1
|
Pitstick L, Goral J, Ciancio MJ, Meyer A, Pytynia M, Bychek S, Zidan S, Shuey J, Jham BC, Green JM. Effects of folate deficiency and sex on carcinogenesis in a mouse model of oral cancer. Oral Dis 2024; 30:1989-2003. [PMID: 37731277 DOI: 10.1111/odi.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES To investigate the effects of dietary folate and sex on histopathology of oral squamous cell carcinoma in mice. MATERIALS AND METHODS Mice (C57Bl/6, 30/sex) were fed either a deficient folate or sufficient folate diet. Vehicle or 4-nitroquinoline1-oxide (50 μg/mL) in vehicle were administered in drinking water for 20 weeks, followed by 6 weeks of regular drinking water. Oral lesions were observed weekly. Tongues were studied for histopathologic changes. Immunohistochemical techniques were used to measure cell proliferation (Ki67+), and to quantify expression of folate receptor, reduced folate carrier, and proton-coupled folate transporter. T cells, macrophages, and neutrophils were counted and normalized to area. RESULTS All 4NQO-treated mice developed oral tumors. Dietary folate level did not affect tumor burden. More tumors were observed on the ventral aspect of the tongue than in other locations within the oral cavity. 4-nitroquinoline-1-oxide-treated mice displayed 27%-46% significantly lower expression of all three folate transport proteins; diet and sex had no effect on folate transporter expression. T-cell and neutrophil infiltration in tongues were 9.1-fold and 18.1-fold increased in the 4-nitroquinoline-1-oxide-treated mouse tongues than in controls. CONCLUSION Treatment with 4NQO was the primary factor in determining cancer development, decreased folate transport expression, and lymphoid cell infiltration.
Collapse
Affiliation(s)
- Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Mae J Ciancio
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Matthew Pytynia
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Sofia Bychek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Safia Zidan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| | - Jennifer Shuey
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - Bruno C Jham
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Illinois, USA
| | - Jacalyn M Green
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
2
|
Ren H, Wang K, Liu Z, Zhong X, Liang M, Liao Y. Effect of Low Dietary Folate on Mouse Spermatogenesis and Spindle Assembly Checkpoint Dysfunction May Contribute to Folate Deficiency-Induced Chromosomal Instability in Cultured Mouse Spermatogonia. DNA Cell Biol 2023; 42:515-525. [PMID: 37289823 DOI: 10.1089/dna.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Folate, as the initial substrate in one-carbon metabolism, is involved in the synthesis of important substances such as DNA, RNA, and protein. Folate deficiency (FD) is associated with male subfertility and impaired spermatogenesis, yet the underlying mechanisms are poorly understood. In the present study, we established an animal model of FD to investigate the effect of FD on spermatogenesis. GC-1 spermatogonia were used as a model to investigate the effect of FD on proliferation, viability, and chromosomal instability (CIN). Furthermore, we explored the expression of core genes and proteins of spindle assembly checkpoint (SAC), a signaling cascade ensuring accurate chromosome segregation and preventing CIN during mitosis. Cells were maintained in medium containing 0, 20, 200, or 2000 nM folate for 14 days. CIN was measured by using a cytokinesis-blocked micronucleus cytome assay. We found that sperm counts decreased significantly (p < 0.001) and the rate of sperm with defects in the head increased significantly (p < 0.05) in FD diet mice. We also found, relative to the folate-sufficient conditions (2000 nM), cells cultured with 0, 20, or 200 nM folate exhibited delayed growth and increased apoptosis in an inverse dose-dependent manner. FD (0, 20, or 200 nM) significantly induced CIN (p < 0.001, p < 0.001, and p < 0.05, respectively). Moreover, FD significantly and inverse dose dependently increased the mRNA and protein expression of several key SAC-related genes. The results indicate that FD impairs SAC activity, which contributes to mitotic aberrations and CIN. These findings establish a novel association between FD and SAC dysfunction. Thus, FD-impaired spermatogenesis may be partly due to genomic instability and proliferation inhibition of spermatogonia.
Collapse
Affiliation(s)
- Huanhuan Ren
- School of Life Science, Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, Fuyang Fifth People's Hospital, Fuyang, China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Zirui Liu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Xuansheng Zhong
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Yaping Liao
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Gaare JJ, Dölle C, Brakedal B, Brügger K, Haugarvoll K, Nido GS, Tzoulis C. Nicotinamide riboside supplementation is not associated with altered methylation homeostasis in Parkinson's disease. iScience 2023; 26:106278. [PMID: 36936793 PMCID: PMC10014306 DOI: 10.1016/j.isci.2023.106278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Replenishing nicotinamide adenine dinucleotide (NAD) via supplementation of nicotinamide riboside (NR) has been shown to confer neuroprotective effects in models of aging and neurodegenerative diseases, including Parkinson's disease (PD). Although generally considered safe, concerns have been raised that NR supplementation could impact methylation dependent reactions, including DNA methylation, because of increased production and methylation dependent breakdown of nicotinamide (NAM). We investigated the effect of NR supplementation on DNA methylation in a double blinded, placebo-controlled trial of 29 human subjects with PD, in blood cells and muscle tissue. Our results show that NR had no impact on DNA methylation homeostasis, including individuals with common pathogenic mutations in the MTHFR gene known to affect one-carbon metabolism. Pathway and methylation variance analyses indicate that there might be minor regulatory responses to NR. We conclude that short-term therapy with high-dose NR for up to 30 days has no deleterious impact on methylation homeostasis.
Collapse
Affiliation(s)
- Johannes J. Gaare
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Brage Brakedal
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kim Brügger
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Bai J, Tang L, Luo Y, Han Z, Li C, Sun Y, Sun Q, Lu J, Qiu H, Zhao Z, Huo T, Xiong W, Zhang Q. Vitamin B complex blocks the dust fall PM 2 .5 -induced acute lung injury through DNA methylation in rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:403-414. [PMID: 36282901 DOI: 10.1002/tox.23689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to explore whether vitamin B complex (folic acid, B6 , and B12 ) could avert DNA methylation changes associated with inflammation induced by acute PM2.5 exposure. Sprague-Dawley rats were administered by gavage with different concentrations of vitamin B complex once a day for 28 days, and then by intratracheal instillation with saline or PM2.5 once every 2 days for three times. Vitamin B continued to be taken during the PM2.5 exposure. Rats were sacrificed 24 h after the last exposure. The results showed that vitamin B complex could block the pathological changes and injury in lungs induced by PM2.5 . Meanwhile, vitamin B complex could prevent the abnormal DNA methylation of IL-4 and IFN-γ to antagonize the imbalance of IL-4/IFN-γ associated with inflammation. It was further found that vitamin B complex could regulate DNA methyltransferases (DNMTs) and increase the S-adenosylmethionine (SAM)/S-Adenosyl-L-homocysteine (SAH) ratio to reverse the hypomethylation of genomic DNA and the abnormal DNA methylation of IL-4 and IFN-γ. In conclusion, vitamin B complex has a protective effect on acute lung injury by attenuating abnormal DNA methylation induced by PM2.5 in rats. This study may provide a new insight into the physiological function of vitamin B to prevent the health effects induced by PM2.5 .
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Lanlan Tang
- School of Public Health, Southwest Medical University, Luzhou, China
- Chengdu Jintang Municipal Center for Disease Control and Prevention, Chengdu, China
| | - Yajun Luo
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Zhixia Han
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Chenwen Li
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
| | - Qian Sun
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, China
| | - Ji Lu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhenhu Zhao
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Tingting Huo
- School of Environmental and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Wei Xiong
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Rao SVR, Raju MVLN, Srilatha T, Nagalakshmi D, Rajkumar U. Supplementation of sulfur and folic acid improves performance of broiler chicken fed suboptimal concentrations of dietary methionine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5720-5728. [PMID: 35396738 DOI: 10.1002/jsfa.11920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Supplementation of sulfur (S) and folic acid (FA) are known to spare the dietary requirement of methionine (Met) in chicken. An experiment was conducted to determine the effects of feeding graded concentrations of FA (0, 2, 4, 6, 8 mg kg-1 ) and two concentrations of S (0 and 2 g kg-1 ) in 5 × 2 factorial design. Diet without FA and S was considered as negative control (NC). Another diet with the recommended concentration of Met was considered as the positive control (PC). Each diet was offered ad libitum from day 1 to 42 to 10 pens of 20 male chicks each. RESULTS Broilers fed the NC diet had lower body weight gain (BWG), high feed conversion ratio, lower ready-to-cook yield, higher lipid peroxidation and reduced concentrations of protein and albumin in serum. BWG improved with FA at day 21 and showed a trend of improvement at day 42. Similarly, BWG improved with S supplementation at day 42. The FA and S interaction indicated a significant reduction in lipid peroxidation with S supplementation at the majority of FA levels. Serum protein fractions increased with increased dietary FA content and increased further with S supplementation. CONCLUSION Based on the results, it is concluded that the combination of FA (4 mg kg-1 ) and S (2 g kg-1 ) improved BWG. Similarly, the feed efficiency with 6 mg FA alone or with S was similar to the PC group. The improvement was probably due to the increase in protein accretion and reduction in lipid peroxidation with FA and S supplementation. © 2022 Society of Chemical Industry.
Collapse
|
6
|
Mendes CC, Zampieri BL, Arantes LMRB, Melendez ME, Biselli JM, Carvalho AL, Eberlin MN, Riccio MF, Vannucchi H, Carvalho VM, Goloni-Bertollo EM, Pavarino ÉC. One-carbon metabolism and global DNA methylation in mothers of individuals with Down syndrome. Hum Cell 2021; 34:1671-1681. [PMID: 34410622 DOI: 10.1007/s13577-021-00586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Down syndrome (DS) is the most common chromosomal disorder, resulting from the failure of normal chromosome 21 segregation. Studies have suggested that impairments within the one-carbon metabolic pathway can be of relevance for the global genome instability observed in mothers of individuals with DS. Based on the association between global DNA hypomethylation, genome instability, and impairments within the one-carbon metabolic pathway, the present study aimed to identify possible predictors, within the one-carbon metabolism, of global DNA methylation, measured by methylation patterns of LINE-1 and Alu repetitive sequences, in mothers of individuals with DS and mothers of individuals without the syndrome. In addition, we investigated one-carbon genetic polymorphisms and metabolites as maternal predisposing factors for the occurrence of trisomy 21 in children. Eighty-three samples of mothers of children with DS with karyotypically confirmed free trisomy 21 (case group) and 84 of mothers who had at least one child without DS or any other aneuploidy were included in the study. Pyrosequencing assays were performed to access global methylation. The results showed that group affiliation (case or control), betaine-homocysteine methyltransferase (BHMT) G742A and transcobalamin 2 (TCN2) C776G polymorphisms, and folate concentration were identified as predictors of global Alu DNA methylation values. In addition, thymidylate synthase (TYMS) 28-bp repeats 2R/3R or 3R/3R genotypes are independent maternal predisposing factors for having a child with DS. This study adds evidence that supports the association of impairments in the one-carbon metabolism, global DNA methylation, and the possibility of having a child with DS.
Collapse
Affiliation(s)
- Cristiani Cortez Mendes
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | | | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Joice Matos Biselli
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto, Departamento de Ciências Biológicas, São José do Rio Preto, São Paulo, Brazil
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Universidade Presbiteriana Mackenzie, Discovery-Mackenzie-Núcleo Mackenzie de Pesquisa, Núcleo Mackenzie de Pesquisas em Ciência, Fé e Sociedade, São Paulo, São Paulo, Brazil
| | | | - Hélio Vannucchi
- Laboratório de Nutrição, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Eny Maria Goloni-Bertollo
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil
| | - Érika Cristina Pavarino
- Unidade de Pesquisa em Genética e Biologia Molecular-UPGEM, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, Brazil.
- , Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, São Paulo, 15090-000, Brazil.
| |
Collapse
|
7
|
Shen PW, Ho CT, Hsiao SH, Chou YT, Chang YC, Liu JJ. Disruption of Cytosolic Folate Integrity Aggravates Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors and Modulates Metastatic Properties in Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms22168838. [PMID: 34445544 PMCID: PMC8396212 DOI: 10.3390/ijms22168838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with advanced-stage non-small-cell lung cancer (NSCLC) are susceptible to malnutrition and develop folate deficiency (FD). We previously found that folate deprivation induces drug resistance in hepatocellular carcinoma; here, we assessed whether disrupted cytoplasmic folate metabolism could mimic FD-induced metastasis and affect the sensitivity of NSCLC cells to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). We examined whether cytosolic folate metabolism in NSCLC cells was disrupted by FD or the folate metabolism blocker pemetrexed for 1–4 weeks. Our results revealed an increase in NF-κB overexpression–mediated epithelial-mesenchymal transition biomarkers: N-cadherin, vimentin, matrix metalloproteinases (MMPs), SOX9, and SLUG. This finding suggests that the disruption of folate metabolism can drastically enhance the metastatic properties of NSCLC cells. Cytosolic FD also affected EGFR-TKI cytotoxicity toward NSCLC cells. Because SLUG and N-cadherin are resistance effectors against gefitinib, the effects of SLUG knockdown in folate antagonist–treated CL1-0 cells were evaluated. SLUG knockdown prevented SLUG/NF-κB/SOX9-mediated invasiveness and erlotinib resistance acquisition and significantly reduced pemetrexed-induced gelatinase activity and MMP gene expression. To summarize, our data reveal two unprecedented adverse effects of folate metabolism disruption in NSCLC cells. Thus, the folic acid status of patients with NSCLC under treatment can considerably influence their prognosis.
Collapse
Affiliation(s)
- Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Chun-Te Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shih-Hsin Hsiao
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan;
| | - Yu-Ting Chou
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Yi-Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 110, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 110, Taiwan
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661
| |
Collapse
|
8
|
Canever L, Varela R, Mastella GA, Damázio LS, Valvassori SS, Quevedo JL, Zugno AI. Effects of maternal folic acid supplementation on nuclear methyltransferase activity of adult rats subjected to an animal model of schizophrenia. Int J Dev Neurosci 2021; 81:461-467. [PMID: 33786893 DOI: 10.1002/jdn.10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Schizophrenia is considered one of the most disabling and severe human diseases worldwide. The etiology of schizophrenia is thought to be multifactorial and evidence suggests that DNA methylation can play an important role in underlying pivotal neurobiological alterations of this disorder. Some studies have demonstrated the effects of dietary supplementation as an alternative approach to the prevention of schizophrenia, including folic acid. However, no study has ever investigated the role of such supplementation in altering the DNA methylation system in the context of schizophrenia. OBJECTIVES The present study aims to investigate the effects of maternal folic acid supplementation at different doses on nuclear methyltransferase activity of adult rat offspring subjected to an animal model schizophrenia induced by ketamine. METHODS Adult female Wistar rats, (60 days old) received folic acid-deficient diet, control diet, or control diet plus folic acid supplementation (at 5, 10, or 50 mg/kg) during pregnancy and lactation. After reaching adulthood (60 days), the male offspring of these dams were subjected to the animal model of schizophrenia induced by 7 days of ketamine intraperitoneal injection (25 mg/kg). After the 7-day protocol, the activity of nuclear methyltransferase was evaluated in the brains of the offspring. RESULTS Maternal folic acid supplementation at 50 mg/kg increased methyltransferase activity in the frontal cortex, while 10 mg/kg increased methyltransferase activity in the hippocampus. In the striatum of offspring treated with ketamine, maternal deficient diet, control diet, and folic acid supplementation at 5 mg/kg decreased methyltransferase activity compared to the control group. The folic acid supplementation at 10 and 50 mg/kg reversed this ketamine effect. CONCLUSIONS Maternal FA deficiency could be related to schizophrenia pathophysiology, while FA supplementation could present a protective effect since it demonstrated persistent effects in epigenetic parameters in adult offspring.
Collapse
Affiliation(s)
- Lara Canever
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Roger Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Louyse S Damázio
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João L Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
9
|
Post-weaning folate deficiency induces a depression-like state via neuronal immaturity of the dentate gyrus in mice. J Pharmacol Sci 2020; 143:97-105. [PMID: 32173264 DOI: 10.1016/j.jphs.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Folate deficiency has been suggested as a risk factor for depression in preclinical and clinical studies. Several hypotheses of mechanisms underlying folate deficiency-induced depressive symptoms have been proposed, but the detailed mechanisms are still unclear. In this study, we assessed whether post-weaning folate deficiency affect neurological and psychological function. The low folate diet-fed mice showed depression-like behavior in the forced swim test. In contrast, spontaneous locomotor activity, social behavior, coordinated motor skills, anxiety-like behavior and spatial memory did not differ between control and low folate diet-fed mice. In the dentate gyrus (DG) of the hippocampus, decreased number of newborn mature neurons and increased number of immature neurons were observed in low folate diet-fed mice. Staining with Golgi-Cox method revealed that dendritic complexity, spine density and the number of mature spines of neurons were markedly reduced in the DG of low folate diet-fed mice. Stress response of neurons indicated as c-Fos expression was also reduced in the DG of low folate diet-fed mice. These results suggest that reduction in the degree of maturation of newborn hippocampal neurons underlies folate deficiency-induced depressive symptoms.
Collapse
|
10
|
DNA methylation and one-carbon metabolism related nutrients and polymorphisms: analysis after mandatory flour fortification with folic acid. Br J Nutr 2020; 123:23-29. [PMID: 31583988 DOI: 10.1017/s0007114519002526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is a growing research interest in determining whether changes in the global status of DNA methylation are related to the environment, in particular, to one-carbon metabolism. So, our aim was to investigate the effect of dietary methyl-group donor intake (methionine, folate, choline, betaine, vitamins B2, B6 and B12), biomarkers (total folate, unmetabolised folic acid (FA), 5-methyltetrahydrofolate, homocysteine, vitamins B6 and B12 concentrations) and genetic variants (polymorphisms involved in one-carbon metabolism) on global DNA methylation in a population exposed to mandatory flour fortification with FA. A cross-sectional study of health and living conditions was conducted among a representative sample of residents in São Paulo, Brazil. The mean of global DNA methylation was lower in young people than in adults and the elderly (P = 0·049). No differences between genotypes of polymorphism and global DNA methylation mean were identified. We observed that the increase in betaine intake led to an absolute change in percentage of DNA methylation (β = 0·0005, P = 0·024) using multiple regression. Betaine intake alone was associated with an absolute change in percentage of global DNA methylation. The study did not find an association between global DNA methylation and folate status even in a population exposed to mandatory flour fortification with FA.
Collapse
|
11
|
Zhuo C, Yao Y, Xu Y, Liu C, Chen M, Ji F, Li J, Tian H, Jiang D, Lin C, Chen C. Schizophrenia and gut-flora related epigenetic factors. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:49-54. [PMID: 30419320 DOI: 10.1016/j.pnpbp.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex psychiatric disorder and the exact mechanisms that underpin SZ remain poorly understood despite decades of research. Genetic, epigenetic, and environmental factors are all considered to play a role. The importance of gut flora and its influence on the central nervous system has been recognized in recent years. We hypothesize that gut flora may be a converging point where environmental factors interact with epigenetic factors and contribute to SZ pathogenesis. AIM To summarize the current understanding of genetic and epigenetic factors and the possible involvement of gut flora in the pathogenesis of schizophrenia. RESULTS We searched PubMed and Medline with a combination of the key words schizophrenia, microbiome, epigenetic factors to identify studies of genetic and epigenetic factors in the pathogenesis of schizophrenia. Numerous genes that encode key proteins in neuronal signaling pathways have been linked to SZ. Epigenetic modifications, particularly, methylation and acetylation profiles, have been found to differ in individuals that present with SZ from those that don't. Gut flora may affect epigenetic modifications by regulation of key metabolic pathway molecules, including methionine, florate, biotin, and metabolites that are acetyl group donors. Despite a lack of direct studies on the subject, it is possible that gut flora may influence genetic and epigenetic expression and thereby contribute to the pathogenesis of SZ. CONCLUSION Gut flora is sensitive to both internal and environmental stimuli and the synthesis of some key molecules that participate in the epigenetic modulation of gene expression. Therefore, it is possible that gut flora is a converging point where environmental factors interact with genetic and epigenetic factors in the pathogenesis of SZ.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Psychiatric-Genetics, Jining Medical University, Jining 272191, Shandong Province, China; Department of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center, Department of Psychiatry, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300222, China; Department of Mental Health, Psychiatric-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China.
| | - Yudong Yao
- SUNY Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Chuanxin Liu
- Department of Psychiatry, Psychiatric-Genetics, Jining Medical University, Jining 272191, Shandong Province, China
| | - Min Chen
- Department of Psychiatry, Psychiatric-Genetics, Jining Medical University, Jining 272191, Shandong Province, China
| | - Feng Ji
- Department of Psychiatry, Psychiatric-Genetics, Jining Medical University, Jining 272191, Shandong Province, China
| | - Jie Li
- Department of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center, Department of Psychiatry, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300222, China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics Laboratory, Tianjin Mental Health Center, Department of Psychiatry, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300222, China
| | - Deguo Jiang
- Department of Mental Health, Psychiatric-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Chongguang Lin
- Department of Mental Health, Psychiatric-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Ce Chen
- Department of Mental Health, Psychiatric-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China.
| |
Collapse
|
12
|
Chon J, Field MS, Stover PJ. Deoxyuracil in DNA and disease: Genomic signal or managed situation? DNA Repair (Amst) 2019; 77:36-44. [PMID: 30875637 DOI: 10.1016/j.dnarep.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Genomic instability is implicated in the etiology of several deleterious health outcomes including megaloblastic anemia, neural tube defects, and neurodegeneration. Uracil misincorporation and its repair are known to cause genomic instability by inducing DNA strand breaks leading to apoptosis, but there is emerging evidence that uracil incorporation may also result in broader modifications of gene expression, including: changes in transcriptional stalling, strand break-mediated transcriptional upregulation, and direct promoter inhibition. The factors that influence uracil levels in DNA are cytosine deamination, de novo thymidylate (dTMP) biosynthesis, salvage dTMP biosynthesis, dUTPase, and DNA repair. There is evidence that the nuclear localization of the enzymes in these pathways in mammalian cells may modify and/or control the levels of uracil accumulation into nuclear DNA. Uracil sequencing technologies demonstrate that uracil in DNA is not distributed stochastically across the genome, but instead shows patterns of enrichment. Nuclear localization of the enzymes that modify uracil in DNA may serve to change these patterns of enrichment in a tissue-specific manner, and thereby signal the genome in response to metabolic and/or nutritional state of the cell.
Collapse
Affiliation(s)
- James Chon
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA
| | - Patrick J Stover
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY, 14853, USA; Division of Nutritional Sciences, Cornell University, 127 Savage Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Saha T, Chatterjee M, Verma D, Ray A, Sinha S, Rajamma U, Mukhopadhyay K. Genetic variants of the folate metabolic system and mild hyperhomocysteinemia may affect ADHD associated behavioral problems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:1-10. [PMID: 29407547 DOI: 10.1016/j.pnpbp.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023]
Abstract
An etiologically complex disorder, Attention Deficit Hyperactivity Disorder (ADHD), is often associated with various levels of cognitive deficit. Folate/vitamin B9 is crucial for numerous biochemical pathways including neural stem cell proliferation and differentiation, regulation of gene expression, neurotransmitter synthesis, myelin synthesis and repair, etc. and a scarcity has often been linked to cognitive deficit. Our pilot study in the field revealed significant association of few genetic variants with ADHD. Mild hyperhomocysteinemia and vitamin B12 deficiency was also noticed in the probands. In the present study additional genetic variants, folate and vitamin B6, which may affect folate-homocysteine metabolic pathway, were investigated in 866 individuals including nuclear families with ADHD probands (N=221) and ethnically matched controls (N=286) to find out whether ADHD associated traits are affected by these factors. Population based analysis revealed significant over representation of MTRR rs1801394 "G" allele and "GG" genotype in all as well as male probands. Stratified analysis showed significantly higher frequency of RFC1 rs1051266 and BHMT rs3733890 "AG" genotypes in full term and prematurely delivered ADHD probands respectively. Probands with rs1801394 "GG" genotype and BHMT rs3733890 "G" allele showed association with hyperhomocysteinemia. MTHFR rs1801131, MTR rs1805087 and BHMT rs3733890 also showed association with ADHD index. While rs1051266, rs1801131, and rs1805087 showed association with behavioral problems, rs3733890 was associated with ODD score. Conduct problem exhibited association with RFC1 rs1051266, MTHFR rs1801133 and MTRR rs1801394. Gene-gene interaction analysis revealed positive synergistic interactions between rs1051266, rs1801131 and rs1801394 in the probands as compared to the controls. It can be inferred from the data obtained that folate system genetic variants and mild hyperhomocysteimenia may affect ADHD associated traits by attenuating folate metabolism.
Collapse
Affiliation(s)
- Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Deepak Verma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Anirban Ray
- Institute of Psychiatry-Center of Excellence, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal 700020, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector J, EM Bypass, Kolkata, West Bengal 700107, India.
| |
Collapse
|
14
|
Abbasi IHR, Abbasi F, Wang L, Abd El Hack ME, Swelum AA, Hao R, Yao J, Cao Y. Folate promotes S-adenosyl methionine reactions and the microbial methylation cycle and boosts ruminants production and reproduction. AMB Express 2018; 8:65. [PMID: 29687201 PMCID: PMC5913057 DOI: 10.1186/s13568-018-0592-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Folate has gained significant attention due to its vital role in biological methylation and epigenetic machinery. Folate, or vitamin (B9), is only produced through a de novo mechanism by plants and micro-organisms in the rumen of mature animals. Although limited research has been conducted on folate in ruminants, it has been noted that ruminal synthesis could not maintain folate levels in high yielding dairy animals. Folate has an essential role in one-carbon metabolism and is a strong antiproliferative agent. Folate increases DNA stability, being crucial for DNA synthesis and repair, the methylation cycle, and preventing oxidation of DNA by free radicals. Folate is also critical for cell division, metabolism of proteins, synthesis of purine and pyrimidine, and increasing the de novo delivery of methyl groups and S-adenosylmethionine. However, in ruminants, metabolism of B12 and B9 vitamins are closely connected and utilization of folate by cells is significantly affected by B12 vitamin concentration. Supplementation of folate through diet, particularly in early lactation, enhanced metabolic efficiency, lactational performance, and nutritional quality of milk. Impaired absorption, oxidative degradation, or deficient supply of folate in ruminants affects DNA stability, cell division, homocysteine remethylation to methionine, de novo synthesis of S-adenosylmethionine, and increases DNA hypomethylation, uracil misincorporation into DNA, chromosomal damage, abnormal cell growth, oxidative species, premature birth, low calf weight, placental tube defects, and decreases production and reproduction of ruminant animals. However, more studies are needed to overcome these problems and reduce enormous dietary supplement waste and impaired absorption of folate in ruminants. This review was aimed to highlight the vital role of folic acid in ruminants performance.
Collapse
|
15
|
[A two-faced vitamin : Folic acid - prevention or promotion of colon cancer?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 60:332-340. [PMID: 28050621 DOI: 10.1007/s00103-016-2505-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the late 1930s, it was discovered that liver and yeast extracts can be used to correct certain cases of megaloblastic anemia in pregnancy. The factor responsible for this was isolated from spinach leaves in the 1940s, and referred to as folate, a term derived from the Latin word folium for leaf. Folate is considered an essential nutrient for human beings. Folic acid, the synthetic form of the vitamin, is used in dietary supplements, medicines and fortified foods. Since the 1980s, it has been recommended that women who plan to become pregnant and pregnant women during the first trimester of pregnancy take folic acid supplements. This recommendation was based on studies that revealed that periconceptional folic acid supplementation can reduce the risk for neural tube defects (NTDs). Many countries later implemented folic acid fortification programs. The resulting population-wide increase of folic acid intakes led to significant reductions in NTD rates. However, a temporarily increased colorectal cancer incidence has been reported to coincide with the fortification programs in the USA and Canada. On the basis of currently available data from experimental and human studies it can be concluded that the association between folate/folic acid and cancer is rather complex: Folate intake in the range of the dietary reference intake (DRI) is associated with a reduced risk for cancer in healthy populations, whereas high intakes of folic acid might result in an increased risk for cancer incidence or progression in persons with precancerous lesions and under certain conditions. Since no adverse effects have been observed in association with the intake of dietary folate, research activities that aim at investigating cause and effect relationships focus on folic acid.
Collapse
|
16
|
Folate deprivation induces cell cycle arrest at G0/G1 phase and apoptosis in hippocampal neuron cells through down-regulation of IGF-1 signaling pathway. Int J Biochem Cell Biol 2016; 79:222-230. [DOI: 10.1016/j.biocel.2016.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
|
17
|
|
18
|
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol 2016; 43:96-115. [PMID: 27561003 DOI: 10.1080/1040841x.2016.1179622] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.
Collapse
Affiliation(s)
- Amir Saber
- a Biotechnology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Beitollah Alipour
- c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,d Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zeinab Faghfoori
- e Faculty of Medicine, Semnan University of Medical Sciences , Semnan , Iran
| | - Ahmad Yari Khosroushahi
- f Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,g Department of Pharmacognosy , Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
19
|
Plasma Folate and Vitamin B12 Levels in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2016; 17:ijms17071032. [PMID: 27376276 PMCID: PMC4964408 DOI: 10.3390/ijms17071032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Folate and vitamin B12 involved in the one-carbon metabolism may play a key role in carcinogenesis and progression of hepatocellular carcinoma (HCC) through influencing DNA integrity. The purpose of this study is to evaluate the association of plasma folate and vitamin B12 levels with HCC in a case-control study on 312 HCC patients and 325 cancer-free controls. Plasma concentrations of folate and vitamin B12 in all the subjects were measured by electrochemiluminescence immunoassay. Meanwhile, the information of HCC patients' clinical characteristics including tumor-node-metastasis (TNM) stage, tumor size and tumor markers were collected. The patients of HCC had significantly lower folate levels than those of controls; there was no significant difference in the mean of plasma vitamin B12 levels. We also observed an inverse association between the levels of plasma folate and HCC: the adjusted odds ratios (OR) (95% confidence intervals (CI)) of HCC from the highest to lowest quartile of folate were 0.30 (0.15-0.60), 0.33 (0.17-0.65), and 0.19 (0.09-0.38). Compared to the subjects in the lowest quartile of plasma vitamin B12, only the subjects in the highest quartile of vitamin B12 exhibited a significant positive relationship with HCC, the adjusted OR was 2.01 (95% CI, 1.02-3.98). HCC patients with Stage III and IV or bigger tumor size had lower folate and higher vitamin B12 levels. There was no significant difference in the mean plasma folate levels of the HCC cases in tumor markers status (AFP, CEA and CA19-9 levels), whereas patients with higher CEA or CA19-9 levels retained significantly more plasma vitamin B12 than those with normal-CEA or CA19-9 level. In conclusion, plasma folate and vitamin B12 levels could be associated with HCC, and might be used as predictors of clinical characteristics of HCC patients. However, further prospective studies are essential to confirm the observed results.
Collapse
|
20
|
Dietary folic acid protects against genotoxicity in the red blood cells of mice. Mutat Res 2015; 779:105-11. [PMID: 26177356 DOI: 10.1016/j.mrfmmm.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022]
Abstract
Folate is an essential B vitamin required for the de novo synthesis of purines, thymidylate and methionine. Folate deficiency can lead to mutations and genome instability, and has been shown to exacerbate the genotoxic potential of environmental toxins. We hypothesized that a folic acid (FA) deficient diet would induce genotoxicity in mice as measured by the Pig-a mutant phenotype (CD24-) and micronuclei (MN) in reticulocytes (RET) and red blood cells/normochromatic erythrocytes (RBC/NCE). Male Balb/c mice were fed a FA deficient (0 mg/kg), control (2 mg/kg) or supplemented (6 mg/kg) diet from weaning for 18 wk. Mice fed the deficient diet had 70% lower liver folate (p < 0.001), 1.8 fold higher MN-RET (p < 0.001), and 1.5 fold higher MN-NCE (p < 0.001) than mice fed the control diet. RET(CD24-) and RBC(CD24-) frequencies were not different between mice fed the deficient and control diets. Compared to mice fed the FA supplemented diet, mice fed the deficient diet had 73% lower liver folate (p < 0.001), a 2.0 fold increase in MN-RET (p < 0.001), a 1.6 fold increase in MN-NCE (p < 0.001) and 3.8 fold increase in RBC(CD24-) frequency (p = 0.011). RET(CD24-) frequency did not differ between mice fed the deficient and supplemented diets. Our data suggest that FA adequacy protects against mutagenesis at the Pig-a locus and MN induction in the red blood cells of mice.
Collapse
|
21
|
Dhananjayan R, Malati T, Rupasree Y, Kutala VK. Association of Aberrations in One Carbon Metabolism with Intimal Medial Thickening in Patients with Type 2 Diabetes Mellitus. Indian J Clin Biochem 2015; 30:263-70. [PMID: 26089610 DOI: 10.1007/s12291-014-0458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023]
Abstract
The present work was aimed to study the association of one carbon genetic variants, hyperhomocysteinemia and oxidative stress markers, i.e., serum nitrite, plasma malondialdehyde (MDA) and glutathione (GSH) on intimal medial thickening (IMT) in patients with type 2 diabetes mellitus (T2D). A total number of 76 subjects from ACS Medical College and Hospital, Chennai, India were included in the study, i.e., Group I (n = 42) of T2D and Group II (n = 34) of age- and sex matched healthy controls. The glycated haemoglobin was measured by ion-exchange resin method; plasma homocysteine by Enzyme Linked Immunosorbant Assay method; serum nitrite (nitric oxide, NO), plasma MDA and GSH by spectrophotometric methods; the IMT by high frequency ultrasound. The polymorphisms of one carbon genetic variants were genotyped using polymerase chain reaction-restriction fragment length polymorphism and amplified fragment length polymorphism methods. Results indicate that methyltetrahydrofolate homocysteine methyl transferase (MTR) A2756G allele was found to be protective in T2D and the other variants were not significantly associated with T2D. Glutamate carboxypeptidase II (GCP II) C1561T (r = 0.34; p = 0.05) and methylene tetrahydrofolate reductase (MTHFR) C677T (r = 0.35; 0.04) showed positive correlation with plasma homocysteine in T2D cases. In this study, MTR A2756G allele was found to be protective in T2D; GCP II C1561T and MTHFR C677T showed positive association with plasma homocysteine in T2D cases. Among all the genetic variants, MTR A2756G was found influence IMT. RFC 1 G80A and TYMS 5'-UTR 2R3R showed synergistically interact with MTR A2756G in influencing increase in IMT.
Collapse
Affiliation(s)
- R Dhananjayan
- Department of Biochemistry, ACS Medical College & Hospital, Velappanchavadi, Chennai, 600 077 Tamil Nadu India
| | - T Malati
- Department of Biochemistry, Nizam's Institute of Medical Sciences, Hyderabad, 500 082 Andhra Pradesh India
| | - Y Rupasree
- Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, 500 082 Andhra Pradesh India
| | - Vijay Kumar Kutala
- Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, 500 082 Andhra Pradesh India
| |
Collapse
|
22
|
Thakur S, Rahat B, Hamid A, Najar RA, Kaur J. Identification of regulatory mechanisms of intestinal folate transport in condition of folate deficiency. J Nutr Biochem 2015; 26:1084-94. [PMID: 26168702 DOI: 10.1016/j.jnutbio.2015.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 04/03/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Folic acid is an essential micronutrient, deficiency of which can lead to disturbance in various metabolic processes of cell. Folate transport across intestine occurs via the involvement of specialized folate transporters viz. proton coupled folate transporter (PCFT) and reduced folate carrier (RFC), which express at the membrane surfaces. The current study was designed to identify the regulatory mechanisms underlying the effects of folate deficiency (FD) on folate transport in human intestinal cell line as well as in rats and to check the reversibility of such effects. Caco-2 cells were grown for five generations in control and FD medium. Following treatment, one subgroup of cells was shifted on folate sufficient medium and grown for three more generations. Similarly, rats were fed an FD diet for 3 and 5 months, and after 3 months of FD treatment, one group of rats were shifted on normal folate-containing diet. Increase in folate transport and expression of folate transporters were observed on FD treatment. However, when cells and rats were shifted to control conditions after treatment, transport and expression of these genes restored to the control level. FD was found to have no impact on promoter methylation of PCFT and RFC; however, messenger RNA stability of transporters was found to be decreased, suggesting some adaptive response. Overall, increased expression of transporters under FD conditions can be attributed to enhanced rate of transcription of folate transporters and also to the increased binding of specificity protein 1 transcription factor to the RFC promoter only.
Collapse
Affiliation(s)
- Shilpa Thakur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
23
|
Torres A, Newton SA, Crompton B, Borzutzky A, Neufeld EJ, Notarangelo L, Berry GT. CSF 5-Methyltetrahydrofolate Serial Monitoring to Guide Treatment of Congenital Folate Malabsorption Due to Proton-Coupled Folate Transporter (PCFT) Deficiency. JIMD Rep 2015; 24:91-6. [PMID: 26006721 PMCID: PMC4582027 DOI: 10.1007/8904_2015_445] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023] Open
Abstract
Hereditary folate malabsorption is characterized by folate deficiency with impaired folate transport into the central nervous system (CNS). This disease is characterized by megaloblastic anemia of early appearance, combined immunodeficiency, seizures, and cognitive impairment. The anemia and immunologic disease are responsive but neurological signs are refractory to folic-acid treatment. We report a 7-year-old girl who has congenital folate deficiency and SLC46A1 gene mutation who is unable to transport folate from her gut to the circulatory system and consequently from the blood to the cerebrospinal fluid (CSF). As a result she developed undetectable 5-methyltetrahydrofolate levels in her plasma and CSF and became immunocompromised and quite ill. Intramuscular treatment with 5-formyltetrahydrofolate (folinic acid) was therapeutic at her presentation and has been successful preventing other signs and symptoms of hereditary folate malabsorption even at relatively low CSF levels. Although difficult, early detection and diagnosis of cerebral folate deficiency are important because folinic acid at a pharmacologic dose may normalize outcome in PCFT gene defects, as well as bypass autoantibody-blocked folate receptors and enter the cerebrospinal fluid by way of the reduced folate carrier. This route elevates the 5-methyltetrahydrofolate level within the central nervous system and can prevent the neuropsychiatric disorder. CSF levels of 5-methyltetrahydrofolate between 18 and 46 nmol/L may be sufficient to eradicate CNS disease.
Collapse
Affiliation(s)
- A Torres
- Department of Pediatrics, Division of Pediatric Neurology, Boston Medical Center, Boston University Medical School, Boston, MA, USA
| | - S A Newton
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - B Crompton
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Borzutzky
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - E J Neufeld
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Notarangelo
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - G T Berry
- Department of Neurology, Divisions of Hematology and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Genetic polymorphisms involved in folate metabolism and maternal risk for down syndrome: a meta-analysis. DISEASE MARKERS 2014; 2014:517504. [PMID: 25544792 PMCID: PMC4269293 DOI: 10.1155/2014/517504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
Abstract
Inconclusive results of the association between genetic polymorphisms involved in folate metabolism and maternal risk for Down syndrome (DS) have been reported. Therefore, this meta-analysis was conducted. We searched electronic databases through May, 2014, for eligible studies. Pooled odds ratios with 95% confidence intervals were used to assess the strength of the association, which was estimated by fixed or random effects models. Heterogeneity among studies was evaluated using Q-test and I (2) statistic. Subgroup and sensitivity analyses were also conducted. Publication bias was estimated using Begg's and Egger's tests. A total of 17 case-controls studies were included. There was evidence for an association between the MTRR c.66A>G (rs1801394) polymorphism and maternal risk for DS. In the subgroup analysis, increased maternal risk for DS was found in Caucasians. Additionally, the polymorphic heterozygote MTHFD1 1958GA genotype was associated significantly with maternal risk for DS, when we limit the analysis by studies conformed to Hardy-Weinberg equilibrium. Finally, considering MTR c.2756A>G (rs1805087), TC2 c.776C>G (rs1801198), and CBS c.844ins68, no significant associations have been found, neither in the overall analyses nor in the stratified analyses by ethnicity. In conclusion, our meta-analysis suggested that the MTRR c.66A>G (rs1801394) polymorphism and MTHFD1 c.1958G>A (rs2236225) were associated with increased maternal risk for DS.
Collapse
|
25
|
Fang P, Zhang D, Cheng Z, Yan C, Jiang X, Kruger WD, Meng S, Arning E, Bottiglieri T, Choi ET, Han Y, Yang XF, Wang H. Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis. Diabetes 2014; 63:4275-90. [PMID: 25008174 PMCID: PMC4237991 DOI: 10.2337/db14-0809] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hyperhomocysteinemia (HHcy) is associated with increased diabetic cardiovascular diseases. However, the role of HHcy in atherogenesis associated with hyperglycemia (HG) remains unknown. To examine the role and mechanisms by which HHcy accelerates HG-induced atherosclerosis, we established an atherosclerosis-susceptible HHcy and HG mouse model. HHcy was established in mice deficient in cystathionine β-synthase (Cbs) in which the homocysteine (Hcy) level could be lowered by inducing transgenic human CBS (Tg-hCBS) using Zn supplementation. HG was induced by streptozotocin injection. Atherosclerosis was induced by crossing Tg-hCBS Cbs mice with apolipoprotein E-deficient (ApoE(-/-)) mice and feeding them a high-fat diet for 2 weeks. We demonstrated that HHcy and HG accelerated atherosclerosis and increased lesion monocytes (MCs) and macrophages (MØs) and further increased inflammatory MC and MØ levels in peripheral tissues. Furthermore, Hcy-lowering reversed circulating mononuclear cells, MC, and inflammatory MC and MC-derived MØ levels. In addition, inflammatory MC correlated positively with plasma Hcy levels and negatively with plasma s-adenosylmethionine-to-s-adenosylhomocysteine ratios. Finally, l-Hcy and d-glucose promoted inflammatory MC differentiation in primary mouse splenocytes, which was reversed by adenoviral DNA methyltransferase-1. HHcy and HG, individually and synergistically, accelerated atherosclerosis and inflammatory MC and MØ differentiation, at least in part, via DNA hypomethylation.
Collapse
Affiliation(s)
- Pu Fang
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA
| | - Daqing Zhang
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA
| | - Zhongjian Cheng
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA
| | - Chenghui Yan
- Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning, P.R. China
| | - Xiaohua Jiang
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA
| | | | - Shu Meng
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX
| | | | - Eric T Choi
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Surgery, School of Medicine, Temple University, Philadelphia, PA
| | - Yaling Han
- Cardiovascular Research Institute and Key Laboratory of Cardiology, Shenyang Northern Hospital, Shenyang, Liaoning, P.R. China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA Sol Sherry Thrombosis Research Center, School of Medicine, Temple University, Philadelphia, PA
| | - Hong Wang
- Center for Metabolic Disease Research, School of Medicine, Temple University, Philadelphia, PA Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA Cardiovascular Research Center, School of Medicine, Temple University, Philadelphia, PA Sol Sherry Thrombosis Research Center, School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
26
|
Meta-analysis of Methylenetetrahydrofolate reductase maternal gene in Down syndrome: increased susceptibility in women carriers of the MTHFR 677T allele. Mol Biol Rep 2014; 41:5491-504. [DOI: 10.1007/s11033-014-3424-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
|
27
|
Wyatt MD. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair. Adv Cancer Res 2014; 119:63-106. [PMID: 23870509 DOI: 10.1016/b978-0-12-407190-2.00002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes some of the recent, exciting developments that have characterized and connected processes that modify DNA bases with DNA repair pathways. It begins with AID/APOBEC or TET family members that covalently modify bases within DNA. The modified bases, such as uracil or 5-formylcytosine, are then excised by DNA glycosylases including UNG or TDG to initiate base excision repair (BER). BER is known to preserve genome integrity by removing damaged bases. The newer studies underscore the necessity of BER following enzymes that deliberately damage DNA. This includes the role of BER in antibody diversification and more recently, its requirement for demethylation of 5-methylcytosine in mammalian cells. The recent advances have shed light on mechanisms of DNA demethylation, and have raised many more questions. The potential hazards of these processes have also been revealed. Dysregulation of the activity of base modifying enzymes, and resolution by unfaithful or corrupt means can be a driver of genome instability and tumorigenesis. The understanding of both DNA and histone methylation and demethylation is now revealing the true extent to which epigenetics influence normal development and cancer, an abnormal development.
Collapse
Affiliation(s)
- Michael D Wyatt
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
28
|
Yan Q, Xu J, Hu W, Li Z, Wu J, Zhang S. Transient folate deprivation facilitates the generation of mouse-induced pluripotent stem cells. Cell Biol Int 2014; 38:571-6. [PMID: 24375975 DOI: 10.1002/cbin.10233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/04/2013] [Indexed: 11/07/2022]
Abstract
Somatic cells can be reprogrammed into iPS (induced pluripotent stem) cells through the ectopic expression of defined transcription factors. However, the inefficiency and amount of time needed limited the potential application of iPS cells. We report an efficient method to generate iPS cells from MEF (mouse embryonic fibroblasts) through folate-depriviatoin, which was used to change the methylation of MEF. Without folate for 3 days, the induction efficiency is enhanced fivefold. Karyotype analysis showed that transient folate-depriving treatment did not negatively affect properties of iPS cells; characterised iPS cells show normal karyotypes. Thus, a new method has been found that can improve the induction efficiency, but not increase the chance of chromosomal mutation.
Collapse
Affiliation(s)
- Qiuyue Yan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| | | | | | | | | | | |
Collapse
|
29
|
Highlights of Pentacyclic Triterpenoids in the Cancer Settings. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63294-4.00002-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Cui Y, Jing Y, Sun Z. Lack of association between MTHFD1 G401A polymorphism and ovarian cancer susceptibility. Tumour Biol 2013; 35:3385-9. [DOI: 10.1007/s13277-013-1446-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022] Open
|
31
|
Zhang H, Ma H, Li L, Zhang Z, Xu Y. Association of methylenetetrahydrofolate dehydrogenase 1 polymorphisms with cancer: a meta-analysis. PLoS One 2013; 8:e69366. [PMID: 23894459 PMCID: PMC3716643 DOI: 10.1371/journal.pone.0069366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022] Open
Abstract
Background Studies investigating the association between single-nucleotide polymorphisms (SNPs) of the methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and cancer risk report conflicting results. To derive a more precise estimation of the relationship between MTHFD1 polymorphisms and cancer risk, the present meta-analysis was carried out. Methodology/Principal Findings A comprehensive search was conducted to determine all the eligible studies about MTHFD1 polymorphisms and cancer risk. Combined odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association between the MTHFD1 polymorphisms and cancer risk. We investigated by meta-analysis the effects of 2 polymorphisms in MTHFD1: G1958A (17 studies, 12348 cases, 44132 controls) and G401A (20 studies, 8446 cases, 14020 controls). The overall results indicated no major influence of these 2 polymorphisms on cancer risk. For G1958A, a decreased cancer risk was found in acute lymphoblastic leukemia (ALL)/Asians (the dominant: OR = 0.74, 95% CI = 0.58–0.94, P = 0.01; allelic: OR = 0.80, 95% CI = 0.65–0.99, P = 0.04) and other cancers (recessive: OR = 0.80, 95% CI = 0.66–0.96, P = 0.02). For G401A, the data showed that MTHFD1 G401A polymorphism was associated with a decreased colon cancer risk under dominant model (OR = 0.89, 95% CI = 0.80–0.99, P = 0.04). Conclusions The results suggest that MTHFD1 G1958A polymorphism might be associated with a decreased risk of ALL and other cancers. Meanwhile, the MTHFD1 G401A might play a protective role in the development of colon cancer. Large-scale and well-designed case-control studies are necessary to validate the risk identified in the present meta-analysis.
Collapse
Affiliation(s)
- Hongtuan Zhang
- National Key Clinical Specialty of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Hui Ma
- Department of Gynaecology and Obstetrics, second hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Liang Li
- Laboratory of Population and Quantitative Genetics, School of Life Sciences, Tianjin Medical University, Tianjin, China
| | - Zhihong Zhang
- National Key Clinical Specialty of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
| | - Yong Xu
- National Key Clinical Specialty of Urology, Second Affiliated Hospital of Tianjin Medical University, Tianjin Key Institute of Urology, Tianjin, China
- * E-mail:
| |
Collapse
|
32
|
Abstract
Mechanisms postulated to link folate and B12 metabolism with cancer, including genome-wide hypomethylation, gene-specific promoter hypermethylation, and DNA uracil misincorporation, have been observed in prostate tumor cells. However, epidemiological studies of prostate cancer risk, based on dietary intakes and blood levels of folate and vitamin B12 and on folate-pathway gene variants, have generated contradictory findings. In a meta-analysis, circulating concentrations of B12 (seven studies, OR = 1.10; 95% CI 1.01, 1.19; P = 0.002) and (in cohort studies) folate (five studies, OR = 1.18; 95% CI 1.00, 1.40; P = 0.02) were positively associated with an increased risk of prostate cancer. Homocysteine was not associated with risk of prostate cancer (four studies, OR = 0.91; 95% CI 0.69, 1.19; P = 0.5). In a meta-analysis of folate-pathway polymorphisms, MTR 2756A > G (eight studies, OR = 1.06; 95% CI 1.00, 1.12; P = 0.06) and SHMT1 1420C > T (two studies, OR = 1.11; 95% CI 1.00, 1.22; P = 0.05) were positively associated with prostate cancer risk. There were no effects due to any other polymorphisms, including MTHFR 677C > T (12 studies, OR = 1.04; 95% CI 0.97, 1.12; P = 0.3). The positive association of circulating B12 with an increased risk of prostate cancer could be explained by reverse causality. However, given current controversies over mandatory B12 fortification, further research to eliminate a causal role of B12 in prostate cancer initiation and/or progression is required. Meta-analysis does not entirely rule out a positive association of circulating folate with increased prostate cancer risk. As with B12, even a weak positive association would be a significant public health issue, given the high prevalence of prostate cancer and concerns about the potential harms versus benefits of mandatory folic acid fortification.
Collapse
|
33
|
Galbiatti ALS, Castro R, Caldas HC, Padovani JA, Pavarino EC, Goloni-Bertollo EM. Alterations in the expression pattern of MTHFR, DHFR, TYMS, and SLC19A1 genes after treatment of laryngeal cancer cells with high and low doses of methotrexate. Tumour Biol 2013; 34:3765-71. [PMID: 23838799 DOI: 10.1007/s13277-013-0960-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022] Open
Abstract
Inter-individual variations to methotrexate (MTX) outcome have been attributed to different expression profiles of genes related to folate metabolism. To elucidate the mechanisms of variations to MTX outcome, we investigated MTHFR, DHFR, TYMS, and SLC19A1 gene expression profiles by quantifying the mRNA level of the genes involved in folate metabolism to MTX response in laryngeal cancer cell line (HEP-2). For this, three different concentrations of MTX (0.25, 25, and 75 μmol) were added separately in HEP-2 cell line for 24 h at 37 °C. Apoptotis quantification was evaluated with fluorescein isothiocyanate-labeled Bcl-2 by flow cytometry. Real-time quantitative PCR technique was performed by quantification of gene expression with TaqMan® Gene Expression Assay. ANOVA and Bonferroni's post hoc tests were utilized for statistical analysis. The results showed that the numbers of apoptotic HEP-2 cells with 0.25, 25.0, and 75.0 μmol of MTX were 14.57, 77.54, and 91.58%, respectively. We found that the expression levels for MTHFR, DHFR, TYMS, and SLC19A1 genes were increased in cells with 75.0 μmol of MTX (p < 0.05). Moreover, SLC19A1 gene presented lower expression in cells treated with 0.25 μmol of MTX (p < 0.05). In conclusion, our data suggest that MTHFR, DHFR, TYMS, and SLC19A1 genes present increased expression after the highest application of MTX dose in laryngeal cancer cell line. Furthermore, SLC19A1 gene also presents decreased expression after the lowest application of MTX dose in laryngeal cancer cell line. Significant alterations of expression of these studied genes in cell culture model may give support for studies in clinical practice and predict interesting and often novel mechanisms of resistance of MTX chemotherapy.
Collapse
Affiliation(s)
- Ana Lívia Silva Galbiatti
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), Avenida Brigadeiro Faria Lima, n.5416, São José do Rio Preto, SP, Brazil,
| | | | | | | | | | | |
Collapse
|
34
|
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, Meyerhardt JA, Meissner A, Schernhammer ES, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26:465-84. [PMID: 23307060 PMCID: PMC3637979 DOI: 10.1038/modpathol.2012.214] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetics acts as an interface between environmental/exogenous factors, cellular responses, and pathological processes. Aberrant epigenetic signatures are a hallmark of complex multifactorial diseases (including neoplasms and malignancies such as leukemias, lymphomas, sarcomas, and breast, lung, prostate, liver, and colorectal cancers). Epigenetic signatures (DNA methylation, mRNA and microRNA expression, etc) may serve as biomarkers for risk stratification, early detection, and disease classification, as well as targets for therapy and chemoprevention. In particular, DNA methylation assays are widely applied to formalin-fixed, paraffin-embedded archival tissue specimens as clinical pathology tests. To better understand the interplay between etiological factors, cellular molecular characteristics, and disease evolution, the field of 'molecular pathological epidemiology (MPE)' has emerged as an interdisciplinary integration of 'molecular pathology' and 'epidemiology'. In contrast to traditional epidemiological research including genome-wide association studies (GWAS), MPE is founded on the unique disease principle, that is, each disease process results from unique profiles of exposomes, epigenomes, transcriptomes, proteomes, metabolomes, microbiomes, and interactomes in relation to the macroenvironment and tissue microenvironment. MPE may represent a logical evolution of GWAS, termed 'GWAS-MPE approach'. Although epigenome-wide association study attracts increasing attention, currently, it has a fundamental problem in that each cell within one individual has a unique, time-varying epigenome. Having a similar conceptual framework to systems biology, the holistic MPE approach enables us to link potential etiological factors to specific molecular pathology, and gain novel pathogenic insights on causality. The widespread application of epigenome (eg, methylome) analyses will enhance our understanding of disease heterogeneity, epigenotypes (CpG island methylator phenotype, LINE-1 (long interspersed nucleotide element-1; also called long interspersed nuclear element-1; long interspersed element-1; L1) hypomethylation, etc), and host-disease interactions. In this article, we illustrate increasing contribution of modern pathology to broader public health sciences, which attests pivotal roles of pathologists in the new integrated MPE science towards our ultimate goal of personalized medicine and prevention.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Feng Y, Zhao LZ, Hong L, Shan C, Shi W, Cai W. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring's heart. J Nutr Biochem 2013; 24:1373-80. [PMID: 23333085 DOI: 10.1016/j.jnutbio.2012.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022]
Abstract
Epigenetics might explain correlations between lifestyle and risk of disease. Maternal diet has been shown to dynamically alter epigenetic regulation, including affecting DNA methylation status. This study was designed to test the hypothesis that GATA-4 gene methylation would lead to congenital heart defects in vitamin A-deficient offspring. Ten weaning female rats (VAN group) were fed with a diet which contents 4 IU vitamin A/g diet, while 20 rats (VAD group) were maintained on a diet without vitamin A. After 10 weeks of feeding, all the female rats were mated with normal male rats. The VAN group and a portion of VAD group rats were still given the same diet as before mating, while the rest of the rats from the VAD group (VADS group) were transferred to a diet with enough added vitamin A (10 IU/g diet) for the pregnancy cycle. The embryo hearts were dissected out at embryonic day 13.5 (E13.5) for observation of cardiac development, GATA-4 gene methylation status and the expression of DNA methyltransferases (DNMTs). Embryos from vitamin A-deficient group exhibited a high incidence of cardiac defects. High methylation was present in the CpG loci of GATA-4 gene with a low expression of GATA-4 mRNA from vitamin A-deficient group embryos. Moreover, up-regulation of DNMT1 and down-regulation of DNMT3a and DNMT3b expression were found in this group embryo. These findings show that aberrant methylation is one of key mechanisms to heart defects in vitamin A-deficient offspring. DNMTs play a critical role in this process.
Collapse
Affiliation(s)
- Yi Feng
- Department of Clinical Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
36
|
Zee RYL, Rose L, Chasman DI, Ridker PM. Genetic variation of fifteen folate metabolic pathway associated gene loci and the risk of incident head and neck carcinoma: the Women's Genome Health Study. Clin Chim Acta 2012; 418:33-6. [PMID: 23276522 DOI: 10.1016/j.cca.2012.11.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Recent studies have demonstrated the importance of folate metabolic pathway (FMP) in the pathogenesis of head and neck carcinoma (HNC). Whether the genetic variation within the FMP associated genes modulates HNC remains elusive. To date, prospective, epidemiological data on the relationship of FMP gene variation with the risk of HNC are sparse. METHODS The association between 203 tag-SNPs (tSNPs) of 15 FMP associated genes (CBS, BHMT, DHFR, FOLR1, FOLR2, FOLR3, MTHFR, MTR, MTRR, MTHFD1, RFC1, SHMT1, SLC19A1, TCN2, and TYMS) and incident HNC was investigated in 23,294 Caucasian female participants of the prospective Women's Genome Health Study. All were free of known cancer at baseline. During a 15-year follow-up period, 55 participants developed a first ever HNC. Multivariable Cox regression analysis was performed to investigate the relationship between genotypes and HNC risk assuming an additive genetic model. Haplotype-block analysis was also performed. RESULTS A total of 11 tSNPs within DHFR, MTHFR, RFC1, and TYMS were associated with HNC risk (all p-uncorrected <0.050). Further investigation using the haplotype-block analysis revealed an association of several prespecified haplotypes of RFC1 with HNC risk (all p-uncorrected <0.050). CONCLUSION If corroborated in other large prospective studies, the present findings suggest that genetic variation within the folate metabolic pathway gene loci examined, in particular, the replication factor C-1 (RFC1) gene variation may influence HNC risk.
Collapse
Affiliation(s)
- Robert Y L Zee
- Division of Preventive Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston MA 02215, USA.
| | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
Diet is a major factor in the aetiology of colorectal cancer (CRC). Epidemiological evidence suggests that folate confers a modest protection against CRC risk. However, the relationship is complex, and evidence from human intervention trials and animal studies suggests that a high-dose of folic acid supplementation may enhance the risk of colorectal carcinogenesis in certain circumstances. The molecular mechanisms underlying the apparent dual modulatory effect of folate on colorectal carcinogenesis are not fully understood. Folate is central to C1metabolism and is needed for both DNA synthesis and DNA methylation, providing plausible biological mechanisms through which folate could modulate cancer risk. Aberrant DNA methylation is an early event in colorectal carcinogenesis and is typically associated with the transcriptional silencing of tumour suppressor genes. Folate is required for the production of S-adenosyl methionine, which serves as a methyl donor for DNA methylation events; thereby folate availability is proposed to modulate DNA methylation status. The evidence for an effect of folate on DNA methylation in the human colon is limited, but a modulation of DNA methylation in response to folate has been demonstrated. More research is required to clarify the optimum intake of folate for CRC prevention and to elucidate the effect of folate availability on DNA methylation and the associated impact on CRC biology.
Collapse
|
39
|
Epigenomic diversity of colorectal cancer. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
Swayne BG, Kawata A, Behan NA, Williams A, Wade MG, Macfarlane AJ, Yauk CL. Investigating the effects of dietary folic acid on sperm count, DNA damage and mutation in Balb/c mice. Mutat Res 2012; 737:1-7. [PMID: 22824165 DOI: 10.1016/j.mrfmmm.2012.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 12/26/2022]
Abstract
To date, fewer than 50 mutagens have been studied for their ability to cause heritable mutations. The majority of those studied are classical mutagens like radiation and anti-cancer drugs. Very little is known about the dietary variables influencing germline mutation rates. Folate is essential for DNA synthesis and methylation and can impact chromatin structure. We therefore determined the effects of folic acid-deficient (0mg/kg), control (2mg/kg) and supplemented (6mg/kg) diets in early development and during lactation or post-weaning on mutation rates and chromatin quality in sperm of adult male Balb/c mice. The sperm chromatin structure assay and mutation frequencies at expanded simple tandem repeats (ESTRs) were used to evaluate germline DNA integrity. Treatment of a subset of mice fed the control diet with the mutagen ethylnitrosourea (ENU) at 8 weeks of age was included as a positive control. ENU treated mice exhibited decreased cauda sperm counts, increased DNA fragmentation and increased ESTR mutation frequencies relative to non-ENU treated mice fed the control diet. Male mice weaned to the folic acid deficient diet had decreased cauda sperm numbers, increased DNA fragmentation index, and increased ESTR mutation frequency. Folic acid deficiency in early development did not lead to changes in sperm counts or chromatin integrity in adult mice. Folic acid supplementation in early development or post-weaning did not affect germ cell measures. Therefore, adequate folic acid intake in adulthood is important for preventing chromatin damage and mutation in the male germline. Folic acid supplementation at the level achieved in this study does not improve nor is it detrimental to male germline chromatin integrity.
Collapse
Affiliation(s)
- Breanne G Swayne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
SIGNIFICANCE The progressive, dose-dependent, and potentially reversible epigenetic changes observed in cancer present new opportunities in cancer risk modification and prevention using dietary and lifestyle factors. Folate, a water-soluble B vitamin, has been of intense interest because of an inverse association between folate status and the risk of several malignancies (particularly colorectal cancer) and its potential to modulate DNA methylation. Aberrant patterns and dysregulation of DNA methylation are mechanistically related to carcinogenesis. RECENT ADVANCES The effects of folate on DNA methylation patterns have recently been investigated in two important life stages: pre- and early postnatal life and aging. Recent studies have demonstrated that folate exposure in the intrauterine environment and early life and during the aging process may have profound effects on DNA methylation with significant functional ramifications, including the risk of cancer. CRITICAL ISSUES Evidence from animal, human, and in vitro studies suggest that the epigenetic effects of folate on DNA methylation are highly complex. The effects are gene and site specific and appear to depend on cell type, target organ, stage of transformation, the degree and duration of folate manipulations, interactions with other methyl group donors and dietary factors, and genetic variants in the folate metabolic pathways. FUTURE DIRECTIONS The potential for folate to modulate DNA methylation and, thus, modify the risk of cancer in humans is worthy of further investigation. Due to the complex relationship between folate exposure and DNA methylation, more elaborate epidemiological, clinical, and mechanistic studies that determine the clinical, biological, and molecular effects of folate are warranted.
Collapse
Affiliation(s)
- Anna Ly
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Voutounou M, Glen CD, Dubrova YE. The effects of methyl-donor deficiency on mutation induction and transgenerational instability in mice. Mutat Res 2012; 734:1-4. [PMID: 22569175 DOI: 10.1016/j.mrfmmm.2012.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 01/25/2023]
Abstract
The results of recent human and animal studies have provided strong evidence for the epigenetic effects of a dietary deficiency of methyl donors such as folate, choline and methionine on cancer risk and some other common diseases. However, the mechanisms underlying the links between epigenetic alterations and disease remain elusive. To establish whether a methyl-donor deficient diet can result in long-term changes in mutation rate in treated animals and their offspring, BALB/c male mice were maintained for 8 weeks, from 4 weeks of age, on a synthetic diet lacking in choline and folic acid. Using single-molecule PCR, the frequency of mutation at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm was established in sperm samples of treated males, as well as in sperm and brain of their first-generation offspring. ESTR mutation frequency in the germline of males sacrificed immediately after treatment or sampled 6 and 10 weeks after the end of dietary restriction did not significantly differ from that in age-matched control groups. The frequency of ESTR mutation in DNA samples extracted from sperm and brain of the first-generation offspring of treated mice was also similar to that in controls. The results of our study suggest that the effects of a methyl-donor deficient diet on mutation induction and transgenerational instability in mice are likely to be negligible.
Collapse
Affiliation(s)
- Mariel Voutounou
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
43
|
Abstract
DNA hypomethylation was the initial epigenetic abnormality recognized in human tumors. However, for several decades after its independent discovery by two laboratories in 1983, it was often ignored as an unwelcome complication, with almost all of the attention on the hypermethylation of promoters of genes that are silenced in cancers (e.g., tumor-suppressor genes). Because it was subsequently shown that global hypomethylation of DNA in cancer was most closely associated with repeated DNA elements, cancer linked-DNA hypomethylation continued to receive rather little attention. DNA hypomethylation in cancer can no longer be considered an oddity, because recent high-resolution genome-wide studies confirm that DNA hypomethylation is the almost constant companion to hypermethylation of the genome in cancer, just usually (but not always) in different sequences. Methylation changes at individual CpG dyads in cancer can have a high degree of dependence not only on the regional context, but also on neighboring sites. DNA demethylation during carcinogenesis may involve hemimethylated dyads as intermediates, followed by spreading of the loss of methylation on both strands. In this review, active demethylation of DNA and the relationship of cancer-associated DNA hypomethylation to cancer stem cells are discussed. Evidence is accumulating for the biological significance and clinical relevance of DNA hypomethylation in cancer, and for cancer-linked demethylation and de novo methylation being highly dynamic processes.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Hayward Genetics Program, Department of Biochemistry, Tulane Cancer Center, Tulane Medical School, 1430 TulaneAvenue, New Orleans, LA 70112, USA.
| |
Collapse
|
44
|
Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 4:293-305. [PMID: 22353665 DOI: 10.1159/000334586] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuses on the relationships among folate-mediated 1-carbon metabolism, chromatin methylation and human disease, and the role of gene-nutrient interactions in modifying epigenetic processes.
Collapse
Affiliation(s)
- Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Silva LMRBD, Silva JNGD, Galbiatti ALS, Succi M, Ruiz MT, Raposo LS, Maniglia JV, Pavarino-Bertelli EC, Goloni-Bertollo EM. Head and neck carconogenesis: impact of MTHFD1 G1958A polymorphism. Rev Assoc Med Bras (1992) 2012; 57:194-9. [PMID: 21537707 DOI: 10.1590/s0104-42302011000200018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/25/2011] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the MTHFD1 G1958A polymorphism involved in the folate metabolism as a risk for head and neck cancer, and to find the association of the polymorphism with the risk factors and clinical and histopathological characteristics. METHODS Retrospective study investigating MTHFD1 G1958A polymorphism in 694 subjects (240 patients in the Case Group and 454 in the Control Group) by Restriction Fragment Length Polymorphism (RFLP) Analysis. Multiple logistic regression and chi-square tests were used in the statistical analysis. RESULTS Multivariable analysis showed that smoking and age over 42 years were disease predictors (p < 0.05). MTHFD1 1958GA or AA genotypes were associated with smoking (p = 0.04) and alcoholism (p = 0.03) and were more often found in more advanced stage tumors (p = 0.04) and in patients with a shorter survival (p = 0.03). CONCLUSION The presence of MTHFD1 G1948A polymorphism associated with smoking and alcoholism raises the head and neck cancer risk.
Collapse
Affiliation(s)
- Lidia Maria Rebolho Batista da Silva
- Unit of Research in Genetics and Molecular Biology (UPGEM), Medical College of São José do Rio Preto (FAMERP), São José do Rio Preto, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bliek BJB, Steegers-Theunissen RPM, Douben H, Lindemans J, Steegers EAP, de Klein A. Comparable levels of folate-induced aneusomy in B-lymphoblasts from oral-cleft patients and controls. Mutat Res 2012; 741:76-80. [PMID: 22138420 DOI: 10.1016/j.mrgentox.2011.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 09/08/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Peri-conceptional use of folic acid contributes to protection against congenital malformations, such as neural tube defects and cleft lip with or without cleft palate (CL/P). Previous studies showed that low folate levels cause DNA damage, leading to chromosomal instability and aneusomy. This study seeks to confirm this finding and investigates whether the in vitro sensitivity towards aneusomy of chromosome 17 and 21 in the folate-deficient state differs between CL/P patients and controls. METHODS Epstein-Barr virus-immortalized B-lymphoblasts derived from 15 CL/P children and 15 controls, were cultured in medium with high and low concentrations - approximately 40nM and 5nM - of 5-methyltetrahydrofolate, respectively. Fluorescence in situ hybridization was used to detect specific fluorescence signals for chromosomes 17 and 21. RESULTS A significant increase in aneusomy of chromosomes 17 (2.3% vs 7.6%; p ≤ 0.001) and 21 (2.5% vs 7.0%; p ≤ 0.001) was observed after 10 days of culturing in low folate. These results were comparable in cell lines from patients and controls. Interestingly, for chromosome 17 the folate deficiency mainly resulted in an increase of monosomy (6%, p ≤ 0.001), while for chromosome 21 the increase of trisomy was larger (4.9%, p ≤ 0.001). CONCLUSIONS These data suggest that folate deficiency is a significant risk factor in the development of aneusomy and may affect the distribution of chromosomes during cell division. The comparable aneusomy frequencies in CL/P and in controls suggest that other folate-related processes are involved in the pathogenesis of CL/P, and additional investigations are needed to identify the causal mechanisms.
Collapse
Affiliation(s)
- Bart J B Bliek
- Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Salbaum JM, Kappen C. Genetic and epigenomic footprints of folate. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:129-58. [PMID: 22656376 DOI: 10.1016/b978-0-12-398397-8.00006-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dietary micronutrient composition has long been recognized as a determining factor for human health. Historically, biochemical research has successfully unraveled how vitamins serve as essential cofactors for enzymatic reactions in the biochemical machinery of the cell. Folate, also known as vitamin B9, follows this paradigm as well. Folate deficiency is linked to adverse health conditions, and dietary supplementation with folate has proven highly beneficial in the prevention of neural tube defects. With its function in single-carbon metabolism, folate levels affect nucleotide synthesis, with implications for cell proliferation, DNA repair, and genomic stability. Furthermore, by providing the single-carbon moiety in the synthesis pathway for S-adenosylmethionine, the main methyl donor in the cell, folate also impacts methylation reactions. It is this capacity that extends the reach of folate functions into the realm of epigenetics and gene regulation. Methylation reactions play a major role for several modalities of the epigenome. The specific methylation status of histones, noncoding RNAs, transcription factors, or DNA represents a significant determinant for the transcriptional output of a cell. Proper folate status is therefore necessary for a broad range of biological functions that go beyond the biochemistry of folate. In this review, we examine evolutionary, genetic, and epigenomic footprints of folate and the implications for human health.
Collapse
Affiliation(s)
- J Michael Salbaum
- Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | | |
Collapse
|
48
|
Galbiatti ALS, Ruiz MT, Maniglia JV, Raposo LS, Pavarino-Bertelli ÉC, Goloni-Bertollo EM. Head and neck cancer: genetic polymorphisms and folate metabolism. Braz J Otorhinolaryngol 2012; 78:132-9. [PMID: 22392251 PMCID: PMC9443880 DOI: 10.1590/s1808-86942012000100021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/18/2010] [Indexed: 12/31/2022] Open
|
49
|
MTHFD1 G1958A, BHMT G742A, TC2 C776G and TC2 A67G polymorphisms and head and neck squamous cell carcinoma risk. Mol Biol Rep 2011; 39:887-93. [PMID: 21630102 DOI: 10.1007/s11033-011-0813-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/03/2011] [Indexed: 01/02/2023]
Abstract
Alterations in folate metabolism may contribute to the process of carcinogenesis by influencing DNA methylation and genomic stability. Polymorphisms in genes encoding enzymes involved in this pathway may alter enzyme activity and consequently interfere in concentrations of homocysteine and S-adenosylmethionine that are important for DNA synthesis and cellular methylation reactions. The objectives were to investigate MTHFD1 G1958A, BHMT G742A, TC2 C776G and TC2 A67G polymorphisms involved in folate metabolism on head and neck cancer risk and the association between these polymorphisms with risk factors. Polymorphisms were investigated in 762 individuals (272 patients and 490 controls) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and Real Time-PCR. Chi-square and Multiple logistic regression were used for the statistical analysis. Multiple logistic regression showed that tobacco and male gender were predictors for the disease (P < 0.05). Hardy-Weinberg equilibrium showed that the genotypic distributions were in equilibrium for both groups in all polymorphisms studied. The BHMT 742GA or AA genotypes associated with tobacco consumption (P = 0.016) increase the risk for head and neck squamous cell carcinoma (HNSCC). The present study suggests that BHMT 742GA polymorphism associated to tobacco modulate HNSCC risk. However, further investigation of gene-gene interactions in folate metabolism and studies in different populations are needed to investigate polymorphisms and HNSCC risk.
Collapse
|
50
|
Head and neck carcinogenesis: impact of MTHFD1 G1958A polymorphism. Rev Assoc Med Bras (1992) 2011. [DOI: 10.1016/s0104-4230(11)70043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|