1
|
Jdiaa SS, Mustafa RA, Yu ASL. Treatment of Autosomal-Dominant Polycystic Kidney Disease. Am J Kidney Dis 2024:S0272-6386(24)01032-1. [PMID: 39424253 DOI: 10.1053/j.ajkd.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 10/21/2024]
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is a chronic systemic disease that affects all races and ethnicities. It is the fourth leading cause of end-stage kidney disease, and it has a heterogenous phenotype ranging from mild to severe disease. Identifying patients with ADPKD who are at risk of rapid progression can guide therapeutic decisions. Several tools to predict disease severity are available, based on features such as total kidney volume assessed with magnetic resonance imaging, PKD genotype, estimated glomerular filtration rate (eGFR) trajectory, and the occurrence of hypertension and urologic complications early in life. During the past decade, more evidence has emerged regarding optimal ADPKD management. The HALT PKD (Halt Progression of Polycystic Kidney Disease) trial supported intensive blood pressure control in patients younger than 50 years of age with preserved kidney function. A healthy lifestyle, including maintaining a healthy weight, salt restriction, and smoking cessation, is likely to be beneficial. Tolvaptan, the only disease-modifying agent for patients with ADPKD at risk of rapid progression, is gaining wider use, but is still limited by its side effects. This is an exciting time for the ADPKD community because multiple promising interventions are in the pipeline and being investigated.
Collapse
Affiliation(s)
- Sara S Jdiaa
- Division of Nephrology, University of Toronto, Toronto, ON, Canada
| | - Reem A Mustafa
- Division of Nephrology and Hypertension and Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S L Yu
- Division of Nephrology and Hypertension and Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
2
|
Zhu C, He X, Blumenfeld JD, Hu Z, Dev H, Sattar U, Bazojoo V, Sharbatdaran A, Aspal M, Romano D, Teichman K, Ng He HY, Wang Y, Soto Figueroa A, Weiss E, Prince AG, Chevalier JM, Shimonov D, Moghadam MC, Sabuncu M, Prince MR. A Primer for Utilizing Deep Learning and Abdominal MRI Imaging Features to Monitor Autosomal Dominant Polycystic Kidney Disease Progression. Biomedicines 2024; 12:1133. [PMID: 38791095 PMCID: PMC11118119 DOI: 10.3390/biomedicines12051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Abdominal imaging of autosomal dominant polycystic kidney disease (ADPKD) has historically focused on detecting complications such as cyst rupture, cyst infection, obstructing renal calculi, and pyelonephritis; discriminating complex cysts from renal cell carcinoma; and identifying sources of abdominal pain. Many imaging features of ADPKD are incompletely evaluated or not deemed to be clinically significant, and because of this, treatment options are limited. However, total kidney volume (TKV) measurement has become important for assessing the risk of disease progression (i.e., Mayo Imaging Classification) and predicting tolvaptan treatment's efficacy. Deep learning for segmenting the kidneys has improved these measurements' speed, accuracy, and reproducibility. Deep learning models can also segment other organs and tissues, extracting additional biomarkers to characterize the extent to which extrarenal manifestations complicate ADPKD. In this concept paper, we demonstrate how deep learning may be applied to measure the TKV and how it can be extended to measure additional features of this disease.
Collapse
Affiliation(s)
- Chenglin Zhu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Xinzi He
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- Cornell Tech, Cornell University, Ithaca, NY 10044, USA
| | - Jon D. Blumenfeld
- The Rogosin Institute, New York, NY 10021, USA; (J.D.B.); (J.M.C.); (D.S.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhongxiu Hu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Hreedi Dev
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Usama Sattar
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Vahid Bazojoo
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Arman Sharbatdaran
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Mohit Aspal
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Dominick Romano
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Kurt Teichman
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Hui Yi Ng He
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Yin Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Andrea Soto Figueroa
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Erin Weiss
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Anna G. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - James M. Chevalier
- The Rogosin Institute, New York, NY 10021, USA; (J.D.B.); (J.M.C.); (D.S.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniil Shimonov
- The Rogosin Institute, New York, NY 10021, USA; (J.D.B.); (J.M.C.); (D.S.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mina C. Moghadam
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
| | - Mert Sabuncu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
- Cornell Tech, Cornell University, Ithaca, NY 10044, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (C.Z.); (X.H.); (Z.H.); (H.D.); (U.S.); (V.B.); (A.S.); (M.A.); (D.R.); (K.T.); (H.Y.N.H.); (Y.W.); (A.S.F.); (E.W.); (A.G.P.); (M.C.M.)
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
3
|
Huang Y, Osouli A, Pham J, Mancino V, O'Grady C, Khan T, Chaudhuri B, Pastor-Soler NM, Hallows KR, Chung EJ. Investigation of Basolateral Targeting Micelles for Drug Delivery Applications in Polycystic Kidney Disease. Biomacromolecules 2024; 25:2749-2761. [PMID: 38652072 DOI: 10.1021/acs.biomac.3c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ali Osouli
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Colette O'Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Taranatee Khan
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Baishali Chaudhuri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Nuria M Pastor-Soler
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, United States
- Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Miquel-Rodríguez R, González-Toledo B, Pérez-Gómez MV, Cobo-Caso MÁ, Delgado-Mallén P, Estupiñán S, Cruz-Perera C, Díaz-Martín L, González-Rinne F, González-Delgado A, Torres A, Gaspari F, Hernández-Marrero D, Ortiz A, Porrini E, Luis-Lima S. Measured and Estimated Glomerular Filtration Rate to Evaluate Rapid Progression and Changes over Time in Autosomal Polycystic Kidney Disease: Potential Impact on Therapeutic Decision-Making. Int J Mol Sci 2024; 25:5036. [PMID: 38732256 PMCID: PMC11084593 DOI: 10.3390/ijms25095036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Autosomal polycystic kidney disease (ADPKD) is the most common genetic form of kidney failure, reflecting unmet needs in management. Prescription of the only approved treatment (tolvaptan) is limited to persons with rapidly progressing ADPKD. Rapid progression may be diagnosed by assessing glomerular filtration rate (GFR) decline, usually estimated (eGFR) from equations based on serum creatinine (eGFRcr) or cystatin-C (eGFRcys). We have assessed the concordance between eGFR decline and identification of rapid progression (rapid eGFR loss), and measured GFR (mGFR) declines (rapid mGFR loss) using iohexol clearance in 140 adults with ADPKD with ≥3 mGFR and eGFRcr assessments, of which 97 also had eGFRcys assessments. The agreement between mGFR and eGFR decline was poor: mean concordance correlation coefficients (CCCs) between the method declines were low (0.661, range 0.628 to 0.713), and Bland and Altman limits of agreement between eGFR and mGFR declines were wide. CCC was lower for eGFRcys. From a practical point of view, creatinine-based formulas failed to detect rapid mGFR loss (-3 mL/min/y or faster) in around 37% of the cases. Moreover, formulas falsely indicated around 40% of the cases with moderate or stable decline as rapid progressors. The reliability of formulas in detecting real mGFR decline was lower in the non-rapid-progressors group with respect to that in rapid-progressor patients. The performance of eGFRcys and eGFRcr-cys equations was even worse. In conclusion, eGFR decline may misrepresent mGFR decline in ADPKD in a significant percentage of patients, potentially misclassifying them as progressors or non-progressors and impacting decisions of initiation of tolvaptan therapy.
Collapse
Affiliation(s)
- Rosa Miquel-Rodríguez
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
| | - Beatriz González-Toledo
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
| | - María-Vanessa Pérez-Gómez
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
- Department of Medicine, RICORS2040, 28049 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - María Ángeles Cobo-Caso
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
| | - Patricia Delgado-Mallén
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
| | - Sara Estupiñán
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
| | - Coriolano Cruz-Perera
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
| | - Laura Díaz-Martín
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
| | - Federico González-Rinne
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
| | - Alejandra González-Delgado
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
| | - Armando Torres
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| | - Flavio Gaspari
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
| | - Domingo Hernández-Marrero
- Nephrology Department, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz UAM, 28040 Madrid, Spain
- Department of Medicine, RICORS2040, 28049 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Esteban Porrini
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| | - Sergio Luis-Lima
- Laboratory of Renal Function (LFR), Faculty of Medicine, Complejo Hospitalario Universitario de Canarias, University of La Laguna, 38320 La Laguna, Spain
- Department of Laboratory Medicine, Complejo Hospitalario Universitario de Canarias, 38320 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), Faculty of Medicine, University of La Laguna, 38320 La Laguna, Spain
| |
Collapse
|
5
|
Huang Y, Wang J, Mancino V, Pham J, O’Grady C, Li H, Jiang K, Chin D, Poon C, Ho PY, Gyarmati G, Peti-Peterdi J, Hallows KR, Chung EJ. Oral delivery of nanomedicine for genetic kidney disease. PNAS NEXUS 2024; 3:pgae187. [PMID: 38807632 PMCID: PMC11131023 DOI: 10.1093/pnasnexus/pgae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Chronic and genetic kidney diseases such as autosomal dominant polycystic kidney disease (ADPKD) have few therapeutic options, and clinical trials testing small molecule drugs have been unfavorable due to low kidney bioavailability and adverse side effects. Although nanoparticles can be designed to deliver drugs directly to the diseased site, there are no kidney-targeted nanomedicines clinically available, and most FDA-approved nanoparticles are administered intravenously which is not ideal for chronic diseases. To meet these challenges of chronic diseases, we developed a biomaterials-based strategy using chitosan particles (CP) for oral delivery of therapeutic, kidney-targeting peptide amphiphile micelles (KMs). We hypothesized that encapsuling KMs into CP would enhance the bioavailability of KMs upon oral administration given the high stability of chitosan in acidic conditions and mucoadhesive properties enabling absorption within the intestines. To test this, we evaluated the mechanism of KM access to the kidneys via intravital imaging and investigated the KM biodistribution in a porcine model. Next, we loaded KMs carrying the ADPKD drug metformin into CP (KM-CP-met) and measured in vitro therapeutic effect. Upon oral administration in vivo, KM-CP-met showed significantly greater bioavailability and accumulation in the kidneys as compared to KM only or free drug. As such, KM-CP-met treatment in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre which develops the disease over 120 days and mimics the slow development of ADPKD) showed enhanced therapeutic efficacy without affecting safety despite repeated treatment. Herein, we demonstrate the potential of KM-CP as a nanomedicine strategy for oral delivery for the long-term treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Valeria Mancino
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jessica Pham
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Colette O’Grady
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hui Li
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kairui Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deborah Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pei-Yin Ho
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - János Peti-Peterdi
- Department of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth R Hallows
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
- Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Yen PW, Chen YA, Wang W, Mao FS, Chao CT, Chiang CK, Lin SH, Tarng DC, Chiu YW, Wu MJ, Chen YC, Kao JTW, Wu MS, Lin CL, Huang JW, Hung KY. The screening, diagnosis, and management of patients with autosomal dominant polycystic kidney disease: A national consensus statement from Taiwan. Nephrology (Carlton) 2024; 29:245-258. [PMID: 38462235 DOI: 10.1111/nep.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of end-stage kidney disease (ESKD) worldwide. Guidelines for the diagnosis and management of ADPKD in Taiwan remains unavailable. In this consensus statement, we summarize updated information on clinical features of international and domestic patients with ADPKD, followed by suggestions for optimal diagnosis and care in Taiwan. Specifically, counselling for at-risk minors and reproductive issues can be important, including ethical dilemmas surrounding prenatal diagnosis and pre-implantation genetic diagnosis. Studies reveal that ADPKD typically remains asymptomatic until the fourth decade of life, with symptoms resulting from cystic expansion with visceral compression, or rupture. The diagnosis can be made based on a detailed family history, followed by imaging studies (ultrasound, computed tomography, or magnetic resonance imaging). Genetic testing is reserved for atypical cases mostly. Common tools for prognosis prediction include total kidney volume, Mayo classification and PROPKD/genetic score. Screening and management of complications such as hypertension, proteinuria, urological infections, intracranial aneurysms, are also crucial for improving outcome. We suggest that the optimal management strategies of patients with ADPKD include general medical care, dietary recommendations and ADPKD-specific treatments. Key points include rigorous blood pressure control, dietary sodium restriction and Tolvaptan use, whereas the evidence for somatostatin analogues and mammalian target of rapamycin (mTOR) inhibitors remains limited. In summary, we outline an individualized care plan emphasizing careful monitoring of disease progression and highlight the need for shared decision-making among these patients.
Collapse
Affiliation(s)
- Pao-Wen Yen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Yung-An Chen
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Wei Wang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Fang-Sheng Mao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan City, Taiwan
| | - Chih-Kang Chiang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Wu
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, Fu-Jen Catholic University Hospital, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Liang Lin
- Division of Nephrology, Department of Internal Medicine, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi County, Taiwan
| | - Jenq-Wen Huang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kuan-Yu Hung
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang-Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
7
|
Geertsema P, Koorevaar IW, Ipema KJR, Kramers BJ, Casteleijn NF, Gansevoort RT, Meijer E. Effects of salt and protein intake on polyuria in V2RA-treated ADPKD patients. Nephrol Dial Transplant 2024; 39:707-716. [PMID: 37804179 DOI: 10.1093/ndt/gfad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND The only treatment proven to be renoprotective in autosomal dominant polycystic kidney disease (ADPKD) is a vasopressin V2-receptor antagonist (V2RA). However, aquaresis-associated side effects limit tolerability. We investigated whether salt and/or protein intake influences urine volume and related endpoints in V2RA-treated ADPKD patients. METHODS In this randomized, controlled, double-blind, crossover trial, ADPKD patients treated with maximally tolerated dose of a V2RA were included. While on a low salt and low protein diet, patients were given additional salt and protein to mimic regular intake, which was subsequently replaced by placebo in random order during four 2-week periods. Primary endpoint was change in 24-h urine volume. Secondary endpoints were change in quality of life, measured glomerular filtration rate (mGFR), blood pressure and copeptin level. RESULTS Twelve patients (49 ± 8 years, 25.0% male) were included. Baseline salt and protein intake were 10.8 ± 1.3 g/24-h and 1.2 ± 0.2 g/kg/24-h, respectively. During the low salt and low protein treatment periods, intake decreased to 5.8 ± 1.6 g/24-h and 0.8 ± 0.1 g/kg/24-h, respectively. Baseline 24-h urine volume (5.9 ± 1.2 L) decreased to 5.2 ± 1.1 L (-11%, P = .004) on low salt and low protein, and to 5.4 ± 0.9 L (-8%, P = .04) on low salt. Reduction in 24-h urine volume was two times greater in patients with lower urine osmolality (-16% vs -7%). Polyuria quality of life scores improved in concordance with changes in urine volume. mGFR decreased during the low salt and low protein, while mean arterial pressure did not change during study periods. Plasma copeptin decreased significantly during low salt and low protein periods. CONCLUSION Lowering dietary salt and protein intake has a minor effect on urine volume in V2RA-treated ADPKD patients. Reduced intake of osmoles decreased copeptin concentrations and might thus increase the renoprotective effect of a V2RA in ADPKD patients.
Collapse
Affiliation(s)
- Paul Geertsema
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris W Koorevaar
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Karin J R Ipema
- Dietetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J Kramers
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niek F Casteleijn
- Urology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Departments of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Bais T, Meijer E, Kramers BJ, Vart P, Vervloet M, Salih M, Bammens B, Demoulin N, Todorova P, Müller RU, Halbritter J, Paliege A, Gall ECL, Knebelmann B, Torra R, Ong ACM, Karet Frankl FE, Gansevoort RT. HYDROchlorothiazide versus placebo to PROTECT polycystic kidney disease patients and improve their quality of life: study protocol and rationale for the HYDRO-PROTECT randomized controlled trial. Trials 2024; 25:120. [PMID: 38355627 PMCID: PMC10865620 DOI: 10.1186/s13063-024-07952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. METHODS The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m2, and on stable treatment with the highest tolerated dose of tolvaptan in routine clinical care. Patients will be randomly assigned (1:1) to daily oral HCT 25 mg or matching placebo treatment for 156 weeks, in addition to standard care. OUTCOMES The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m2 per year) in HCT versus placebo-treated patients, calculated by linear mixed model analysis using all available creatinine values from week 12 until the end of treatment. Secondary outcomes include changes in quality-of-life questionnaire scores (TIPS, ADPKD-UIS, EQ-5D-5L, SF-12) and changes in 24-h urine volume. CONCLUSION The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.
Collapse
Affiliation(s)
- Thomas Bais
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J Kramers
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc Vervloet
- Department of Nephrology, Amsterdam University Medical Centers, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mahdi Salih
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Polina Todorova
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany
| | - Roman-Ulrich Müller
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department 2 for Internal Medicine, Cologne, Germany
| | - Jan Halbritter
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Paliege
- Department of Nephrology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Emilie Cornec-Le Gall
- University Brest, Inserm, UMR 1078, GGB, Brest, 29609, France
- Service de Néphrologie, Hémodialyse et Transplantation Rénale, CHRU Brest, Brest, 29609, France
| | - Bertrand Knebelmann
- Department of Nephrology, Necker-Enfants Malades Hospital AP-HP, Paris, France
| | - Roser Torra
- Inherited Kidney Diseases, Nephrology Department, Fundació Puigvert, Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Fiona E Karet Frankl
- Department of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, UK
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands.
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, PO Box 30.001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
9
|
Groothof D, Post A, Bakker SJ. Tolvaptan, Kidney Function Decline, and Potential Confounding by Muscle Wasting. Kidney Med 2023; 5:100711. [PMID: 37850076 PMCID: PMC10577130 DOI: 10.1016/j.xkme.2023.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Affiliation(s)
- Dion Groothof
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Adrian Post
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephan J.L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Utiel FJB, García AIM, Moyano AP, Oporto FR, García EM, de la Rosa RE. Identifying the main predictors of urine output in autosomal-dominant polycystic kidney disease (ADPKD) patients taking tolvaptan. Int Urol Nephrol 2023; 55:2629-2637. [PMID: 36952108 DOI: 10.1007/s11255-023-03555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Few works have analyzed factors associated with urine output in ADPKD patients taking tolvaptan (TVP). METHODS We selected 24-h urine samples from ADPKD patients treated with TVP. Urine osmolality/creatinine ratio was used as estimator of urinary osmolar load. RESULTS We included 127 urine samples from 61 patients. After TVP, urine output doubled with a parallel reduction in urine solute concentration. However, when expressed as urine solute/creatinine ratios, no significant changes were observed. Daily osmolar load and osmolality/creatinine ratio did not change significantly. Before TVP, urine output was positively correlated with body weight and urine osmolality/creatinine ratio and negatively with eGFR, urine morning osmolality, and 24-h urine-calculated osmolality. After TVP, urine output was positively correlated with body weight, eGFR and negatively with age. There was a poor correlation with urine-calculated osmolality. We constructed a predictor model using mixed-effects modeling and we found that urine output was related to lower age, higher body weight, higher eGFR, and greater doses of TVP. When body weight was removed, urine output was also related to male sex and a higher daily osmolar excretion. Equation of prediction was: Urine output (mL/day) = 2771-52.9 × Age (years) + 58.4 × Weight (kg) + 18.7 × eGFR (mL/min) + 870 (if TVP = 90/30 mg) + 517 (if TVP = 60/30 mg). CONCLUSION Patients taking TVP will undergo an increase about twice in urine production from baseline. Greater doses of TVP cause a progressive increase in urine production. GFR, age, and body weight are the main predictors of future urine output in patients taking TVP.
Collapse
Affiliation(s)
| | | | - Aurora Polo Moyano
- UGC de Nefrología, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | | | - Enoc Merino García
- Unidad de Gestión Clínica (UGC) de Nefrología, Hospital Universitario de Jaén, Jaén, Spain
| | | |
Collapse
|
11
|
Todorova P, Arjune S, Hendrix C, Oehm S, Schmidt J, Krauß D, Burkert K, Burst VR, Benzing T, Boehm V, Grundmann F, Müller RU. Interaction Between Determinants Governing Urine Volume in Patients With ADPKD on Tolvaptan and its Impact on Quality of Life. Kidney Int Rep 2023; 8:1616-1626. [PMID: 37547529 PMCID: PMC10403673 DOI: 10.1016/j.ekir.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic cause of kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the first drug with proven disease-modifying activity. Long-term treatment adherence is crucial, but a considerable fraction of patients discontinue treatment, because of aquaretic side effects. Methods Twenty-four-hour urine was collected in 75 patients with ADPKD during up-titration of tolvaptan and, in combination with clinical characteristics, examined to identify factors influencing urine volume. Patient-reported outcomes were analyzed using the Short Form-12 (SF-12) and patient-reported outcomes questionnaires reporting micturition frequency and burden of urine volume. Results Initiation of therapy led to a large increase in urine volume followed by only minor further increase during up-dosing. Younger patients and patients with better kidney function experienced a larger relative rise. Twenty-four-hour urine osmolality dropped by about 50% after therapy initiation independently of dose, with a considerable proportion of patients achieving adequate suppression. Sodium and potassium intake turned out to be the only significant modifiable factors for urine volume after multivariate linear regression models, whereas age and weight could be identified as non-modifiable factors. No change in quality of life (QoL) was detected in relation to treatment or urine volume using SF-12 questionnaires, a finding that was further supported by the results of the patient-reported outcomes assessment. Conclusion This study provides an in-detail analysis of factors associated with the degree of polyuria on tolvaptan and puts them into the context of QoL. These findings will contribute to optimized patient counseling regarding this treatment option in ADPKD.
Collapse
Affiliation(s)
- Polina Todorova
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sita Arjune
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Claudia Hendrix
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Simon Oehm
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Johannes Schmidt
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Bonacci GmbH, Cologne, Germany
| | - Denise Krauß
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Katharina Burkert
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Rolf Burst
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Emergency Department, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
12
|
Akbari A, McIntyre CW. Recent Advances in Sodium Magnetic Resonance Imaging and Its Future Role in Kidney Disease. J Clin Med 2023; 12:4381. [PMID: 37445416 PMCID: PMC10342976 DOI: 10.3390/jcm12134381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Sodium imbalance is a hallmark of chronic kidney disease (CKD). Excess tissue sodium in CKD is associated with hypertension, inflammation, and cardiorenal disease. Sodium magnetic resonance imaging (23Na MRI) has been increasingly utilized in CKD clinical trials especially in the past few years. These studies have demonstrated the association of excess sodium tissue accumulation with declining renal function across whole CKD spectrum (early- to end-stage), biomarkers of systemic inflammation, and cardiovascular dysfunction. In this article, we review recent advances of 23Na MRI in CKD and discuss its future role with a focus on the skin, the heart, and the kidney itself.
Collapse
Affiliation(s)
- Alireza Akbari
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Christopher W. McIntyre
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada;
- Lilibeth Caberto Kidney Clinic Research Unit, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Departments of Medicine, Pediatrics and Medical Biophysics, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
13
|
Ackley W, Dahl NK, Park M. Pharmacologic Management of Autosomal Dominant Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:228-235. [PMID: 37088525 DOI: 10.1053/j.akdh.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disorder and the fourth leading cause of end-stage kidney disease. ADPKD encompasses a wide range of morbidity in addition to chronic kidney disease and end-stage kidney disease, and its pathogenesis remains incompletely understood. Progress in the management of this condition includes the 2018 FDA approval of tolvaptan as the only mechanism-specific treatment available for individuals at risk of rapid progression. Assessing the risk of rapid progression is discussed at greater length in a separate article in this special issue. This section will address use and prescription of tolvaptan in more detail and address other therapies that may be considered in the treatment of patients with ADPKD.
Collapse
Affiliation(s)
- William Ackley
- Department of Nephrology, University of Connecticut, Nephrology, Farmington, CT
| | - Neera K Dahl
- Section of Nephrology, Yale School of Medicine, New Haven, CT
| | - Meyeon Park
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
14
|
Zhou JX, Torres VE. Autosomal Dominant Polycystic Kidney Disease Therapies on the Horizon. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:245-260. [PMID: 37088527 DOI: 10.1053/j.akdh.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous kidney cysts which leads to kidney failure. ADPKD is responsible for approximately 10% of patients with kidney failure. Overwhelming evidence supports that vasopressin and its downstream cyclic adenosine monophosphate signaling promote cystogenesis, and targeting vasopressin 2 receptor with tolvaptan and other antagonists ameliorates cyst growth in preclinical studies. Tolvaptan is the only drug approved by Food and Drug Administration to treat ADPKD patients at the risk of rapid disease progression. A major limitation of the widespread use of tolvaptan is aquaretic events. This review discusses the potential strategies to improve the tolerability of tolvaptan, the progress on the use of an alternative vasopressin 2 receptor antagonist lixivaptan, and somatostatin analogs. Recent advances in understanding the pathophysiology of PKD have led to new approaches of treatment via targeting different signaling pathways. We review the new pharmacotherapies and dietary interventions of ADPKD that are promising in the preclinical studies and investigated in clinical trials.
Collapse
|
15
|
Bankir L, Guerrot D, Bichet DG. Vaptans or voluntary increased hydration to protect the kidney: how do they compare? Nephrol Dial Transplant 2023; 38:562-574. [PMID: 34586414 DOI: 10.1093/ndt/gfab278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease have been well described. They depend on the antidiuretic action of AVP mediated by V2 receptors (V2R). Tolvaptan, a selective V2R antagonist, is now largely used for the treatment of patients with autosomal dominant polycystic kidney disease. Another way to reduce the adverse effects of AVP is to reduce endogenous AVP secretion by a voluntary increase in fluid intake. These two approaches differ in several ways, including the level of thirst and AVP. With voluntary increased drinking, plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also those mediated by V1a and V1b receptors (V1aR and V1bR). In contrast, selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus increase AVP's influence on V1a and V1b receptors. V1aR is expressed in the luminal side of the collecting duct (CD) and in inner medullary interstitial cells, and their activation induces the production of prostaglandins, mostly prostaglandin E2 (PGE2). Intrarenal PGE2 has been shown to reduce sodium and water reabsorption in the CD and increase blood flow in the renal medulla, both effects contributing to increase sodium and water excretion and reduce urine-concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have been shown to induce significant water and sodium retention and potentiate the antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do not take place with a voluntary increase in fluid intake. In summary, while both strategies may have beneficial effects, the information reviewed here leads us to assume that pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 production, may provide greater benefit than voluntary high water intake. The influence of tolvaptan on the PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than presently prescribed remain to be evaluated.
Collapse
Affiliation(s)
- Lise Bankir
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Dominique Guerrot
- Départment de Néphrologie, Hôpital Universitaire de Rouen, Rouen, France.,Université de Normandie, UNIROUEN, INSERM U1096, Rouen, France
| | - Daniel G Bichet
- Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie, Département de Physiologie, and Département de Médecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
16
|
Gu X, Yuan H, Zhao W, Sun N, Yan W, Jiang C, He Y, Liu H, Cheng J, Guo D. Optical-Controlled Kinetic Switch: Fine-Tuning of the Residence Time of an Antagonist Binding to the Vasopressin V 2 Receptor in In Vitro, Ex Vivo, and In Vivo Models of ADPKD. J Med Chem 2023; 66:1454-1466. [PMID: 36563185 DOI: 10.1021/acs.jmedchem.2c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pharmacological activity of a small-molecule ligand is linked to its receptor residence time. Therefore, precise control of the duration for which a ligand binds to its receptor is highly desirable. Herein, we designed photoswitchable ligands targeting the vasopressin V2 receptor (V2R), a validated target for autosomal dominant polycystic kidney disease (ADPKD). We adapted the photoswitching trait of azobenzene to the parent V2R antagonist lixivaptan (LP) to generate azobenzene lixivaptan derivatives (aLPs). Among them, aLPs-5g was a potential optical-controlled kinetic switch. Upon irradiation, cis-aLPs-5g displayed a 4.3-fold prolonged V2R residence time compared to its thermally stable trans configuration. The optical-controlled kinetic variations led to distinct inhibitory effects on cellular functional readout. Furthermore, conversion of the cis/trans isomer of aLPs-5g resulted in different efficacies of inhibiting renal cystogenesis ex vivo and in vivo. Overall, aLPs-5g represents a photoswitch for precise control of ligand-receptor residence time and, consequently, the pharmacological activity.
Collapse
Affiliation(s)
- Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Haoxing Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Wenchao Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Nan Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Wenzhong Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Chunyu Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Yan He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu, China
| |
Collapse
|
17
|
Quiroga B, Torra R. Dietary Aspects and Drug-Related Side Effects in Autosomal Dominant Polycystic Kidney Disease Progression. Nutrients 2022; 14:4651. [PMID: 36364911 PMCID: PMC9658114 DOI: 10.3390/nu14214651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease. In the absence of targeted therapies, it invariably progresses to advanced chronic kidney disease. To date, the only approved treatment is tolvaptan, a vasopressin V2 receptor antagonist that has been demonstrated to reduce cyst growth and attenuate the decline in kidney function. However, it has various side effects, the most frequent of which is aquaresis, leading to a significant discontinuation rate. The strategies proposed to combat aquaresis include the use of thiazides or metformin and a reduction in the dietary osmotic load. Beyond the prescription of tolvaptan, which is limited to those with a rapid and progressive decline in kidney function, dietary interventions have been suggested to protect against disease progression. Moderate sodium restriction, moderate protein intake (up to 0.8 g/kg/day), avoidance of being overweight, and increased water consumption are recommended in ADPKD guidelines, though all with low-grade evidence. The aim of the present review is to critically summarize the evidence on the effect of dietary modification on ADPKD and to offer some strategies to mitigate the adverse aquaretic effects of tolvaptan.
Collapse
Affiliation(s)
- Borja Quiroga
- Nephrology Department, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Roser Torra
- Inherited Kidney Disorders, Department of Nephrology, Fundació Puigvert, Institut d’Investigació Biomèdica Sant Pau (IIB-SANT PAU), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
18
|
Chong J, Harris T, Ong ACM. Regional variation in tolvaptan prescribing across England: national data and retrospective evaluation from an expert centre. Clin Kidney J 2022; 16:61-68. [PMID: 36726434 PMCID: PMC9871855 DOI: 10.1093/ckj/sfac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background Tolvaptan, a vasopressin V2 receptor antagonist, was approved in 2015 by the UK National Institute for Health and Care Excellence for use in patients with autosomal dominant polycystic kidney disease (ADPKD) and rapid disease progression. Simultaneous guidance was issued by the UK Kidney Association (UKKA) to facilitate national implementation. Methods Data on tolvaptan prescribing in England was obtained through the National Health Service (NHS) Digital, a national survey of all 77 adult kidney units, and the implementation of UKKA guidance was evaluated at an expert PKD centre. Results A regional variation of up to 4-fold for tolvaptan prescribing in England was found. Despite most kidney units following UKKA guidance, centre-based estimates of eligible or treated patient numbers were highly variable. Retrospective evaluation at an expert PKD centre revealed that in a cohort demonstrating rapid estimated glomerular filtration rate (eGFR) decline, 14% would not be eligible for tolvaptan by Mayo imaging classification and more than half (57%) would not be eligible by Predicting Renal Outcome in Polycystic Kidney Disease score. The 3-year discontinuation rate was higher than expected (56%), the majority (70%) due to aquaretic symptoms. In patients taking tolvaptan for at least 2 years, 81% showed a reduction in the rate of eGFR decline compared with baseline, with earlier disease associated with positive treatment response. Conclusion Real-world data have revealed a much higher regional variation in tolvaptan prescribing for ADPKD in England than expected. We propose further investigation into the factors responsible for this variation.
Collapse
Affiliation(s)
- Jiehan Chong
- Academic Nephrology Unit, Department of Infection, Immunity, and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, Medical School, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
19
|
Bais T, Gansevoort RT, Meijer E. Drugs in Clinical Development to Treat Autosomal Dominant Polycystic Kidney Disease. Drugs 2022; 82:1095-1115. [PMID: 35852784 PMCID: PMC9329410 DOI: 10.1007/s40265-022-01745-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst formation that ultimately leads to kidney failure in most patients. Approximately 10% of patients who receive kidney replacement therapy suffer from ADPKD. To date, a vasopressin V2 receptor antagonist (V2RA) is the only drug that has been proven to attenuate disease progression. However, aquaresis-related adverse events limit its widespread use. Data on the renoprotective effects of somatostatin analogues differ largely between studies and medications. This review discusses new drugs that are investigated in clinical trials to treat ADPKD, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and micro RNA inhibitors, and drugs already marketed for other indications that are being investigated for off-label use in ADPKD, such as metformin. In addition, potential methods to improve the tolerability of V2RAs are discussed, as well as methods to select patients with (likely) rapid disease progression and issues regarding the translation of preclinical data into clinical practice. Since ADPKD is a complex disease with a high degree of interindividual heterogeneity, and the mechanisms involved in cyst growth also have important functions in various physiological processes, it may prove difficult to develop drugs that target cyst growth without causing major adverse events. This is especially important since long-standing treatment is necessary in this chronic disease. This review therefore also discusses approaches to targeted therapy to minimize systemic side effects. Hopefully, these developments will advance the treatment of ADPKD.
Collapse
|
20
|
Kramers BJ, Koorevaar IW, van Gastel MD, van Goor H, Hallows KR, Heerspink HL, Li H, Leonhard WN, Peters DJ, Qiu J, Touw DJ, Gansevoort RT, Meijer E. Effects of Hydrochlorothiazide and Metformin on Aquaresis and Nephroprotection by a Vasopressin V2 Receptor Antagonist in ADPKD: A Randomized Crossover Trial. Clin J Am Soc Nephrol 2022; 17:507-517. [PMID: 35314480 PMCID: PMC8993480 DOI: 10.2215/cjn.11260821] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The vasopressin V2 receptor antagonist tolvaptan is the only drug that has been proven to be nephroprotective in autosomal dominant polycystic kidney disease (ADPKD). Tolvaptan also causes polyuria, limiting tolerability. We hypothesized that cotreatment with hydrochlorothiazide or metformin may ameliorate this side effect. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We performed a clinical study and an animal study. In a randomized, controlled, double-blind, crossover trial, we included 13 tolvaptan-treated patients with ADPKD. Patients were treated for three 2-week periods with hydrochlorothiazide, metformin, or placebo in random order. Primary outcome was change in 24-hour urine volume. We also measured GFR and a range of metabolic and kidney injury markers. RESULTS Patients (age 45±8 years, 54% women, measured GFR of 55±11 ml/min per 1.73 m2) had a baseline urine volume on tolvaptan of 6.9±1.4 L/24 h. Urine volume decreased to 5.1 L/24 h (P<0.001) with hydrochlorothiazide and to 5.4 L/24 h (P<0.001) on metformin. During hydrochlorothiazide treatment, plasma copeptin (surrogate for vasopressin) decreased, quality of life improved, and several markers of kidney damage and glucose metabolism improved. Metformin did not induce changes in these markers or in quality of life. Given these results, the effect of adding hydrochlorothiazide to tolvaptan was investigated on long-term kidney outcome in an animal experiment. Water intake in tolvaptan-hydrochlorothiazide cotreated mice was 35% lower than in mice treated with tolvaptan only. Combination treatment was superior to "no treatment" on markers of disease progression (kidney weight, P=0.003 and cystic index, P=0.04) and superior or equal to tolvaptan alone. CONCLUSIONS Both metformin and hydrochlorothiazide reduced tolvaptan-caused polyuria in a short-term study. Hydrochlorothiazide also reduced polyuria in a long-term animal model without negatively affecting nephroprotection. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_03_21_CJN11260821.mp3.
Collapse
Affiliation(s)
- Bart J. Kramers
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris W. Koorevaar
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maatje D.A. van Gastel
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kenneth R. Hallows
- Division of Nephrology and Hypertension, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
- University of Southern California/University Kidney Research Organization Kidney Research Center, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Hiddo L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University, Hospital Groningen, Groningen, The Netherlands
| | - Hui Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
- University of Southern California/University Kidney Research Organization Kidney Research Center, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Wouter N. Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dorien J.M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jiedong Qiu
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University, Hospital Groningen, Groningen, The Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Ron T. Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Esther Meijer
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Akihisa T, Kataoka H, Makabe S, Manabe S, Yoshida R, Ushio Y, Sato M, Tsuchiya K, Mochizuki T, Nitta K. Initial decline in eGFR to predict tolvaptan response in autosomal-dominant polycystic kidney disease. Clin Exp Nephrol 2022; 26:540-551. [PMID: 35165806 DOI: 10.1007/s10157-022-02192-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Tolvaptan, a vasopressin V2 receptor antagonist, is used to treat autosomal-dominant polycystic kidney disease (ADPKD). Although tolvaptan curbs disease progression, a few reports have examined factors related to treatment response. The estimated glomerular filtration rate (eGFR) decreases soon after tolvaptan is initiated. We investigated whether initial eGFR decline affects renal prognosis of patients. METHODS This was a single-center, retrospective observational cohort study. Eighty-three patients with ADPKD who initiated tolvaptan were selected. We analyzed the relationship of the initial eGFR change with clinical parameters and analyzed the annual eGFR change in terms of renal prognostic value using univariable and multivariable linear regression analyses. RESULTS The initial eGFR change was - 4.6 ± 8.0%/month. The initial eGFR change correlated significantly with the annual eGFR change in multivariable analysis, suggesting that the larger decline in the initial eGFR change, the better the renal prognosis. Furthermore, the change in fractional excretion (FE) of free water (FEH2O) correlated positively with initial eGFR change. FEH2O and urea nitrogen FE (FEUN) increased significantly; however, sodium FE (FENa) level remained unchanged. In approximately half of the patients, FENa unexpectedly decreased. CONCLUSIONS The initial eGFR decline might be caused by suppressing glomerular hyperfiltration, due to the pharmacological effect of tolvaptan, and/or by reducing renal plasma flow, due to potential volume depletion. The initial eGFR change reflects the tolvaptan effect, can be easily evaluated in clinical practice, and may be useful as one of the clinical indicator for predicting renal prognosis in patients under tolvaptan.
Collapse
Affiliation(s)
- Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
22
|
Park HC, Oh YK. Practical Issues in the Management of Polycystic Kidney Disease: Blood Pressure and Water Balance. Electrolyte Blood Press 2022; 20:10-16. [PMID: 36451711 PMCID: PMC9685325 DOI: 10.5049/ebp.2022.20.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common hereditary renal disease affecting more than 13 million people worldwide. Renal function deteriorates as the cysts in both kidneys increase in number and size, which eventually results in end-stage kidney failure. Until recently, conservative management for chronic kidney disease such as blood pressure control, low sodium diet, adequate water intake, and weight control were known for the only treatment of polycystic kidney disease. However, the introduction of disease-modifying drug has led to the new paradigm shift in the management of polycystic kidney disease. Tolvaptan, the vasopressin V2 receptor antagonist, has been introduced to the patients with large kidneys since it can inhibit cyclic adenosine monophosphate, attenuates cyst growth, and delays renal failure. This article reviews the two important practical issues in the management of polycystic kidney disease: blood pressure and water balance. Firstly, the article will review the pathogenesis of high blood pressure in polycystic kidney disease and will demonstrate the current up-to-date management plan for blood pressure control. Secondly, this article will explain the mechanism of Tolvaptan on the treatment of polycystic kidney disease and its possible adverse effect on water and sodium balance.
Collapse
Affiliation(s)
- Hayne Cho Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | | |
Collapse
|
23
|
Müller RU, Messchendorp AL, Birn H, Capasso G, Cornec-Le Gall E, Devuyst O, van Eerde A, Guirchoun P, Harris T, Hoorn EJ, Knoers NVAM, Korst U, Mekahli D, Le Meur Y, Nijenhuis T, Ong ACM, Sayer JA, Schaefer F, Servais A, Tesar V, Torra R, Walsh SB, Gansevoort RT. An update on the use of tolvaptan for ADPKD: Consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders (WGIKD), the European Rare Kidney Disease Reference Network (ERKNet) and Polycystic Kidney Disease International (PKD-International). Nephrol Dial Transplant 2021; 37:825-839. [PMID: 35134221 PMCID: PMC9035348 DOI: 10.1093/ndt/gfab312] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Approval of the vasopressin V2 receptor antagonist tolvaptan—based on the landmark TEMPO 3:4 trial—marked a transformation in the management of autosomal dominant polycystic kidney disease (ADPKD). This development has advanced patient care in ADPKD from general measures to prevent progression of chronic kidney disease to targeting disease-specific mechanisms. However, considering the long-term nature of this treatment, as well as potential side effects, evidence-based approaches to initiate treatment only in patients with rapidly progressing disease are crucial. In 2016, the position statement issued by the European Renal Association (ERA) was the first society-based recommendation on the use of tolvaptan and has served as a widely used decision-making tool for nephrologists. Since then, considerable practical experience regarding the use of tolvaptan in ADPKD has accumulated. More importantly, additional data from REPRISE, a second randomized clinical trial (RCT) examining the use of tolvaptan in later-stage disease, have added important evidence to the field, as have post hoc studies of these RCTs. To incorporate this new knowledge, we provide an updated algorithm to guide patient selection for treatment with tolvaptan and add practical advice for its use.
Collapse
Affiliation(s)
| | - A Lianne Messchendorp
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Departments of Clinical Medicine and Biomedicine, Aarhus University, Aarhus, Denmark
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, Vanvitelli University, Naples, Italy
- Biogem Institute for Molecular Biology and Genetics, Ariano Irpino, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology, UCL Medical School, Brussels, Belgium
| | - Albertien van Eerde
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nine V A M Knoers
- Department Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Uwe Korst
- PKD Familiäre Zystennieren e.V., Bensheim, Germany
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Yannick Le Meur
- Department of Nephrology, Hemodialysis and Renal Transplantation, CHU and University of Brest, Brest, France
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboudumc Center of Expertise for Rare Kidney Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
- Sheffield Kidney Institute, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aude Servais
- Nephrology and Transplantation Department, Necker University Hospital, APHP, Paris, France
| | - Vladimir Tesar
- Department of Nephrology, 1st Faculty of Medicine, General University Hospital, Prague, Czech Republic
| | - Roser Torra
- Inherited Kidney Diseases Nephrology Department, Fundació Puigvert Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- REDINREN, Barcelona, Spain
| | - Stephen B Walsh
- Department of Renal Medicine, University College London, London, UK
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Wulfmeyer VC, Schmitt R. [What is evidence-based in the treatment of autosomal dominant polycystic kidney disease?]. Internist (Berl) 2021; 62:1259-1268. [PMID: 34713320 DOI: 10.1007/s00108-021-01199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The cystic transformation of the kidneys and liver are the most common symptoms of autosomal dominant polycystic kidney disease (prevalence 1:400-1:1000). A set of other manifestations can be observed less frequently, such as intracranial aneurysms. End-stage renal disease affects 50% of patients by the age of 70 years. To date, a targeted treatment is only available for patients at risk of rapidly progressive kidney failure. In 2015, the vasopressin receptor antagonist tolvaptan was approved in Germany for slowing down the decline of renal function in autosomal dominant polycystic kidney disease. Selecting the patients that benefit from tolvaptan treatment remains a major challenge. In recent years numerous clinical trials were carried out showing unspecific approaches to slow down the decline in renal function: strictly controlling blood pressure is one of the most important factors. Furthermore, unspecific approaches comprise suppression of vasopressin by sufficient fluid intake and restricted intake of salt. Weight reduction is recommended for obese patients. Lacking more causal approaches, these unspecific measures should be exploited in all patients. Currently, preclinical and clinical trials are testing numerous agents for the establishment of targeted treatment against the cystic degeneration of the kidneys and liver. This also includes dietary approaches. So far, in contrast to other genetic diseases, there are currently no gene therapy approaches for autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Vera Christine Wulfmeyer
- Klinik für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - Roland Schmitt
- Klinik für Nieren- und Hochdruckerkrankungen, Medizinische Hochschule Hannover (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
25
|
The effect of trichlormethiazide in autosomal dominant polycystic kidney disease patients receiving tolvaptan: a randomized crossover controlled trial. Sci Rep 2021; 11:17666. [PMID: 34480075 PMCID: PMC8417075 DOI: 10.1038/s41598-021-97113-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
The vasopressin V2 receptor antagonist tolvaptan delays the progression of autosomal dominant polycystic kidney disease (ADPKD). However, some patients discontinue tolvaptan because of severe adverse aquaretic events. This open-label, randomized, controlled, counterbalanced, crossover trial investigated the effects of trichlormethiazide, a thiazide diuretic, in patients with ADPKD receiving tolvaptan (n = 10) who randomly received antihypertensive therapy with or without trichlormethiazide for 12 weeks. The primary and secondary outcomes included amount and osmolarity of 24-h urine and health-related quality-of-life (HRQOL) parameters assessed by the Kidney Disease Quality of Life-Short Form questionnaire, renal function slope, and plasma/urinary biomarkers associated with disease progression. There was a significant reduction in urine volume (3348 ± 584 vs. 4255 ± 739 mL; P < 0.001) and a significant increase in urinary osmolarity (182.5 ± 38.1 vs. 141.5 ± 38.1 mOsm; P = 0.001) in patients treated with trichlormethiazide. Moreover, trichlormethiazide improved the following HRQOL subscales: effects of kidney disease, sleep, emotional role functioning, social functioning, and role/social component summary. No significant differences were noted in renal function slope or plasma/urinary biomarkers between patients treated with and without trichlormethiazide. In patients with ADPKD treated with tolvaptan, trichlormethiazide may improve tolvaptan tolerability and HRQOL parameters.
Collapse
|
26
|
Bellos I. Safety Profile of Tolvaptan in the Treatment of Autosomal Dominant Polycystic Kidney Disease. Ther Clin Risk Manag 2021; 17:649-656. [PMID: 34234441 PMCID: PMC8254589 DOI: 10.2147/tcrm.s286952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant polycystic kidney disease constitutes the most prevalent hereditary kidney disease, associated with high rates of morbidity leading eventually to end-stage renal disease. Tolvaptan is a selective vasopressin antagonist and has emerged as a promising therapeutic option for patients with autosomal dominant polycystic kidney disease. The present review summarized current evidence regarding the safety profile of tolvaptan in patients with the disease. Consistent with its pharmacological action, aquaretic adverse events represent the most common side effects of tolvaptan, consisting of polyuria, pollakiuria and polydipsia. Gradual dose titration based on urinary osmolality, as well as dietary interventions aiming to reduce solute excretion, have been proposed as potential strategies to mitigate polyuria. In addition, tolvaptan administration may be complicated by liver injury, characterized by alanine aminotransferase and bilirubin elevations. Hepatotoxicity has been suggested to be triggered by impaired biliary clearance, activation of innate immunity and increased oxidative stress. Frequent monitoring of liver function tests has been shown to be effective in preventing Hy’s Law and liver failure cases. Uric acid elevation due to reduced renal excretion may lead to hyperuricemia and gout, although no drug discontinuations have been linked to these events. Future studies should confirm the safety profile of tolvaptan in large-scale real-world studies, clarify the pathogenetic pathways leading to hepatotoxicity and define its role in special populations, especially pediatric patients.
Collapse
Affiliation(s)
- Ioannis Bellos
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Natale P, Hannan E, Sautenet B, Ju A, Perrone RD, Burnette E, Casteleijn N, Chapman A, Eastty S, Gansevoort R, Hogan M, Horie S, Knebelmann B, Lee R, Mustafa RA, Sandford R, Baumgart A, Tong A, Strippoli GFM, Craig JC, Rangan GK, Cho Y. Patient-reported outcome measures for pain in autosomal dominant polycystic kidney disease: A systematic review. PLoS One 2021; 16:e0252479. [PMID: 34043715 PMCID: PMC8158964 DOI: 10.1371/journal.pone.0252479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Pain is a common symptom in people with autosomal dominant polycystic kidney disease (ADPKD), but it is assessed and reported inconsistently in research, and the validity of the measures remain uncertain. The aim of this study was to identify the characteristics, content, and psychometric properties of measures for pain used in ADPKD. We conducted a systematic review including all trials and observational studies that reported pain in people with ADPKD. Items from all measures were categorized into content and measurement dimensions of pain. We assessed the general characteristics and psychometric properties of all measures. 118 studies, we identified 26 measures: 12 (46%) measures were developed for a non-ADPKD population, 1 (4%) for chronic kidney disease, 2 (8%) for polycystic liver disease and 11 (42%) specifically for ADPKD. Ten anatomical sites were included, with the lower back the most common (10 measures [39%]), four measurement dimensions (intensity (23 [88%]), frequency (3 [12%]), temporality (2 [8%]), and sensory (21 [81%]), two pain types, nociceptive including visceral (15 [58%]) and somatic (5 [20%]), and neuropathic (2 [8%]), and twelve impact dimensions, where the most frequent was work (5 [31%]). The validation data for the measures were variable and only the ADPKD Impact Scale reported all psychometric domains. The measures for pain in ADPKD varied in terms of content and length, and most had not been validated in ADPKD. A standardized psychometrically robust measure that captures patient-important dimensions of pain is needed to evaluate and manage this debilitating complication of ADPKD.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- * E-mail:
| | - Elyssa Hannan
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Bénédicte Sautenet
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, Hôpital de Tours, Tours, France
- Université de Tours, Université de Nantes, INSERM, SPHERE U1246, Tours, France
| | - Angela Ju
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Ronald D. Perrone
- Medicine, Nephrology, Clinical and Translational Research Center, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Niek Casteleijn
- Department of Urology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Arlene Chapman
- Department of Nephrology, The University of Chicago, Chicago, Illinois, United States of America
| | | | - Ron Gansevoort
- Department of Urology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marie Hogan
- Division of Nephrology & Hypertension, Department of Internal Medicine Mayo Clinic, Rochester, Minnesota, United States of America
| | - Shigeo Horie
- Department of Urology, Juntendo University, Tokyo, Japan
| | - Bertrand Knebelmann
- Université de Paris APHP, Hôpital Necker, Service de Néphrologie, Paris, France
| | | | - Reem A. Mustafa
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Centre, Lawrence, Kansas, United States of America
| | - Richard Sandford
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Amanda Baumgart
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Allison Tong
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Giovanni F. M. Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Jonathan C. Craig
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Yeoungjee Cho
- Australasian Kidney Trials Network, University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Santos JA, Li KC, Huang L, Mclean R, Petersen K, Di Tanna GL, Webster J. Change in mean salt intake over time using 24-h urine versus overnight and spot urine samples: a systematic review and meta-analysis. Nutr J 2020; 19:136. [PMID: 33280602 PMCID: PMC7720567 DOI: 10.1186/s12937-020-00651-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background Little is known about the capacity of overnight and spot urine samples to estimate changes in mean salt intake over time. The objective of this review was to compare the estimates of change in mean population salt intake based on 24-h urine and overnight/spot urine samples. Methods Studies were systematically identified through searches of peer-reviewed databases (Medline, Embase, Global Health, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews) and grey literature. Studies that reported estimates of mean salt intake for at least two time points based on both 24-h and overnight/spot urines were deemed eligible. The capacity of overnight/spot urine samples to estimate the change in mean salt intake was assessed both at the individual-study level and overall through random-effects meta-analyses. The level of heterogeneity was assessed through the I2 statistic. Subgroup and sensitivity analyses were conducted to explore possible sources of heterogeneity, and check the robustness of the findings from the primary analysis. Results A total of 1244 records were identified, 50 were assessed as full text, and 14 studies met the criteria, capturing data on 7291 participants from seven countries. Nine and five studies collected overnight and spot urines, respectively. The comparison of the change in mean salt intake between 24-h and overnight/spot urines showed some inconsistencies at the individual study-level. The pooled mean change in salt intake was − 0.43 g/day (95% CI − 1.16 to 0.30; I2 = 95%) using 24-h urines, and − 0.22 g/day (− 0.65 to 0.20; I2 = 87%) using overnight/spot urines, with a pooled difference-in-differences between the two methods of 0.27 g/day (− 0.23 to 0.77; I2 = 89%). Subgroup analyses showed substantial heterogeneity for most subgroups. Sensitivity analyses did not change the effect observed in the primary analysis. Conclusion The evidence for the capacity of overnight/spot urines to estimate changes in mean salt intake over time is uncertain. More research where overnight/spot urines are collected in parallel with 24-h urines is needed to enable a more in-depth evaluation of these alternative approaches to estimating change in mean salt intake. Supplementary Information The online version contains supplementary material available at 10.1186/s12937-020-00651-8.
Collapse
Affiliation(s)
- Joseph Alvin Santos
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Ka Chun Li
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Liping Huang
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachael Mclean
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Kristina Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gian Luca Di Tanna
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jacqui Webster
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
29
|
Borrego Utiel FJ, Merino García E. Glomerular filtration rate is the main predictor of urine volume in autosomal dominant polycystic kidney disease patients treated with tolvaptan when daily osmolar excretion is expressed as urinary osmolality/creatinine ratio. Clin Kidney J 2020; 14:1031-1033. [PMID: 33777387 PMCID: PMC7986321 DOI: 10.1093/ckj/sfaa171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/06/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Enoc Merino García
- Unidad de Gestión Clínica de Nefrología, Complejo Hospitalario Universitario de Jaén, Jaén, Spain
| |
Collapse
|
30
|
Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int 2020; 98:989-998. [DOI: 10.1016/j.kint.2020.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022]
|
31
|
Huang Y, Jiang K, Zhang X, Chung EJ. The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioeng Transl Med 2020; 5:e10173. [PMID: 33005739 PMCID: PMC7510478 DOI: 10.1002/btm2.10173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) affects 15% of the US adult population. However, most clinically available drugs for CKD show low bioavailability to the kidneys and non-specific uptake by other organs which results in adverse side effects. Hence, a targeted, drug delivery strategy to enhance kidney drug delivery is highly desired. Recently, our group developed small, organic nanoparticles called peptide amphiphile micelles (PAM) functionalized with the zwitterionic peptide ligand, (KKEEE)3K, that passage through the glomerular filtration barrier for kidney accumulation. Despite high bioavailability to the kidneys, these micelles also accumulated in the liver to a similar extent. To further optimize the physicochemical properties and develop design rules for kidney-targeting micelles, we synthesized a library of PAMs of varying size, charge, and peptide repeats. Specifically, variations of the original (KKEEE)3K peptide including (KKEEE)2K, (KKEEE)K, (EEKKK)3E, (EEKKK)2E, (EEKKK)E, KKKKK, and EEEEE were functionalized onto nanoparticles, and peptide surface density and PEG linker molecular weight were altered. After characterization with transmission electron microscopy (TEM) and dynamic light scattering (DLS), nanoparticles were intravenously administered into wildtype mice, and biodistribution was assessed through ex vivo imaging. All micelles localized to the kidneys, but nanoparticles that are positively-charged, close to the renal filtration size cut-off, and consisted of additional zwitterionic peptide sequences generally showed higher renal accumulation. Upon immunohistochemistry, micelles were confirmed to bind to the multiligand receptor, megalin, and histological analyses showed no tissue damage. Our study provides insight into the design of micelle carriers for kidney targeting and their potential for future therapeutic application.
Collapse
Affiliation(s)
- Yi Huang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kairui Jiang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xuting Zhang
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eun Ji Chung
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Medicine, Division of Nephrology and HypertensionUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, Division of Vascular Surgery and Endovascular TherapyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
32
|
K. Rangan G, Raghubanshi A, Chaitarvornkit A, Chandra AN, Gardos R, Munt A, Read MN, Saravanabavan S, Zhang JQ, Wong AT. Current and emerging treatment options to prevent renal failure due to autosomal dominant polycystic kidney disease. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gopala K. Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Aarya Raghubanshi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Alissa Chaitarvornkit
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Faculty of Engineering, The University of Sydney, Camperdown, Australia
| | - Ashley N. Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | | | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| | - Mark N. Read
- The School of Computer Science and the Westmead Initiative, The University of Sydney, Westmead, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Jennifer Q.J. Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Annette T.Y. Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead, Australia
| |
Collapse
|
33
|
Vasopressin V2 receptor antagonists in autosomal dominant polycystic kidney disease: efficacy, safety, and tolerability. Kidney Int 2020; 98:289-293. [DOI: 10.1016/j.kint.2020.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
|
34
|
El Ters M, Zhou X, Lepping RJ, Lu P, Karcher RT, Mahnken JD, Brooks WM, Winklhofer FT, Li X, Yu AS. Biological Efficacy and Safety of Niacinamide in Patients With ADPKD. Kidney Int Rep 2020; 5:1271-1279. [PMID: 32775826 PMCID: PMC7403550 DOI: 10.1016/j.ekir.2020.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst enlargement, leading to kidney failure. Sirtuin-1 is upregulated in ADPKD and accelerates disease progression by deacetylating p53. Niacinamide is a dietary supplement that inhibits sirtuins at high doses. METHODS We conducted an open-label, single-arm intervention trial (study 1, N = 10), and a randomized, double blinded, placebo-controlled trial (study 2, N = 36) to assess the biological activity and safety of niacinamide. Patients with ADPKD were given 30 mg/kg oral niacinamide or placebo, for 12 months. The primary endpoint was the ratio of acetylated p53 to total p53 protein in peripheral blood mononuclear cells (PBMCs). RESULTS There was no sustained effect of niacinamide on acetylated/total p53 in either study and no difference between placebo and niacinamide arms. There was no difference in the change in height-adjusted total kidney volume over 12 months between niacinamide and placebo. Niacinamide was generally well tolerated. The most common adverse effects were nausea, diarrhea, gastroesophageal reflux, headache, and acneiform rash but there was no difference in their incidence between niacinamide and placebo. CONCLUSIONS In conclusion, niacinamide is safe and well-tolerated in patients with ADPKD. However, we were unable to detect a sustained inhibition of sirtuin activity over 12 months of treatment, and there was no signal to suggest a beneficial effect on any efficacy measure.
Collapse
Affiliation(s)
- Mireille El Ters
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xia Zhou
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rebecca J. Lepping
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pengcheng Lu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rainer T. Karcher
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan D. Mahnken
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William M. Brooks
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Franz T. Winklhofer
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaogang Li
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Alan S.L. Yu
- Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
35
|
Gimpel C, Bergmann C, Brinkert F, Cetiner M, Gembruch U, Haffner D, Kemper M, König J, Liebau M, Maier RF, Oh J, Pape L, Riechardt S, Rolle U, Rossi R, Stegmann J, Vester U, Kaisenberg CV, Weber S, Schaefer F. [Kidney Cysts and Cystic Nephropathies in Children - A Consensus Guideline by 10 German Medical Societies]. KLINISCHE PADIATRIE 2020; 232:228-248. [PMID: 32659844 DOI: 10.1055/a-1179-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This consensus-based guideline was developed by all relevant German pediatric medical societies. Ultrasound is the standard imaging modality for pre- and postnatal kidney cysts and should also exclude extrarenal manifestations in the abdomen and internal genital organs. MRI has selected indications. Suspicion of a cystic kidney disease should prompt consultation of a pediatric nephrologist. Prenatal management must be tailored to very different degrees of disease severity. After renal oligohydramnios, we recommend delivery in a perinatal center. Neonates should not be denied renal replacement therapy solely because of their age. Children with unilateral multicystic dysplastic kidney do not require routine further imaging or nephrectomy, but long-term nephrology follow-up (as do children with uni- or bilateral kidney hypo-/dysplasia with cysts). ARPKD (autosomal recessive polycystic kidney disease), nephronophthisis, Bardet-Biedl syndrome and HNF1B mutations cause relevant extrarenal disease and genetic testing is advisable. Children with tuberous sclerosis complex, tumor predisposition (e. g. von Hippel Lindau syndrome) or high risk of acquired kidney cysts should have regular ultrasounds. Even asymptomatic children of parents with ADPKD (autosomal dominant PKD) should be monitored for hypertension and proteinuria. Presymptomatic diagnostic ultrasound or genetic examination for ADPKD in minors should only be done after thorough counselling. Simple cysts are very rare in children and ADPKD in a parent should be excluded. Complex renal cysts require further investigation.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau
| | - Carsten Bergmann
- Department of Internal Medicine IV, Medical Center - University of Freiburg, Freiburg.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau.,Medizinische Genetik Mainz, Limbach Genetics, Mainz
| | - Florian Brinkert
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital of Bonn, Bonn
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Markus Kemper
- Department of Pediatrics, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, Hamburg
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Münster
| | - Max Liebau
- Department of Pediatrics, University Hospital Cologne, Cologne.,Center for Molecular Medicine, University of Cologne, Cologne
| | - Rolf Felix Maier
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg
| | - Udo Rolle
- Department of Pediatric Surgery, Hospital of the Goethe University Frankfurt, Frankfurt am Main
| | - Rainer Rossi
- Department of Pediatrics, Vivantes Klinikum Neukölln, Berlin
| | - Joachim Stegmann
- Department of Radiology, Catholic Children's Hospital Wilhelmstift, Hamburg
| | - Udo Vester
- Department of Pediatrics, HELIOS Hospital Duisburg, Duisburg
| | - Constantin von Kaisenberg
- Department of Obstetrics and Gynaecology, Center for Perinatal Medicine, Hannover Medical School, Hannover
| | - Stefanie Weber
- Department of Pediatrics, University Hospital of Giessen and Marburg, Campus Marburg, Marburg
| | - Franz Schaefer
- Center for Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology, University Hospital Heidelberg, Heidelberg
| |
Collapse
|
36
|
Meijer E, Heida JE, Gansevoort RT. No Change in Nocturia After NOCTURNE. Kidney Int Rep 2020; 5:762-765. [PMID: 32519995 PMCID: PMC7271940 DOI: 10.1016/j.ekir.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
The NOCTURNE Randomized Trial Comparing 2 Tolvaptan Formulations. Kidney Int Rep 2020; 5:801-812. [PMID: 32518862 PMCID: PMC7271939 DOI: 10.1016/j.ekir.2020.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction Tolvaptan, a treatment for autosomal dominant polycystic kidney disease (ADPKD), inhibits vasopressin V2 receptor signaling, which causes aquaretic adverse events (AAEs). The short-term efficacy and tolerability of a once-daily, modified-release (MR) formulation was assessed relative to the twice-daily, immediate-release (IR) formulation. Methods This Phase 2 multicenter, randomized (1:1:1:1), placebo-controlled, double-blind, placebo-masked, parallel-group study (NCT01451827) compared tolvaptan MR 50 mg once daily or tolvaptan MR 80 mg once daily with tolvaptan IR 60/30 mg daily split dose and placebo over 8 weeks in 177 subjects. The primary endpoint was percent change from baseline in total kidney volume (TKV) at week 3. Other endpoints included tolerability, assessed by adverse events and quality of life (QOL) measures. Results Mean percentage decreases in TKV at week 3 were observed for the pooled group of all (MR+IR) tolvaptan-treated subjects (−2.07%), tolvaptan MR 80 mg (−2.55%), and tolvaptan MR 50 mg (−2.46%) versus placebo (0.09%; P < 0.02 for each comparison with placebo), whereas the decrease with tolvaptan IR 60/30 mg (−1.17%; P = 0.24) did not reach significance. All tolvaptan regimens were associated with AAEs, but scores on ADPKD-specific and generic patient-reported outcome assessments showed little impact based on dosage on overall health-related QOL versus placebo. Conclusion Tolvaptan MR and tolvaptan IR demonstrated similar short-term efficacy, tolerability, and safety, with low impact on multiple measures of QOL. Conclusions regarding long-term efficacy are limited by the short duration of follow-up.
Collapse
|
38
|
Côté G, Asselin-Thompstone L, Mac-Way F, René de Cotret P, Lacroix C, Desmeules S, Agharazii M. Sodium and urea excretion as determinants of urine output in autosomal dominant polycystic kidney disease patients on V2 receptor antagonists: impact of dietary intervention. Int Urol Nephrol 2020; 52:343-349. [PMID: 32008201 DOI: 10.1007/s11255-020-02384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 01/13/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Tolvaptan, a vasopressin V2 receptor antagonist, slows the decline in renal function in autosomal dominant polycystic kidney disease (ADPKD). However, it increases urine output such that patient adherence could be compromised. In a cohort of patients with ADPKD on tolvaptan, we aimed to identify the contribution of sodium and urea excretion rate to daily urine output, and to evaluate the effectiveness of dietary counseling on sodium and urea excretion rates. METHODS Retrospective analysis of 30 ADPKD patients who underwent a single session of personalized dietary counseling to reduce sodium and protein intake before initiation of tolvaptan. Creatinine and 24-h urine were obtained regularly on treatment. Generalized estimation equations were used. RESULTS Mean age and median eGFR were 44 ± 11 years and 52 (43-74) ml/min/1.73 m2. Tolvaptan increased diuresis from 2.5 to 5.2 l/day. After adjusting for the dose of tolvaptan, an increase in sodium and urea excretion rate by 50 mmol/day was associated with an estimated additional urine volume of 0.6 l/day (95% CI 0.4-0.8 l/day; P < 0.001) and 0.25 l/day (95% CI 0.11-0.39 l/day; P < 0.001), respectively. Dietary counseling resulted in a transient reduction of sodium excretion by 19 mmol/day during the first 4 months (P = 0.016) but resulted in a more sustained reduction in urea excretion by 69 mmol/day (P = 0.008). CONCLUSION Both sodium and urea excretion rates contribute significantly to daily urine volume in patients treated with tolvaptan, and a single session of dietary counseling was transiently effective in reducing sodium intake but achieved a more sustained reduction in protein intake. Dietary counseling should be considered in the management of ADPKD patients treated by tolvaptan.
Collapse
Affiliation(s)
- Gabrielle Côté
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada.,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Lori Asselin-Thompstone
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada.,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Fabrice Mac-Way
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada.,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Paul René de Cotret
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada.,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Christine Lacroix
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada
| | - Simon Desmeules
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada.,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mohsen Agharazii
- Service de Néphrologie, CHU de Québec Research Center, L'Hôtel-Dieu de Québec Hospital, 11, Côte du Palais, Quebec, QC, G1R 2J6, Canada. .,Division of Nephrology, Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|