to the expanded use of high-throughput genomic technologies. In this review, we discuss these recent discoveries and our understanding of the molecular mechanisms behind these skeletal dysplasia phenotypes. We also cover potential therapies, unusual genetic mechanisms, and novel skeletal syndromes both with and without known genetic causes. The acceleration of skeletal dysplasia genetics is truly spectacular, and these advances hold great promise for diagnostics, risk prediction, and therapeutic design.
Collapse
|
10
|
Toru HS, Nur BG, Sanhal CY, Mihci E, Mendilcioğlu İ, Yilmaz E, Yilmaz GT, Ozbudak IH, Karaali K, Alper OM, Karaveli FŞ. Perinatal Diagnostic Approach to Fetal Skeletal Dysplasias: Six Years Experience of a Tertiary Center. Fetal Pediatr Pathol 2015; 34:287-306. [PMID: 26376227 DOI: 10.3109/15513815.2015.1068414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skeletal dysplasias (SDs) constitute a group of heterogeneous disorders affecting growth morphology of the chondro-osseous tissues. Prenatal diagnosis of SD is a considerable clinical challenge due to phenotypic variability. We performed a retrospective analysis of the fetal autopsies series conducted between January 2006 and December 2012 at our center. SD was detected in 54 (10%) out of 542 fetal autopsy cases which included; 11.1% thanatophoric dysplasia (n = 6), 7.4% achondroplasia (n = 4), 3.7% osteogenesis imperfect (n = 2), 1.9% Jarcho-Levin Syndrome (n = 1), 1.9% arthrogryposis (n = 1), 1.9% Dyggve-Melchior-Clausen syndrome (n = 1), 72.1% of dysostosis cases (n = 39). All SD cases were diagnosed by ultrasonography. In 20 of the cases, amniocentesis was performed, 4 cases underwent molecular genetic analyses. Antenatal identification of dysplasia is important in the management of pregnancy and in genetic counseling. Our data analysis showed that SD is usually detected clinically after the 20th gestational week. Genetic analyses for SD may provide early diagnosis and management.
Collapse
Affiliation(s)
- Havva Serap Toru
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Banu Guzel Nur
- b School of Medicine, Department of Pediatric Genetics , Akdeniz University , Antalya , Turkey
| | - Cem Yasar Sanhal
- c School of Medicine, Department of Gynecology and Obstetrics , Akdeniz University , Antalya , Turkey
| | - Ercan Mihci
- b School of Medicine, Department of Pediatric Genetics , Akdeniz University , Antalya , Turkey
| | - İnanç Mendilcioğlu
- c School of Medicine, Department of Gynecology and Obstetrics , Akdeniz University , Antalya , Turkey
| | - Elanur Yilmaz
- d School of Medicine, Department of Medical Biology and Genetics , Akdeniz University , Antalya , Turkey
| | - Gulden Tasova Yilmaz
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Irem Hicran Ozbudak
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| | - Kamil Karaali
- e School of Medicine, Department of Radiology , Akdeniz University , Antalya , Turkey
| | - Ozgul M Alper
- d School of Medicine, Department of Medical Biology and Genetics , Akdeniz University , Antalya , Turkey
| | - Fatma Şeyda Karaveli
- a School of Medicine, Department of Pathology , Akdeniz University , Antalya , Turkey
| |
Collapse
|
11
|
Al-Jughiman M, Yanagawa B, Rondi K, Dalamagas C, Peterson MD, Bonneau D. Acute Type A Dissection Repair in an Achondroplastic Dwarf: Anesthetic, Perfusion, and Surgical Concerns. AORTA : OFFICIAL JOURNAL OF THE AORTIC INSTITUTE AT YALE-NEW HAVEN HOSPITAL 2014; 2:143-6. [PMID: 26798732 DOI: 10.12945/j.aorta.2014.14-020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
In this report we present a 43-year-old male with achondroplastic dwarfism who presented with acute Type A aortic dissection with aortic insufficiency. The patient underwent successful Bentall and hemiarch repair. Anesthetic, perfusion-related, and surgical planning and execution are presented.
Collapse
Affiliation(s)
| | - Bobby Yanagawa
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Kevin Rondi
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Constantine Dalamagas
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Mark D Peterson
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| | - Daniel Bonneau
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
12
|
Ireland PJ, Pacey V, Zankl A, Edwards P, Johnston LM, Savarirayan R. Optimal management of complications associated with achondroplasia. APPLICATION OF CLINICAL GENETICS 2014; 7:117-25. [PMID: 25053890 PMCID: PMC4104450 DOI: 10.2147/tacg.s51485] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Achondroplasia is the most common form of skeletal dysplasia, resulting in disproportionate short stature, and affects over 250,000 people worldwide. Individuals with achondroplasia demonstrate a number of well-recognized anatomical features that impact on growth and development, with a complex array of medical issues that are best managed through a multidisciplinary team approach. The complexity of this presentation, whereby individual impairments may impact upon multiple activity and participation areas, requires consideration and discussion under a broad framework to gain a more thorough understanding of the experience of this condition for individuals with achondroplasia. This paper examines the general literature and research evidence on the medical and health aspects of individuals with achondroplasia and presents a pictorial model of achondroplasia based on The International Classification of Functioning, Disability, and Health (ICF). An expanded model of the ICF will be used to review and present the current literature pertaining to the musculoskeletal, neurological, cardiorespiratory, and ear, nose, and throat impairments and complications across the lifespan, with discussion on the impact of these impairments upon activity and participation performance. Further research is required to fully identify factors influencing participation and to help develop strategies to address these factors.
Collapse
Affiliation(s)
- Penny J Ireland
- Queensland Paediatric Rehabilitation Service, Royal Children's Hospital, Herston, Brisbane, Queensland, Australia
| | - Verity Pacey
- Physiotherapy Department, The Children's Hospital at Westmead, Sydney, New South Wales, Australia ; Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Andreas Zankl
- Genetic Medicine, Children's Hospital, Westmead, Sydney, New South Wales, Australia
| | - Priya Edwards
- Queensland Paediatric Rehabilitation Service, Royal Children's Hospital, Herston, Brisbane, Queensland, Australia
| | - Leanne M Johnston
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Service, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Abstract
PURPOSE To summarize and discuss current evidence and understanding of clinical pediatric exercise physiology focusing on the work the research group at Utrecht and others have performed in the last decade in a variety of chronic childhood conditions as a continuation of the legacy of Dr Bar-Or. KEY POINTS The report discusses current research findings on the cardiopulmonary exercise performance of children (and adolescents) with juvenile idiopathic arthritis, osteogenesis imperfecta, achondroplasia, hemophilia, cerebral palsy, spina bifida, cystic fibrosis, and childhood cancer. Exercise recommendations and contraindications are provided for each condition. Implications for clinical practice and future research in this area are discussed for each of the chronic conditions presented. CLINICAL IMPLICATIONS The authors provide a basic framework for developing an individual and/or disease-specific training program, introduce the physical activity pyramid, and recommend a core set of clinical measures to be used in clinical research.
Collapse
|
14
|
Thompson S, Shakespeare T, Wright MJ. Medical and social aspects of the life course for adults with a skeletal dysplasia: A review of current knowledge. Disabil Rehabil 2009; 30:1-12. [PMID: 17852222 DOI: 10.1080/09638280701192857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The paper examines the general literature and available research evidence on medical, health and social aspects of life for adults with skeletal dysplasia conditions causing profound short stature. METHOD The paper reports on a literature review using available medical, psychological and social sources. RESULTS There is a dearth of methodologically sound research evidence in this field, and this is particularly marked in areas such as transition to adulthood, ageing and medical, surgical and health experiences. CONCLUSIONS There are serious gaps in the available literature and research evidence is sparse and often based on biased samples of limited numbers. This means that it is difficult to get information beyond the anecdotal in assessing the health and social needs of this group of people, and in particular to define needs that are currently unmet. It also limits the scope of advice and information available to health professionals and others in the field who offer support to adults with the conditions and parents of newly-diagnosed babies and young children.
Collapse
Affiliation(s)
- Sue Thompson
- Policy, Ethics and Life Sciences, University of Newcastle, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
15
|
Dighe M, Fligner C, Cheng E, Warren B, Dubinsky T. Fetal skeletal dysplasia: an approach to diagnosis with illustrative cases. Radiographics 2008; 28:1061-77. [PMID: 18635629 DOI: 10.1148/rg.284075122] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Skeletal dysplasias are a heterogeneous group of conditions associated with various abnormalities of the skeleton. These conditions are caused by widespread disturbance of bone growth, beginning during the early stages of fetal development and evolving throughout life. Despite recent advances in imaging, fetal skeletal dysplasias are difficult to diagnose in utero due to a number of factors, including the large number of skeletal dysplasias and their phenotypic variability with overlapping features, lack of precise molecular diagnosis for many disorders, lack of a systematic approach, the inability of ultrasonography (US) to provide an integrated view, and variability in the time at which findings manifest in some skeletal dysplasias. US of suspected skeletal dysplasia involves systematic imaging of the long bones, thorax, hands and feet, skull, spine, and pelvis. Assessment of the fetus with three-dimensional US has been shown to improve diagnostic accuracy, since additional phenotypic features not detectable at two-dimensional US may be identified. The radiologist plays a major role in making an accurate diagnosis; however, representatives of other disciplines, including clinicians, molecular biologists, and pathologists, can also provide important diagnostic information.
Collapse
Affiliation(s)
- Manjiri Dighe
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific St, BB308, Box 357115, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
16
|
Cardiopulmonary exercise capacity, muscle strength, and physical activity in children and adolescents with achondroplasia. J Pediatr 2007; 150:26-30. [PMID: 17188608 DOI: 10.1016/j.jpeds.2006.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 08/23/2006] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To study in children with achondroplasia the response to exercise and muscle strength compared with healthy peers and to describe the relation between exercise capacity, anthropometric factors, and physical activity. STUDY DESIGN Patients (7 boys and 10 girls; mean age, 11.8 +/- 3.3 years) with achondroplasia performed a maximal treadmill exercise test. Anthropometric variables and muscle strength were measured and compared with the general population. The level of everyday physical activity was measured by using a diary. Functional ability was measured by using the Activity Scale for Kids. RESULTS The exercise capacity of the children with achondroplasia was significantly reduced compared with reference values. All anthropometrical measurements differed significantly from reference values. There was a decrease in muscle strength in almost all muscle groups. We found a reduced physical activity level and impairments in functional ability. CONCLUSIONS Cardiopulmonary exercise capacity and muscle strength in children with achondroplasia was reduced compared with reference values. Children with achondroplasia have a unique response to exercise. Clinicians should take these characteristic differences into account when the exercise capacity of subjects with achondroplasia is being tested.
Collapse
|
17
|
Gonçalves LF, Espinoza J, Mazor M, Romero R. Newer imaging modalities in the prenatal diagnosis of skeletal dysplasias. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2004; 24:115-120. [PMID: 15287046 DOI: 10.1002/uog.1712] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- L F Gonçalves
- Department of Obstetrics Gynecology, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|