1
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
2
|
Nakamura T, Nishikawa Y, Shiokawa M, Takeda H, Yokode M, Matsumoto S, Muramoto Y, Ota S, Yoshida H, Okada H, Kuwada T, Marui S, Matsumori T, Maruno T, Uza N, Kodama Y, Hatano E, Seno H. ELF3 suppresses gallbladder cancer development through downregulation of the EREG/EGFR/mTOR complex 1 signalling pathway. J Pathol 2023; 261:28-42. [PMID: 37345534 DOI: 10.1002/path.6144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
The prognosis of gallbladder cancer (GBC) remains poor, and a better understanding of GBC molecular mechanisms is important. Genome sequencing of human GBC has demonstrated that loss-of-function mutations of E74-like ETS transcription factor 3 (ELF3) are frequently observed, with ELF3 considered to be a tumour suppressor in GBC. To clarify the underlying molecular mechanisms by which ELF3 suppresses GBC development, we performed in vivo analysis using a combination of autochthonous and allograft mouse models. We first evaluated the clinical significance of ELF3 expression in human GBC tissues and found that low ELF3 expression was associated with advanced clinical stage and deep tumour invasion. For in vivo analysis, we generated Pdx1-Cre; KrasG12D ; Trp53R172H ; Elf3f/f (KPCE) mice and Pdx1-Cre; KrasG12D ; Trp53R172H ; Elf3wt/wt (KPC) mice as a control and analysed their gallbladders histologically. KPCE mice developed larger papillary lesions in the gallbladder than those developed by KPC mice. Organoids established from the gallbladders of KPCE and KPC mice were analysed in vitro. RNA sequencing showed upregulated expression of epiregulin (Ereg) in KPCE organoids, and western blotting revealed that EGFR/mechanical targets of rapamycin complex 1 (mTORC1) were upregulated in KPCE organoids. In addition, ChIP assays on Elf3-overexpressing KPCE organoids showed that ELF3 directly regulated Ereg. Ereg deletion in KPCE organoids (using CRISPR/Cas9) induced EGFR/mTORC1 downregulation, indicating that ELF3 controlled EGFR/mTORC1 activity through regulation of Ereg expression. We also generated allograft mouse models using KPCE and KPC organoids and found that KPCE organoid allograft tumours exhibited poorly differentiated structures with mTORC1 upregulation and mesenchymal phenotype, which were suppressed by Ereg deletion. Furthermore, EGFR/mTORC1 inhibition suppressed cell proliferation and epithelial-mesenchymal transition in KPCE organoids. Our results suggest that ELF3 suppresses GBC development via downregulation of EREG/EGFR/mTORC1 signalling. EGFR/mTORC1 inhibition is a potential therapeutic option for GBC with ELF3 mutation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Takeharu Nakamura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Yokode
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shimpei Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuya Muramoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Yoshida
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
4
|
Han J, Wu S, Fan Y, Tian Y, Kong J. Biliary Microbiota in Choledocholithiasis and Correlation With Duodenal Microbiota. Front Cell Infect Microbiol 2021; 11:625589. [PMID: 33996618 PMCID: PMC8116743 DOI: 10.3389/fcimb.2021.625589] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background The pathogenesis of choledocholithiasis is closely related to the role of bacteria. However, little is known about the predictive role of bile bacteria in clinical conditions of patients and the compositional and functional characteristics of biliary microbiota in choledocholithiasis. Methods To investigate the predictive value of biliary bacteria, clinical data of 488 patients with choledocholithiasis were collected. The predictive value of common bile bacteria to patients’ clinical conditions was analyzed by logistic regression. Samples of bile and corresponding duodenal juice from 10 selected patients with choledocholithiasis were obtained, and the composition and function of microbial communities were analyzed based on 16S rRNA sequencing and Tax4Fun. Results The clinical conditions of patients with choledocholithiasis, such as recurrence, the severity of acute cholangitis, and duration of hospital stay were closely related to different species of bile bacteria as well as antimicrobial-resistant bacteria. Employing 16S rRNA sequencing, the dominant phyla of biliary and duodenal microbiota were Proteobacteria and Firmicutes. The top three core microbiota at the genus level were Escherichia–Shigella, Fusobacterium, and Enterococcus. Escherichia coli accounted for the most abundant annotated species in both. Differences in composition between biliary and duodenal microbiota were not significant according to the alpha and beta diversities. Differential abundant features were not found in biliary microbiota indicated by A linear discriminant analysis effective size algorithm. The major pathways identified in biliary and duodenal microbiota were related to membrane transport, translation, replication and repair, carbohydrate and amino acid metabolism. However, no significant difference in those major pathways, as well as antimicrobial-resistance patterns, was observed between biliary and duodenal microbiota. Conclusion Our study first demonstrates the predictive contribution of biliary bacteria to the clinical conditions of patients with choledocholithiasis, and then it offers new insights into the compositional and functional features of biliary and duodenal microbiota. Similarities between biliary and duodenal microbiota support the theory of bacterial duodenal–biliary reflux in patients with choledocholithiasis. Meanwhile, when it is impracticable to obtain a bile sample, duodenal juice may be used as an alternative for bacterial culture and susceptibility tests.
Collapse
Affiliation(s)
- Jinyan Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Fan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Matsui S, Harada K, Miyata N, Okochi H, Miyajima A, Tanaka M. Characterization of Peribiliary Gland–Constituting Cells Based on Differential Expression of Trophoblast Cell Surface Protein 2 in Biliary Tract. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2059-2073. [DOI: 10.1016/j.ajpath.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
|
6
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
7
|
Abstract
A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.
Collapse
Affiliation(s)
- Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- AMED-CREST Program, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
McCracken KW, Wells JM. Mechanisms of embryonic stomach development. Semin Cell Dev Biol 2017; 66:36-42. [PMID: 28238948 DOI: 10.1016/j.semcdb.2017.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 12/18/2022]
Abstract
The stomach is a digestive organ that has important roles in human physiology and pathophysiology. The developmental origin of the stomach is the embryonic foregut, which also gives rise a number of other structures. There are several signaling pathways and transcription factors that are known to regulate stomach development at different stages, including foregut patterning, stomach specification, and gastric regionalization. These developmental events have important implications in later homeostasis and disease in the adult stomach. Here we will review the literature that has shaped our current understanding of the molecular mechanisms that coordinate gastric organogenesis. Further we will discuss how developmental paradigms have guided recent efforts to differentiate stomach tissue from pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - James M Wells
- Division of Developmental Biology, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA; Division of Endocrinology Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
9
|
Abstract
Gallstone disease is a common and frequently occurring disease in human, and it is the main disease among the digestive system diseases. The incidence of gallstone disease in western countries is about 5%-22%, and common bile duct stones (CBDS) accounts for 8%-20%. CBDS easily lead to biliary obstruction, secondary cholangitis, pancreatitis, and obstructive jaundice, even endanger life. Therefore, it needs timely treatment once diagnosed. The recurrence of choledocholithiasis after bile duct stones clearance involves complicated factors and cannot be completely elaborated by a single factor. The risk factors for recurrence of choledocholithiasis include bacteria, biliary structure, endoscopic and surgical treatment, and inflammation. The modalities for management of choledocholithiasis are endoscopic retrograde cholangiopancreatography (ERCP), laparoscopic or open common bile duct exploration, dissolving solutions, extracorporeal shockwave lithotripsy (ESWL), percutaneous radiological interventions, electrohydraulic lithotripsy (EHL) and laser lithotripsy. We compare the different benefits between surgery and ERCP. And finally, we make a summary of the current strategy for reducing the recurrence of CBDS and future perspectives for CBDS management.
Collapse
Affiliation(s)
| | - Sun Qiang
- b Department of General Surgery , Jing'an District Center Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch) , Shanghai , PR China
| | - Yin Bao-Bing
- c Department of General Surgery , Huashan Hospital, Fudan University , Shanghai , PR China
| |
Collapse
|
10
|
Diabetes Caused by Elastase-Cre-Mediated Pdx1 Inactivation in Mice. Sci Rep 2016; 6:21211. [PMID: 26887806 PMCID: PMC4758062 DOI: 10.1038/srep21211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Endocrine and exocrine pancreas tissues are both derived from the posterior foregut endoderm, however, the interdependence of these two cell types during their formation is not well understood. In this study, we generated mutant mice, in which the exocrine tissue is hypoplastic, in order to reveal a possible requirement for exocrine pancreas tissue in endocrine development and/or function. Since previous studies showed an indispensable role for Pdx1 in pancreas organogenesis, we used Elastase-Cre-mediated recombination to inactivate Pdx1 in the pancreatic exocrine lineage during embryonic stages. Along with exocrine defects, including impaired acinar cell maturation, the mutant mice exhibited substantial endocrine defects, including disturbed tip/trunk patterning of the developing ductal structure, a reduced number of Ngn3-expressing endocrine precursors, and ultimately fewer β cells. Notably, postnatal expansion of the endocrine cell content was extremely poor, and the mutant mice exhibited impaired glucose homeostasis. These findings suggest the existence of an unknown but essential factor(s) in the adjacent exocrine tissue that regulates proper formation of endocrine precursors and the expansion and function of endocrine tissues during embryonic and postnatal stages.
Collapse
|
11
|
Abstract
This review is based upon an invited lecture for the 52nd Annual Meeting of the British Association of Paediatric Surgeons, July 2015. The aetiology of biliary atresia (BA) is at best obscure, but it is probable that a number of causes or pathophysiological mechanisms may be involved leading to the final common phenotype we recognise clinically. By way of illustration, similar conditions to human BA are described, including biliary agenesis, which is the normal state and peculiar final pattern of bile duct development in the jawless fish, the lamprey. Furthermore, there have been remarkable outbreaks in the Australian outback of BA in newborn lambs whose mothers were exposed to and grazed upon a particular plant species (Dysphania glomulifera) during gestation. More recent work using a zebrafish model has isolated a toxic isoflavonoid, now named Biliatresone, thought to be responsible for these outbreaks. Normal development of the bile ducts is reviewed and parallels drawn with two clinical variants thought to definitively have their origins in intrauterine life: Biliary Atresia Splenic Malformation syndrome (BASM) and Cystic Biliary Atresia (CBA). For both variants there is sufficient clinical evidence, including associated anomalies and antenatal detection, respectively, to warrant their aetiological attribution as developmental BA. CMV IgM +ve associated BA is a further variant that appears separate with distinct clinical, histological, and immunohistochemical features. In these it seems possible that this involves perinatal obliteration of a normally formed duct system. Although still circumstantial, this evidence appears convincing enough to perhaps warrant a different treatment strategy. This then still leaves the most common (more than 60% in Western series) variant, now termed Isolated BA, whereby origins can only be alluded to.
Collapse
Affiliation(s)
- Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK.
| |
Collapse
|
12
|
Toyoda T, Mae SI, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 2015; 14:185-97. [DOI: 10.1016/j.scr.2015.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/28/2014] [Accepted: 01/19/2015] [Indexed: 01/22/2023] Open
|
13
|
Multipotent stem/progenitor cells in the human foetal biliary tree. J Hepatol 2012; 57:987-94. [PMID: 22820480 DOI: 10.1016/j.jhep.2012.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Biliary tree, liver, and pancreas share a common embryological origin. We previously demonstrated the presence of stem/progenitor cells of endodermal origin in the adult human extrahepatic biliary tree. This study evaluated the human foetal biliary trees as sources of stem/progenitor cells of multiple endodermal-derived mature fates. METHODS Human foetal intrahepatic and extrahepatic biliary tree tissues and isolated cells were tested for cytoplasmic and surface markers of stem cells and committed progenitors, as well as endodermal transcription factors requisite for a liver versus pancreatic fate. In vitro and in vivo experiments were conducted to evaluate the potential mature fates of differentiation. RESULTS Foetal biliary tree cells proliferated clonogenically for more than 1 month on plastic in a serum-free Kubota medium. After culture expansion, cells exhibited multipotency and could be restricted to certain lineages under defined microenvironments, including hepatocytes, cholangiocytes, and pancreatic islet cells. Transplantation of foetal biliary tree cells into the livers of immunodeficient mice resulted in effective engraftment and differentiation into mature hepatocytes and cholangiocytes. CONCLUSIONS Foetal biliary trees contain multipotent stem/progenitor cells comparable with those in adults. These cells can be easily expanded and induced in vitro to differentiate into liver and pancreatic mature fates, and engrafted and differentiated into mature cells when transplanted in vivo. These findings further characterise the development of these stem/progenitor cell populations from foetuses to adults, which are thought to contribute to liver and pancreas organogenesis throughout life.
Collapse
|
14
|
Ma J, Li J, Li H, Xiao X, Shen L, Fang L. Downregulation of pancreatic-duodenal homeobox 1 expression in breast cancer patients: a mechanism of proliferation and apoptosis in cancer. Mol Med Rep 2012; 6:983-8. [PMID: 22961564 DOI: 10.3892/mmr.2012.1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/07/2012] [Indexed: 11/06/2022] Open
Abstract
Pancreatic-duodenal homeobox 1 (PDX-1) is a transcription factor that regulates embryological pancreas development and insulin expression in adult islets. The current study investigated the expression profile and potential role of PDX-1 in breast cancer. Immunohistochemistry was performed to determine the expression pattern of PDX-1 in breast cancer and adjacent benign breast tissues. In addition, cell proliferation and the cell cycle were evaluated following the transient inhibition of PDX-1 with antisense oligonucleotides in MCF-7 human breast cancer cells. Real-time PCR and western blotting were conducted to investigate the correlation between PDX-1, P53, Ki-67, Caspase 3 and Caspase 8. These experiments demonstrated that PDX-1 was downregulated in human breast cancer tissue compared with adjacent normal breast tissue. Knockdown of PDX-1 expression in vitro in MCF-7 breast cancer cells promoted cell proliferation and disrupted the cell cycle, as demonstrated by the overexpression of P53 and Ki-67 at the mRNA and protein levels. In conclusion, the current study shows that PDX-1 regulates cell proliferation and the cell cycle in human breast cancer cells by altering the expression of the cell cycle-related genes, P53 and Ki-67. These data suggest that PDX-1 is a putative tumor suppressor in breast cancer.
Collapse
Affiliation(s)
- Jie Ma
- Department of Breast and Thyroid Surgery, Tenth People's Hospital of Tongji University, Zhabei, Shanghai 200072, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012; 56:1159-1170. [PMID: 22245898 PMCID: PMC3328609 DOI: 10.1016/j.jhep.2011.09.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Several cholangiopathies result from a perturbation of developmental processes. Most of these cholangiopathies are characterised by the persistence of biliary structures with foetal configuration. Developmental processes are also relevant in acquired liver diseases, as liver repair mechanisms exploit a range of autocrine and paracrine signals transiently expressed in embryonic life. We briefly review the ontogenesis of the intra- and extrahepatic biliary tree, highlighting the morphogens, growth factors, and transcription factors that regulate biliary development, and the relationships between developing bile ducts and other branching biliary structures. Then, we discuss the ontogenetic mechanisms involved in liver repair, and how these mechanisms are recapitulated in ductular reaction, a common reparative response to many forms of biliary and hepatocellular damage. Finally, we discuss the pathogenic aspects of the most important primary cholangiopathies related to altered biliary development, i.e. polycystic and fibropolycystic liver diseases, Alagille syndrome.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Section of Digestive Diseases, Yale University, New Haven, CT, USA; Department of Clinical Medicine, University of Milan-Bicocca, Milan, Italy.
| | - Luca Fabris
- Department of Clinical Medicine, University of Milan-Bicocca, Milan, Italy,Department of Surgical and Gastroenterological Sciences, University of Padova, Italy
| |
Collapse
|
16
|
Pancreatic Duodenal Homeobox-1 de novo expression drives cholangiocyte neuroendocrine-like transdifferentiation. J Hepatol 2010; 53:663-70. [PMID: 20621380 DOI: 10.1016/j.jhep.2010.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 04/10/2010] [Accepted: 04/12/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Reactive cholangiocytes acquire a neuroendocrine-like phenotype, with synthesis and local release of neuropeptides and hormones. The mechanism that drives such phenotypical changes is still undefined. Pancreatic Duodenal Homeobox-1 (PDX-1) is a transcription factor required for pancreatic development, that sustains pancreatic beta-cell response to injury and insulin synthesis. PDX-1 induces neuroendocrine-like transition of pancreatic ductal cells. Cholangiocyte response to injury is modulated by Glucagon-Like Peptide-1 Receptor (GLP-1R), which, in the pancreas, activates PDX-1. We wanted to verify whether PDX-1 plays any role in cholangiocyte neuroendocrine-like transdifferentiation in response to injury. METHODS PDX-1 expression was assessed in cholangiocytes from normal and one week bile duct ligated (BDL) rats. Changes in PDX-1 expression and activation upon GLP-1R activation were then assayed. The effects of the lack of PDX-1 in cholangiocytes were studied in vitro by siRNA and in vivo by the employment of PDX-1-deficient (+/-) mice. RESULTS BDL but not normal cholangiocytes express PDX-1. GLP-1R activation elicits, in a PI3K-dependent fashion, PDX-1 expression, together with its nuclear translocation. In vitro, GLP-1R-induced increases in VEGF and IGF-1 mRNA expression were blunted in cells with PDX-1 siRNA. In vivo, the VEGF and IGF-1 mRNA expression in the liver after one week BDL was markedly reduced in PDX-1-deficient mice, together with reduced bile duct mass. CONCLUSIONS In response to injury, reactive cholangiocytes de novo express PDX-1, the activation of which allows cholangiocytes to synthesize IGF-1 and VEGF. These findings suggest that PDX-1 drives the acquisition of the neuroendocrine-like phenotype by cholangiocytes in response to cholestatic injury.
Collapse
|
17
|
Lemaigre FP. Molecular mechanisms of biliary development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:103-26. [PMID: 21074731 DOI: 10.1016/b978-0-12-385233-5.00004-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biliary tree drains the bile produced by hepatocytes to the duodenum via a network of intrahepatic and extrahepatic ducts. In the embryo, the intrahepatic ducts are formed near the branches of the portal vein and derive from the liver precursor cells of the hepatic bud, whereas the extrahepatic ducts directly emerge from the primitive gut. Despite this dual origin, intrahepatic and extrahepatic ducts are lined by a common cell type, the cholangiocyte. In this chapter, we describe how bile ducts are formed and cholangiocytes differentiate, and focus on the regulation of these processes by intercellular signaling pathways and by transcriptional and posttranscriptional mechanisms.
Collapse
|
18
|
Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137:62-79. [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 12/12/2022]
Abstract
The study of liver development has significantly contributed to developmental concepts about morphogenesis and differentiation of other organs. Knowledge of the mechanisms that regulate hepatic epithelial cell differentiation has been essential in creating efficient cell culture protocols for programmed differentiation of stem cells to hepatocytes as well as developing cell transplantation therapies. Such knowledge also provides a basis for the understanding of human congenital diseases. Importantly, much of our understanding of organ development has arisen from analyses of patients with liver deficiencies. We review how the liver develops in the embryo and discuss the concepts that operate during this process. We focus on the mechanisms that control the differentiation and organization of the hepatocytes and cholangiocytes and refer to other reviews for the development of nonepithelial tissue in the liver. Much progress in the characterization of liver development has been the result of genetic studies of human diseases; gaining a better understanding of these mechanisms could lead to new therapeutic approaches for patients with liver disorders.
Collapse
|
19
|
Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Kawaguchi M, Terao M, Doi R, Wright CV, Hoshino M, Chiba T, Uemoto S. Reduction of Ptf1a gene dosage causes pancreatic hypoplasia and diabetes in mice. Diabetes 2008; 57:2421-31. [PMID: 18591390 PMCID: PMC2518493 DOI: 10.2337/db07-1558] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Most pancreatic endocrine cells derive from Ptf1a-expressing progenitor cells. In humans, nonsense mutations in Ptf1a have recently been identified as a cause of permanent neonatal diabetes associated with pancreatic agenesis. The death of Ptf1a-null mice soon after birth has not allowed further insight into the pathogenesis of the disease; it is therefore unclear how much pancreatic endocrine function is dependent on Ptf1a in mammals. This study aims to investigate gene-dosage effects of Ptf1a on pancreas development and function in mice. RESEARCH DESIGN AND METHODS Combining hypomorphic and null alleles of Ptf1a and Cre-mediated lineage tracing, we followed the cell fate of reduced Ptf1a-expressing progenitors and analyzed pancreas development and function in mice. RESULTS Reduced Ptf1a dosage resulted in pancreatic hypoplasia and glucose intolerance with insufficient insulin secretion in a dosage-dependent manner. In hypomorphic mutant mice, pancreatic bud size was small and substantial proportions of pancreatic progenitors were misspecified to the common bile duct and duodenal cells. Growth with branching morphogenesis and subsequent exocrine cytodifferentiation was reduced and delayed. Total beta-cell number was decreased, proportion of non-beta islet cells was increased, and alpha-cells were abnormally intermingled with beta-cells. Interestingly, Pdx1 expression was decreased in early pancreatic progenitors but elevated to normal level at the mid-to-late stages of pancreatogenesis. CONCLUSIONS-The dosage of Ptf1a is crucial for pancreas specification, growth, total beta-cell number, islet morphogenesis, and endocrine function. Some neonatal diabetes may be caused by mutation or single nucleotide polymorphisms in the Ptf1a gene that reduce gene expression levels.
Collapse
Affiliation(s)
- Akihisa Fukuda
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology & Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Yoshiya Kawaguchi
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sota Kodama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Horiguchi
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuhara
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiya Kawaguchi
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mami Terao
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuichiro Doi
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Christopher V.E. Wright
- Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mikio Hoshino
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology & Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Ma J, Chen M, Wang J, Xia HHX, Zhu S, Liang Y, Gu Q, Qiao L, Dai Y, Zou B, Li Z, Zhang Y, Lan H, Wong BCY. Pancreatic duodenal homeobox-1 (PDX1) functions as a tumor suppressor in gastric cancer. Carcinogenesis 2008; 29:1327-33. [PMID: 18477649 DOI: 10.1093/carcin/bgn112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Pancreatic duodenal homeobox-1 (PDX1) is a transcription factor of homeobox genes family important in differentiation and development of the pancreas, duodenum and antrum. This study aims to clarify the putative role of PDX1 in gastric carcinogenesis. METHODS PDX1 expression was detected in gastric tissues with chronic gastritis and cancer as well as gastric cancer cell lines by immunohistochemistry, western blot, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real-time RT-PCR assays. The effects of PDX1 on cell proliferation, apoptosis, clone formation and migration were evaluated using cancer cell lines after transient or stable transfection with PDX1-expressing vector. The ability of PDX1 stable transfectant in tumor formation in xenograft mice was assessed. RESULTS PDX1 was strongly expressed in normal gastric glands, but was absent in 29 of 39 of human gastric cancer and most gastric cancer cell lines. Negative correlation between PDX1 and Ki-67 expression was found in both gastric tissues and cell lines. Ectopic overexpression of PDX1 significantly inhibited cell proliferation and induced apoptosis, accompanied by the activation of caspases 3, 8, 9 and 10. Overexpression of PDX1 also impaired the ability of cancer cells in clonal formation and migration in vitro. Furthermore, stable transfection with PDX1 reduced the ability of cancer cells in tumor formation in nude mice. CONCLUSIONS PDX1 expression is lost in gastric cancers. Its effect on cell proliferation/apoptosis, migration and tumor formation in vitro and in vivo suggested that this protein functions as a putative tumor suppressor in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Division of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Burlison JS, Long Q, Fujitani Y, Wright CVE, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol 2008; 316:74-86. [PMID: 18294628 DOI: 10.1016/j.ydbio.2008.01.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 01/02/2008] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
The pancreas is derived from a pool of multipotent progenitor cells (MPCs) that co-express Pdx-1 and Ptf1a. To more precisely define how the individual and combined loss of Pdx-1 and Ptf1a affects pancreatic MPC specification and differentiation we derived and studied mice bearing a novel Ptf1a(YFP) allele. While the expression of Pdx-1 and Ptf1a in pancreatic MPCs coincides between E9.5 and 12.5 the developmental phenotypes of Pdx-1 null and Pdx-1; Ptf1a double null mice are indistinguishable, and an early pancreatic bud is formed in both cases. This finding indicates that Pdx-1 is required in the foregut endoderm prior to Ptf1a for pancreatic MPC specification. We also found that Ptf1a is neither required for specification of Ngn3-positive endocrine progenitors nor differentiation of mature beta-cells. In the absence of Pdx-1 Ngn3-positive cells were not observed after E9.5. Thus, in contrast to the deletion of Ptf1a, the loss of Pdx-1 precludes the sustained Ngn3-based derivation of endocrine progenitors from pancreatic MPCs. Taken together, these studies indicate that Pdx-1 and Ptf1a have distinct but interdependent functions during pancreatic MPC specification.
Collapse
Affiliation(s)
- Jared S Burlison
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0225, USA
| | | | | | | | | |
Collapse
|
22
|
Boyer DF, Fujitani Y, Gannon M, Powers AC, Stein RW, Wright CVE. Complementation rescue of Pdx1 null phenotype demonstrates distinct roles of proximal and distal cis-regulatory sequences in pancreatic and duodenal expression. Dev Biol 2006; 298:616-31. [PMID: 16962573 DOI: 10.1016/j.ydbio.2006.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/20/2022]
Abstract
The unique, well-demarcated expression domain of Pdx1 within the posterior foregut suggests that investigating its transcriptional regulation will provide insight into mechanisms that regionally pattern the endoderm. Previous phylogenetic comparison identified conserved noncoding regions that stimulate transcriptional activity selectively in cultured pancreatic beta cells. Characterization of these regulatory elements is helping to dissect the transcription factor networks that operate within beta cells, which is important for understanding the etiology of beta cell dysfunction and diabetes, as well as for developing methods to produce beta cells in vitro for cell-based therapies. We recently reported that deletion of three proximally located conserved areas (Area I-II-III) from the endogenous Pdx1 locus resulted in severely reduced expression of Pdx1 in the pancreas, and a milder decrease in other foregut tissues. Here, we report transgene-based complementation experiments on Pdx1 null mice, which reveal that the proximal promoter/enhancer region, including Area I-II-III, rescues the pancreatic defects caused by Pdx1 deficiency, but only weakly promotes expression of Pdx1 in the postnatal stomach and duodenum. These results reveal a role for distal cis-regulatory elements in achieving the correct level of extra-pancreatic Pdx1 expression, which is necessary for the production of duodenal GIP cells and stomach gastrin cells.
Collapse
Affiliation(s)
- Daniel F Boyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|
23
|
Fukuda A, Kawaguchi Y, Furuyama K, Kodama S, Horiguchi M, Kuhara T, Koizumi M, Boyer DF, Fujimoto K, Doi R, Kageyama R, Wright CV, Chiba T. Ectopic pancreas formation in Hes1 -knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J Clin Invest 2006; 116:1484-93. [PMID: 16710472 PMCID: PMC1462947 DOI: 10.1172/jci27704] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 03/22/2006] [Indexed: 01/26/2023] Open
Abstract
Ectopic pancreas is a developmental anomaly occasionally found in humans. Hes1, a main effector of Notch signaling, regulates the fate and differentiation of many cell types during development. To gain insights into the role of the Notch pathway in pancreatic fate determination, we combined the use of Hes1-knockout mice and lineage tracing employing the Cre/loxP system to specifically mark pancreatic precursor cells and their progeny in Ptf1a-cre and Rosa26 reporter mice. We show that inactivation of Hes1 induces misexpression of Ptf1a in discrete regions of the primitive stomach and duodenum and throughout the common bile duct. All ectopic Ptf1a-expressing cells were reprogrammed, or transcommitted, to multipotent pancreatic progenitor status and subsequently differentiated into mature pancreatic exocrine, endocrine, and duct cells. This process recapitulated normal pancreatogenesis in terms of morphological and genetic features. Furthermore, analysis of Hes1/Ptf1a double mutants revealed that ectopic Ptf1a-cre lineage-labeled cells adopted the fate of region-appropriate gut epithelium or endocrine cells similarly to Ptf1a-inactivated cells in the native pancreatic buds. Our data demonstrate that the Hes1-mediated Notch pathway is required for region-appropriate specification of pancreas in the developing foregut endoderm through regulation of Ptf1a expression, providing novel insight into the pathogenesis of ectopic pancreas development in a mouse model.
Collapse
Affiliation(s)
- Akihisa Fukuda
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Sota Kodama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masashi Horiguchi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takeshi Kuhara
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masayuki Koizumi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Daniel F. Boyer
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Ryuichiro Doi
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Christopher V.E. Wright
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Surgery and Surgical Basic Science and
Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan.
Vanderbilt Developmental Biology Program, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|