1
|
Xie R, Sher KHJ, Tang SYC, Yam IYL, Lee CH, Wu Q, Yap DYH. Dysregulation of neutrophil extracellular traps (NETs)-related genes in the pathogenesis of diabetic kidney disease - Results from bioinformatics analysis and translational studies. Clin Immunol 2024; 268:110379. [PMID: 39396625 DOI: 10.1016/j.clim.2024.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The role of Neutrophil extracellular traps (NETs) in the immunopathogenesis of Diabetic Kidney Disease (DKD) remains elusive. We used a machine learning approach to identify differentially expressed genes (DEGs) associated with NETs in human DKD kidney biopsy datasets and validated the results using single-nucleus RNA sequencing datasets. The expressions of these candidate genes and related cytokines were verified in blood obtained from DKD patients. Three NETs-associated genes (ITGAM, ITGB2 and TLR7) were identified, which all showed significant upregulation in both glomerular and tubulointerstitial compartments in human DKD kidneys. DKD patients showed significantly higher number of activated neutrophils with increased ITGAM and ITGB2 expression, higher serum IL-6 but lower IL-10, compared to healthy controls (p all <0.01). This study suggests that dysregulation of NETs-associated genes ITGAM and ITGB2 are related to the pathogenesis of DKD, and may serve as novel diagnostic markers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Ka Ho Jason Sher
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Sin Yu Cindy Tang
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - Irene Ya Lin Yam
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China
| | - C H Lee
- Division of Endocrinology & Metabolism, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen 518028, HKSAR, China
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, China
| | - Desmond Yat Hin Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong 999077, HKSAR, China.
| |
Collapse
|
2
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Hong J, Fu T, Liu W, Du Y, Bu J, Wei G, Yu M, Lin Y, Min C, Lin D. Specific Alternation of Gut Microbiota and the Role of Ruminococcus gnavus in the Development of Diabetic Nephropathy. J Microbiol Biotechnol 2024; 34:547-561. [PMID: 38346799 PMCID: PMC11016775 DOI: 10.4014/jmb.2310.10028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 04/17/2024]
Abstract
In this study, we aim to investigate the precise alterations in the gut microbiota during the onset and advancement of diabetic nephropathy (DN) and examine the impact of Ruminococcus gnavus (R. gnavus) on DN. Eight-week-old male KK-Ay mice were administered antibiotic cocktails for a duration of two weeks, followed by oral administration of R. gnavus for an additional eight weeks. Our study revealed significant changes in the gut microbiota during both the initiation and progression of DN. Specifically, we observed a notable increase in the abundance of Clostridia at the class level, higher levels of Lachnospirales and Oscillospirales at the order level, and a marked decrease in Clostridia_UCG-014 in DN group. Additionally, there was a significant increase in the abundance of Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae at the family level. Moreover, oral administration of R. gnavus effectively aggravated kidney pathology in DN mice, accompanied by elevated levels of urea nitrogen (UN), creatinine (Cr), and urine protein. Furthermore, R. gnavus administration resulted in down-regulation of tight junction proteins such as Claudin-1, Occludin, and ZO-1, as well as increased levels of uremic toxins in urine and serum samples. Additionally, our study demonstrated that orally administered R. gnavus up-regulated the expression of inflammatory factors, including nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) and Interleukin (IL)-6. These changes indicated the involvement of the gut-kidney axis in DN, and R. gnavus may worsen diabetic nephropathy by affecting uremic toxin levels and promoting inflammation in DN.
Collapse
Affiliation(s)
- Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Tingting Fu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Weizhen Liu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yu Du
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Junmin Bu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Guojian Wei
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Miao Yu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Yanshan Lin
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Cunyun Min
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P.R. China
- Guangdong Provincial Institute of Geriatric, Guangzhou, 510080, P.R. China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| |
Collapse
|
4
|
Kencana SMS, Arfian N, Yuniartha R, Saputri RLAANW, Munawaroh F, Sari DCR. Chlorogenic Acid Inhibits Progressive Pulmonary Fibrosis in a Diabetic Rat Model. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:110-120. [PMID: 38356488 PMCID: PMC10862105 DOI: 10.30476/ijms.2023.96535.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 03/04/2023] [Indexed: 02/16/2024]
Abstract
Background Chlorogenic acid (CGA) is known to have antifibrotic and hypoglycemic effects and may play a role in preventing diabetes-induced pulmonary fibrosis. This study aimed to determine the effect and optimum dose of CGA on diabetes-induced pulmonary fibrosis. Methods Thirty Wistar rats (two-month-old, 150-200 grams) were randomly divided into six groups, namely control, six weeks diabetes mellitus (DM1), eight weeks DM (DM2), and three DM2 groups (CGA1, CGA2, and CGA3) who received CGA doses of 12.5, 25, and 50 mg/Kg BW, respectively. After six weeks, CGA was administered intraperitoneally for 14 consecutive days. Lung tissues were taken for TGF-β1, CTGF, SMAD7, Collagen-1, and α-SMA mRNA expression analysis and paraffin embedding. Data were analyzed using one-way ANOVA and the Kruskal-Wallis test. P<0.05 was considered statistically significant. Results TGF-β1 expression in the CGA1 group (1.01±0.10) was lower than the DM1 (1.33±0.25, P=0.05) and DM2 (1.33±0.20, P=0.021) groups. α-SMA expression in the CGA1 group (median 0.60, IQR: 0.34-0.64) was lower than the DM1 (median 0.44, IQR: 0.42-0.80) and DM2 (median 0.76, IQR: 0.66-1.10) groups. Collagen-1 expression in the CGA1 group (0.75±0.13) was lower than the DM1 (P=0.24) and DM2 (P=0.26) groups, but not statistically significant. CTGF expression in CGA groups was lower than the DM groups (P=0.088), but not statistically significant. There was an increase in SMAD7 expression in CGA groups (P=0.286). Histological analysis showed fibrosis improvement in the CGA1 group compared to the DM groups. Conclusion CGA (12.5 mg/Kg BW) inhibited the expression of profibrotic factors and increased antifibrotic factors in DM-induced rats.
Collapse
Affiliation(s)
- Sagita Mega Sekar Kencana
- Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Master Program in Biomedical Sciences, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratih Yuniartha
- Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ramadhea Laila Afifa An-Nur Willya Saputri
- Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Master Program in Biomedical Sciences, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fauziyatul Munawaroh
- Master Program in Biomedical Sciences, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, IPB University, Bogor, West Java, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, School of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Xiao M, Tang D, Luan S, Hu B, Gong W, Pommer W, Dai Y, Yin L. Dysregulated coagulation system links to inflammation in diabetic kidney disease. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1270028. [PMID: 38143793 PMCID: PMC10748384 DOI: 10.3389/fcdhc.2023.1270028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Diabetic kidney disease (DKD) is a significant contributor to end-stage renal disease worldwide. Despite extensive research, the exact mechanisms responsible for its development remain incompletely understood. Notably, patients with diabetes and impaired kidney function exhibit a hypercoagulable state characterized by elevated levels of coagulation molecules in their plasma. Recent studies propose that coagulation molecules such as thrombin, fibrinogen, and platelets are interconnected with the complement system, giving rise to an inflammatory response that potentially accelerates the progression of DKD. Remarkably, investigations have shown that inhibiting the coagulation system may protect the kidneys in various animal models and clinical trials, suggesting that these systems could serve as promising therapeutic targets for DKD. This review aims to shed light on the underlying connections between coagulation and complement systems and their involvement in the advancement of DKD.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Donge Tang
- Shenzhen People’s Hospital/The Second Clinical School of Jinan University, Shenzhen, Guangdong, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Bo Hu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wenyu Gong
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wolfgang Pommer
- KfH Kuratoriumfuer Dialyse und Nierentransplantatione.V., Bildungszentrum, Neu-Isenburg, Germany
| | - Yong Dai
- The First Affiliated Hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
8
|
Wang X, Song R, Li Z. Salviolone protects against high glucose-induced proliferation, oxidative stress, inflammation, and fibrosis of human renal mesangial cells by upregulating membrane metalloendopeptidase expression. Chem Biol Drug Des 2023; 101:819-828. [PMID: 36404132 DOI: 10.1111/cbdd.14183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
As one of complications of diabetes mellitus, diabetic nephropathy is related to renal dysfunction. Membrane metalloendopeptidase (MME) is associated with the pathogenesis of diabetic nephropathy and exerts a protective function in high glucose (HG)-treated podocytes. Salviolone, one of important bioactive components from Salvia miltiorrhiza, possesses an anti-inflammatory activity. However, the roles of salviolone in renal mesangial cell dysfunction under HG condition remain unknown. The targets of salviolone in diabetic nephropathy were predicted by bioinformatics analysis. Relative mRNA level of MME was detected by qPCR in HG-treated human renal mesangial cells (HRMCs). Cell viability was analyzed using CCK-8 assay. Cell proliferation was investigated by EdU staining. Oxidative stress was evaluated by detection of ROS generation and levels of oxidative stress-related biomarkers. The inflammatory cytokines and fibrosis-related biomarkers were examined by ELISA. Our results showed that MME expression was decreased in diabetic nephropathy and HG-treated HRMCs. Salviolone increased MME level in HG-treated HRMCs. Salviolone mitigated HG-induced HRMC proliferation by increasing MME expression. Salviolone attenuated HG-induced ROS generation, MDA level increase, and SOD activity decrease through upregulating MME expression. Moreover, salviolone suppressed HG-induced increase of levels of TNF-α, IL-1β, IL-6, fibronectin, and collagen IV through upregulating MME expression. In conclusion, salviolone attenuates proliferation, oxidative stress, inflammation, and fibrosis in HG-treated HRMCs through upregulating MME expression.
Collapse
Affiliation(s)
- Xichao Wang
- Department of Nephrology, Tianjin First Center Hospital, Tianjin, China
| | - Ruili Song
- Teaching & Research Section of TCM & Pharmacy, Zheng Zhou Railway Vocational & Technical College, Zhengzhou, China
| | - Zhuo Li
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Yuan Y, Liu Y, Sun M, Ye H, Feng Y, Liu Z, Pan L, Weng H. Aggravated renal fibrosis is positively associated with the activation of HMGB1-TLR2/4 signaling in STZ-induced diabetic mice. Open Life Sci 2022; 17:1451-1461. [PMID: 36448056 PMCID: PMC9658007 DOI: 10.1515/biol-2022-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 08/27/2023] Open
Abstract
Diabetic kidney dysfunction is closely associated with renal fibrosis. Although the suppression of fibrosis is crucial to attenuate kidney damage, the underlying mechanisms remain poorly understood. In this study, renal injury in diabetic mice was induced by the intraperitoneal injection of streptozotocin (100 or 150 mg/kg) for 2 consecutive days. In the model mice, remarkable renal injury was observed, manifested by albuminuria, swelling of kidneys, and histopathological characteristics. The renal fibrosis was obviously displayed with high-intensity staining of fibrin, type IV collagen (Col IV), and fibronectin. The levels of Col IV and transforming growth factor-β1 were significantly increased in diabetic mice kidneys. The aggravated fibrotic process was associated with the overexpression of HMGB1, TLR2/4, and p-NF-κB. Furthermore, a high expression of F4/80 and CD14 indicated that macrophage infiltration was involved in perpetuating inflammation and subsequent fibrosis in the kidneys of diabetic mice. The results demonstrate that the severity of renal fibrosis is positively associated with the activation of HMGB1/TLR2/4 signaling in diabetes.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Yuanxia Liu
- Department of Pathology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing’an District, Shanghai, 200071, China
| | - Mengyao Sun
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Huijing Ye
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Yuchen Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Zhenzhen Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Lingyu Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| | - Hongbo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong District, Shanghai, 201203, China
| |
Collapse
|
10
|
Koshino A, Schechter M, Sen T, Vart P, Neuen BL, Neal B, Arnott C, Perkovic V, Ridker PM, Tuttle KR, Hansen MK, Heerspink HJL. Interleukin-6 and Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: New Insights From CANVAS. Diabetes Care 2022; 45:2644-2652. [PMID: 36134918 PMCID: PMC9862371 DOI: 10.2337/dc22-0866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The inflammatory cytokine interleukin-6 (IL-6) is associated with cardiovascular (CV) and kidney outcomes in various populations. However, data in patients with type 2 diabetes are limited. We assessed the association of IL-6 with CV and kidney outcomes in the Canagliflozin Cardiovascular Assessment Study (CANVAS) and determined the effect of canagliflozin on IL-6. RESEARCH DESIGN AND METHODS Patients with type 2 diabetes at high CV risk were randomly assigned to canagliflozin or placebo. Plasma IL-6 was measured at baseline and years 1, 3, and 6. The composite CV outcome was nonfatal myocardial infarction, nonfatal stroke, or CV death; the composite kidney outcome was sustained ≥40% estimated glomerular filtration rate decline, end-stage kidney disease, or kidney-related death. Multivariable-adjusted Cox proportional hazards regression was used to estimate the associations between IL-6 and the outcomes. The effect of canagliflozin on IL-6 over time was assessed with a repeated-measures mixed-effects model. RESULTS The geometric mean IL-6 at baseline, available in 3,503 (80.2%) participants, was 1.7 pg/mL. Each doubling of baseline IL-6 was associated with 14% (95% CI 4, 24) and 21% (95% CI 1, 45) increased risk of CV and kidney outcomes, respectively. Over 6 years, IL-6 increased by 5.8% (95% CI 3.4, 8.3) in the placebo group. Canagliflozin modestly attenuated the IL-6 increase (absolute percentage difference vs. placebo 4.4% [95% CI 1.3, 9.9; P = 0.01]). At year 1, each 25% lower level of IL-6 compared with baseline was associated with 7% (95% CI 1, 22) and 14% (95% CI 5, 22) lower risks for the CV and kidney outcome, respectively. CONCLUSIONS In patients with type 2 diabetes at high CV risk, baseline IL-6 and its 1-year change were associated with CV and kidney outcomes. The effect of IL-6-lowering therapy on CV, kidney, and safety outcomes remains to be tested.
Collapse
Affiliation(s)
- Akihiko Koshino
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Ishikawa, Japan
| | - Meir Schechter
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Taha Sen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Bruce Neal
- The George Institute for Global Health, Sydney, Australia
| | - Clare Arnott
- The George Institute for Global Health, Sydney, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, and Nephrology Division, University of Washington, Spokane, WA
| | | | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The George Institute for Global Health, Sydney, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Umeukeje EM, Washington JT, Nicholas SB. Etiopathogenesis of kidney disease in minority populations and an updated special focus on treatment in diabetes and hypertension. J Natl Med Assoc 2022; 114:S3-S9. [PMID: 35589418 DOI: 10.1016/j.jnma.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes and hypertension are the most common causes of chronic kidney disease (CKD) in the general population as well as in the Black and African American population, who also suffer from high rates of CKD and CKD progression compared to the White population. Progression of CKD can lead to kidney failure, and patients with progressive kidney disease have a high risk of premature mortality, particularly from cardiovascular disease. Screening for early detection of CKD is important as it facilitates the initiation of medications that have been shown to delay the progression of diabetes-related as well as non-diabetes-related CKD, and reduce rates of death from both kidney and cardiovascular disease. The potential adverse effects from use of some of the newer reno- and cardio-protective glucose-lowering medications, such as the sodium glucose cotransporter-2 inhibitors, may be effectively avoided with detailed patient education and monitoring by the healthcare provider. It is important to note that lifestyle modification including regular exercise, diet, and smoking cessation are first-line in the management of diabetes and hypertension. When CKD occurs, co-management by providers using a comprehensive strategy may avert early complications and facilitate appropriate early referral for nephrology specialty care.
Collapse
Affiliation(s)
- Ebele M Umeukeje
- Division of Nephrology, Vanderbilt University Medical Center, Vanderbilt Center for Kidney Disease, United States
| | | | - Susanne B Nicholas
- David Geffen School of Medicine at University of California, 7-155 Factor Bldg. 10833 LeConte Blvd, Los Angeles, CA 90095, United States.
| |
Collapse
|
12
|
Cheng L, Qiu X, He L, Liu L. MicroRNA-122-5p ameliorates tubular injury in diabetic nephropathy via FIH-1/HIF-1α pathway. Ren Fail 2022; 44:293-303. [PMID: 35166173 PMCID: PMC8856027 DOI: 10.1080/0886022x.2022.2039194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diabetes kidney disease (DKD) affects approximately one-third of diabetes patients, however, the specific molecular mechanism of DKD remains unclear, and there is still a lack of effective therapies. Here, we demonstrated a significant increase of microRNA-122-5p (miR-122-5p) in renal tubular cells in STZ induced diabetic nephropathy (DN) mice. Moreover, inhibition of miR-122-5p led to increased cell death and serve tubular injury and promoted DN progression following STZ treatment in mice, whereas supplementation of miR-122-5p mimic had kidney protective effects in this model. In addition, miR-122-5p suppressed the expression of factor inhibiting hypoxia-inducible factor-1 (FIH-1) in vitro models of DN. microRNA target reporter assay further verified FIH-1 as a direct target of miR-122-5p. Generally, FIH-1 inhibits the activity of HIF-1α. Our in vitro study further indicated that overexpression of HIF-1α by transfection of HIF-1α plasmid reduced tubular cell death, suggesting a protective role of HIF-1α in DN. Collectively, these findings may unveil a novel miR-122-5p/FIH-1/HIF-1α pathway which can attenuate the DN progression.
Collapse
Affiliation(s)
- Li Cheng
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Xinying Qiu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Li Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|