1
|
Wattchow DA, Brookes SJH, Spencer NJ, De Giorgio R, Costa M, Dinning PG. Gut Neuropathies and Intestinal Motility Disorders. Neurogastroenterol Motil 2025:e14995. [PMID: 39777822 DOI: 10.1111/nmo.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The enteric nervous system plays a key role in the coordination of gastrointestinal motility together with sympathetic, parasympathetic, and extrinsic sensory pathways. In some cases, abnormalities in neural activity in these pathways contribute to disorders of gut motility. Where this is associated with damage or death of enteric neurons, usually detected by microscopy, this is considered a gut neuropathy. PURPOSE This review summarizes recent advances in the identification of neuropathies in a range of gastrointestinal motility disorders.
Collapse
Affiliation(s)
- David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
- Department of Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Simon J H Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
- Department of Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Bamoria P, Ratan SK, Panda SS, Neogi S, Mandal S, Kumar C, Saxena G. Interstitial Cells of Cajal and Ganglion Cell Distribution in Sigmoid Stomal Limbs and Distal Rectum after Stoma Formation in Male Anorectal Malformation Patients Undergoing Staged Repair. J Indian Assoc Pediatr Surg 2025; 30:22-27. [PMID: 39968250 PMCID: PMC11832098 DOI: 10.4103/jiaps.jiaps_155_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction This study was undertaken to assess the distribution of ganglion cells (GCs) and interstitial cells of Cajal (ICCs) across different points of distal rectal pouch in anorectal malformation (ARM) patients over the three stages of repair. We hypothesize that along with the surgical factors, there could be intrinsic factors as well which can be the cause of dysmotility in these patients after surgical repair. Methodology Full-thickness colonic biopsy specimens were taken from the proximal stoma, distal stoma, and distal rectal pouch of 21 boys aged 0-8 months undergoing 3 staged repair of ARM at our tertiary care center between August 2022 and December 2023. There was an interstage interval of approximately 12-14 weeks. All underwent high-divided sigmoid colostomy in stage 1. Biopsy specimens for GC and ICC number were routinely processed, and immunohistochemistry was done for CD117. The data was assessed and compared with respect to location and stage of surgery. Results Both GC and ICC showed a gradual decrease in mean number over three stages for both proximal and distal ends of colostomy. For proximal stoma, the distribution of either cell type did not differ across the stages, but for distal stoma, the number of cells was significantly lower in the second stage (following colostomy, before posterior sagittal anorectoplasty). However, no difference was noted between the second and third stages. This indicates that factors during/just after colostomy itself must be responsible for decrease in ICC/GC. Conclusion Lesser number of GC and/or ICC in the distal pouch from stage 2 onward may point toward its association with projected hypomotility in ARM patients. Apart from innate distribution, we also infer that this could be consequent to vascular insult which may occur at the time of divided colostomy. Loop stoma may be a better alternative as vascularity is uninterrupted in loop colostomy.
Collapse
Affiliation(s)
- Priyanka Bamoria
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Simmi K. Ratan
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | | | - Sujoy Neogi
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Shramana Mandal
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Chiranjiv Kumar
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Gaurav Saxena
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
Wang THH, Varghese C, Calder S, Gharibans AA, Evennett N, Beban G, Schamberg G, O'Grady G. Assessment of Gastric Remnant Activity, Symptoms, and Quality of Life Following Gastric Bypass. Obes Surg 2024; 34:4490-4498. [PMID: 39397209 DOI: 10.1007/s11695-024-07534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION While most gastric bypass patients recover well, some experience long-term complications, including nausea, abdominal pain, food intolerance, and dumping. This study aimed to evaluate symptoms and quality of life (QoL) in association with the residual activity of the remnant stomach. METHODS Patients undergoing gastric bypass and conversion-to-bypass were recruited. The Gastric Alimetry® System (Auckland, NZ) was employed, comprising a high-resolution electrode array, wearable reader, and validated symptom logging app. The protocol comprised 30-min fasting baseline, a 218-kCal meal stimulus, and 4-h of post-prandial recordings. Symptoms and QoL were evaluated using validated questionnaires. Remnant gastric electrophysiology evaluation included frequency, BMI-adjusted amplitude, and Gastric Alimetry Rhythm Index (GA-RI, reflecting pacemaker stability), with comparison to validated reference intervals and matched controls. RESULTS Thirty-eight participants were recruited with mean time from bypass 46.8 ± 28.6 months. One-third of patients showed moderate to severe post-prandial symptoms, with patients' median PAGI-SYM 28 ± 19 vs controls 9 ± 17 (p < 0.01); PAGI-QOL 37 ± 31 vs 135 ± 22 (p < 0.0001). Remnant gastric function was markedly degraded shown by undetectable frequencies in 84% (vs 0% in controls) and low GA-RI (0.18 ± 0.08 vs 0.51 ± 0.22 in controls; p < 0.0001; reference range > 0.25). Impaired GA-RI and amplitude were correlated with worse PAGI-SYM and PAGI-QOL scores. CONCLUSION One-third of post-bypass patients suffered significant upper GI symptoms with reduced QoL. The bypassed remnant stomach shows highly deranged electrophysiology in-situ, reflecting disuse degeneration. These derangements correlated with QoL; however, causality is not implied by the present study.
Collapse
Affiliation(s)
- Tim Hsu-Han Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Chris Varghese
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Stefan Calder
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Alimetry (New Zealand), Auckland, New Zealand
| | - Armen A Gharibans
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Alimetry (New Zealand), Auckland, New Zealand
| | - Nicholas Evennett
- Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Grant Beban
- Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Gabriel Schamberg
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Alimetry (New Zealand), Auckland, New Zealand
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.
- Alimetry (New Zealand), Auckland, New Zealand.
| |
Collapse
|
4
|
Chaverra M, Cheney AM, Scheel A, Miller A, George L, Schultz A, Henningsen K, Kominsky D, Walk H, Kennedy WR, Kaufmann H, Walk S, Copié V, Lefcort F. ELP1, the Gene Mutated in Familial Dysautonomia, Is Required for Normal Enteric Nervous System Development and Maintenance and for Gut Epithelium Homeostasis. J Neurosci 2024; 44:e2253232024. [PMID: 39138000 PMCID: PMC11391678 DOI: 10.1523/jneurosci.2253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.
Collapse
Affiliation(s)
- Marta Chaverra
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alexandra M Cheney
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Alpha Scheel
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alessa Miller
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - Anastasia Schultz
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Katelyn Henningsen
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Douglas Kominsky
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Heather Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - William R Kennedy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, New York 10016
| | - Seth Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Valérie Copié
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Frances Lefcort
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
5
|
Taheri N, Choi EL, Nguyen VTT, Zhang Y, Huynh NM, Kellogg TA, van Wijnen AJ, Ordog T, Hayashi Y. Inhibition of EZH2 Reduces Aging-Related Decline in Interstitial Cells of Cajal of the Mouse Stomach. Cell Mol Gastroenterol Hepatol 2024; 18:101376. [PMID: 38969206 PMCID: PMC11359770 DOI: 10.1016/j.jcmgh.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND & AIMS Restricted gastric motor functions contribute to aging-associated undernutrition, sarcopenia, and frailty. We previously identified a decline in interstitial cells of Cajal (ICC; gastrointestinal pacemaker and neuromodulator cells) and their stem cells (ICC-SC) as a key factor of gastric aging. Altered functionality of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is central to organismal aging. Here, we investigated the role of EZH2 in the aging-related loss of ICC/ICC-SC. METHODS klotho mice, a model of accelerated aging, were treated with the most clinically advanced EZH2 inhibitor, EPZ6438 (tazemetostat; 160 mg/kg intraperitoneally twice a day for 3 weeks). Gastric ICC were analyzed by Western blotting and immunohistochemistry. ICC and ICC-SC were quantified by flow cytometry. Gastric slow wave activity was assessed by intracellular electrophysiology. Ezh2 was deactivated in ICC by treating KitcreERT2/+;Ezh2fl/fl mice with tamoxifen. TRP53, a key mediator of aging-related ICC loss, was induced with nutlin 3a in gastric muscle organotypic cultures and an ICC-SC line. RESULTS In klotho mice, EPZ6438 treatment mitigated the decline in the ICC growth factor KIT ligand/stem cell factor and gastric ICC. EPZ6438 also improved gastric slow wave activity and mitigated the reduced food intake and impaired body weight gain characteristic of this strain. Conditional genomic deletion of Ezh2 in Kit-expressing cells also prevented ICC loss. In organotypic cultures and ICC-SC, EZH2 inhibition prevented the aging-like effects of TRP53 stabilization on ICC/ICC-SC. CONCLUSIONS Inhibition of EZH2 with EPZ6438 mitigates aging-related ICC/ICC-SC loss and gastric motor dysfunction, improving slow wave activity and food intake in klotho mice.
Collapse
Affiliation(s)
- Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Egan L Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Vy Truong Thuy Nguyen
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yuebo Zhang
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Nick M Huynh
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | - Tamas Ordog
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
6
|
Avci R, Du P, Vanderwinden JM, Cheng LK. Variations in Regional Characteristics of Interstitial Cells of Cajal in the Murine Stomach. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039363 DOI: 10.1109/embc53108.2024.10782142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Rhythmic bioelectrical activity known as slow waves is in part responsible for coordinating the contractions in the stomach, which play a crucial role in maintaining healthy digestion. Slow waves are generated by specialized pacemaker cells named interstitial cells of Cajal (ICC) distributed within smooth muscle cells of the stomach wall. In this study, tissue samples were collected from four regions (cardia, fundus, corpus, and antrum) of the stomach of a transgenic mouse that expressed green fluorescent protein in the ICC. Detailed ICC structures were imaged using multiphoton confocal microscopy and the ICC network was segmented using a supervised machine learning model. The regional network characteristics of the ICC were quantified and compared using structural metrics. The microscopic images revealed that the cardia and fundus lacked the dense layer of ICC situated within the myenteric plexus (ICC-MP). On the other hand, the ICC layer that runs along the longitudinal muscle layer (ICC-LM) was mainly observed in the cardia and fundus. The ICC cells that run parallel with the circular muscle fibers (ICC-CM) were present in the four imaged regions. The structural metrics showed that the ICC density increased from the cardia (2.6±2.0%) to the antrum (12.8±2.7%). Similarly, the ICC process thickness distally increased from 4.2±0.8 μm to 7.5±0.5 μm. The other structural metrics also showed variations between the different regions of the stomach. The characterization of the regional characteristics of the ICC network contributes to our understanding of the structure-function relationship in the gastric motility and can help to identify the roles that different ICC types play in gastric motility in health and disease.
Collapse
|
7
|
Baidoo N, Sanger GJ. The human colon: Evidence for degenerative changes during aging and the physiological consequences. Neurogastroenterol Motil 2024:e14848. [PMID: 38887160 DOI: 10.1111/nmo.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The incidence of constipation increases among the elderly (>65 years), while abdominal pain decreases. Causes include changes in lifestyle (e.g., diet and reduced exercise), disease and medications affecting gastrointestinal functions. Degenerative changes may also occur within the colo-rectum. However, most evidence is from rodents, animals with relatively high rates of metabolism and accelerated aging, with considerable variation in time course. In humans, cellular and non-cellular changes in the aging intestine are poorly investigated. PURPOSE To examine all available studies which reported the effects of aging on cellular and tissue functions of human isolated colon, noting the region studied, sex and age of tissue donors and study size. The focus on human colon reflects the ability to access full-thickness tissue over a wide age range, compared with other gastrointestinal regions. Details are important because of natural human variability. We found age-related changes within the muscle, in the enteric and nociceptor innervation, and in the submucosa. Some involve all regions of colon, but the ascending colon appears more vulnerable. Changes can be cell- and sublayer-dependent. Mechanisms are unclear but may include development of "senescent-like" and associated inflammaging, perhaps associated with increased mucosal permeability to harmful luminal contents. In summary, reduced nociceptor innervation can explain diminished abdominal pain among the elderly. Degenerative changes within the colon wall may have little impact on symptoms and colonic functions, because of high "functional reserve," but are likely to facilitate the development of constipation during age-related challenges (e.g., lifestyle, disease, and medications), now operating against a reduced functional reserve.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life Sciences, University of Westminster, London, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth J Sanger
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Samaranayake UMJE, Mathangasinghe Y, Perera MHS, Perera ND, Liyanage UA, Sirisena ND, de Silva MVC, Malalasekera AP. Cajal-like cell morphometry is not associated with pelvi-ureteric junction obstruction in adults. BJU Int 2024; 133:276-277. [PMID: 37975149 DOI: 10.1111/bju.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- U M J Eshana Samaranayake
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yasith Mathangasinghe
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
- Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Manesha H S Perera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Neville D Perera
- Postgraduate Institute of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Udari A Liyanage
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nirmala D Sirisena
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - M V Chandu de Silva
- Department of Pathology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Ajith P Malalasekera
- Department of Anatomy, Genetics and Biomedical Informatics, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
9
|
Xu W, Wang T, Foong D, Schamberg G, Evennett N, Beban G, Gharibans A, Calder S, Daker C, Ho V, O'Grady G. Characterization of gastric dysfunction after fundoplication using body surface gastric mapping. J Gastrointest Surg 2024; 28:236-245. [PMID: 38445915 DOI: 10.1016/j.gassur.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND Adverse gastric symptoms persist in up to 20% of fundoplication operations completed for gastroesophageal reflux disease, causing significant morbidity and driving the need for revisional procedures. Noninvasive techniques to assess the mechanisms of persistent postoperative symptoms are lacking. This study aimed to investigate gastric myoelectrical abnormalities and symptoms in patients after fundoplication using a novel noninvasive body surface gastric mapping (BSGM) device. METHODS Patients with a previous fundoplication operation and ongoing significant gastroduodenal symptoms and matched controls were included. BSGM using Gastric Alimetry (Alimetry Ltd) was employed, consisting of a high-resolution 64-channel array, validated symptom-logging application, and wearable reader. RESULTS A total of 16 patients with significant chronic symptoms after fundoplication were recruited, with 16 matched controls. Overall, 6 of 16 patients (37.5%) showed significant spectral abnormalities defined by unstable gastric myoelectrical activity (n = 2), abnormally high gastric frequencies (n = 3), or high gastric amplitudes (n = 1). Patients with spectral abnormalities had higher Patient Assessment of Upper Gastrointestinal Disorders-Symptom Severity Index scores than those of patients without spectral abnormalities (3.2 [range, 2.8-3.6] vs 2.3 [range, 2.2-2.8], respectively; P = .024). Moreover, 7 of 16 patients (43.8%) had BSGM test results suggestive of gut-brain axis contributions and without myoelectrical dysfunction. Increasing Principal Gastric Frequency Deviation and decreasing Rhythm Index scores were associated with symptom severity (r > .40; P < .05). CONCLUSION A significant number of patients with persistent postfundoplication symptoms displayed abnormal gastric function on BSGM testing, which correlated with symptom severity. Our findings advance the pathophysiologic understanding of postfundoplication disorders, which may inform diagnosis and patient selection for medical therapy and revisional procedures.
Collapse
Affiliation(s)
- William Xu
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Tim Wang
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Daphne Foong
- Alimetry Ltd, Auckland, New Zealand; School of Medicine, Western Sydney University, Penrith, Australia
| | - Gabe Schamberg
- Department of Surgery, University of Auckland, Auckland, New Zealand; Alimetry Ltd, Auckland, New Zealand
| | - Nicholas Evennett
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Grant Beban
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Armen Gharibans
- Alimetry Ltd, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Stefan Calder
- Alimetry Ltd, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Charlotte Daker
- Alimetry Ltd, Auckland, New Zealand; Department of Gastroenterology, North Shore Hospital, Auckland, New Zealand
| | - Vincent Ho
- School of Medicine, Western Sydney University, Penrith, Australia; Department of Gastroenterology and Hepatology, Campbelltown Hospital, Campbelltown, Australia
| | - Greg O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand; Alimetry Ltd, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Mah SA, Avci R, Vanderwinden JM, Du P. Three-Dimensional Fractal Analysis of the Interstitial Cells of Cajal Networks of Gastrointestinal Tissue Specimens. Cell Mol Bioeng 2024; 17:67-81. [PMID: 38435795 PMCID: PMC10902253 DOI: 10.1007/s12195-023-00789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024] Open
Abstract
Introduction Several functional gastrointestinal disorders (FGIDs) have been associated with the degradation or remodeling of the network of interstitial cells of Cajal (ICC). Introducing fractal analysis to the field of gastroenterology as a promising data analytics approach to extract key structural characteristics that may provide insightful features for machine learning applications in disease diagnostics. Fractal geometry has advantages over several physically based parameters (or classical metrics) for analysis of intricate and complex microstructures that could be applied to ICC networks. Methods In this study, three fractal structural parameters: Fractal Dimension, Lacunarity, and Succolarity were employed to characterize scale-invariant complexity, heterogeneity, and anisotropy; respectively of three types of gastric ICC network structures from a flat-mount transgenic mouse stomach. Results The Fractal Dimension of ICC in the longitudinal muscle layer was found to be significantly lower than ICC in the myenteric plexus and circumferential muscle in the proximal, and distal antrum, respectively (both p < 0.0001). Conversely, the Lacunarity parameters for ICC-LM and ICC-CM were found to be significantly higher than ICC-MP in the proximal and in the distal antrum, respectively (both p < 0.0001). The Succolarity measures of ICC-LM network in the aboral direction were found to be consistently higher in the proximal than in the distal antrum (p < 0.05). Conclusions The fractal parameters presented here could go beyond the limitation of classical metrics to provide better understanding of the structural-functional relationship between ICC networks and the conduction of gastric bioelectrical slow waves.
Collapse
Affiliation(s)
- Sue Ann Mah
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jean-Marie Vanderwinden
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Peng Du
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Werner CM, Willing LB, Goudsward HJ, McBride AR, Stella SL, Holmes GM. Plasticity of colonic enteric nervous system following spinal cord injury in male and female rats. Neurogastroenterol Motil 2023; 35:e14646. [PMID: 37480186 PMCID: PMC11298951 DOI: 10.1111/nmo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Neurogenic bowel is a dysmotility disorder following spinal cord injury (SCI) that negatively impacts quality of life, social integration, and physical health. Colonic transit is directly modulated by the enteric nervous system. Interstitial Cells of Cajal (ICC) distributed throughout the small intestine and colon serve as specialized pacemaker cells, generating rhythmic electrical slow waves within intestinal smooth muscle, or serve as an interface between smooth muscle cells and enteric motor neurons of the myenteric plexus. Interstitial Cells of Cajal loss has been reported for other preclinical models of dysmotility, and our previous experimental SCI study provided evidence of reduced excitatory and inhibitory enteric neuronal count and smooth muscle neural control. METHODS Immunohistochemistry for the ICC-specific marker c-Kit was utilized to examine neuromuscular remodeling of the distal colon in male and female rats with experimental SCI. KEY RESULTS Myenteric plexus ICC (ICC-MP) exhibited increased cell counts 3 days following SCI in male rats, but did not significantly increase in females until 3 weeks after SCI. On average, ICC-MP total primary arborization length increased significantly in male rats at 3-day, 3-week, and 6-week time points, whereas in females, this increase occurred most frequently at 6 weeks post-SCI. Conversely, circular muscle ICC (ICC-CM) did not demonstrate post-SCI changes. CONCLUSIONS AND INFERENCES These data demonstrate resiliency of the ICC-MP in neurogenic bowel following SCI, unlike seen in other related disease states. This plasticity underscores the need to further understand neuromuscular changes driving colonic dysmotility after SCI in order to advance therapeutic targets for neurogenic bowel treatment.
Collapse
Affiliation(s)
- Claire M Werner
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lisa B Willing
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hannah J Goudsward
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Salvatore L Stella
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
12
|
Ding F, Guo R, Chen F, Liu LP, Cui ZY, Wang YX, Zhao G, Hu H. Impact of interstitial cells of Cajal on slow wave and gallbladder contractility in a guinea pig model of acute cholecystitis. World J Gastrointest Surg 2023; 15:1068-1079. [PMID: 37405098 PMCID: PMC10315119 DOI: 10.4240/wjgs.v15.i6.1068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Impaired interstitial cells of Cajal (ICCs) are central to the pathophysiology of acute cholecystitis (AC). Common bile duct ligation is a common model of AC, producing acute inflammatory changes and decrease in gallbladder contractility.
AIM To investigate the origin of slow wave (SW) in the gallbladder and the effect of ICCs on gallbladder contractions during the process of AC.
METHODS Methylene blue (MB) with light was used to establish selective impaired ICCs gallbladder tissue. Gallbladder motility was assessed using the frequency of SW and gallbladder muscle contractility in vitro in normal control (NC), AC12h, AC24h, and AC48h groups of guinea pigs. Hematoxylin and eosin and Masson-stained gallbladder tissues were scored for inflammatory changes. ICCs pathological changes alterations were estimated using immunohistochemistry and transmission electron microscopy. The alterations of c-Kit, α-SMA, cholecystokinin A receptor (CCKAR), and connexin 43 (CX43) were assessed using Western blot.
RESULTS Impaired ICCs muscle strips resulted in the decrease in gallbladder SW frequency and contractility. The frequency of SW and gallbladder contractility were significantly lower in the AC12h group. Compared with the NC group, the density and ultrastructure of ICCs were remarkably impaired in the AC groups, especially in the AC12h group. The protein expression levels of c-Kit were significantly decreased in the AC12h group, while CCKAR and CX43 protein expression levels were significantly decreased in the AC48h group.
CONCLUSION Loss ICCs could lead to a decrease in gallbladder SW frequency and contractility. The density and ultrastructure of ICCs were clearly impaired in the early stage of AC, while CCKAR and CX43 were significantly reduced at end stage.
Collapse
Affiliation(s)
- Fan Ding
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| | - Run Guo
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Fang Chen
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Li-Ping Liu
- Department of Ultrasonography, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Zheng-Yu Cui
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yi-Xing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Gang Zhao
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| | - Hai Hu
- Center of Gallbladder Disease, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200331, China
| |
Collapse
|
13
|
Huang X, Ao JP, Fu HY, Lu HL, Xu WX. Corticotropin-releasing factor receptor agonists decrease interstitial cells of Cajal in murine colon. Neurogastroenterol Motil 2023; 35:e14499. [PMID: 36377810 DOI: 10.1111/nmo.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Peripheral corticotropin-releasing factor (CRF) has been reported to affect gastrointestinal motility through corticotropin-releasing factor receptor located in enteric nervous system (ENS), but less is known about of the relationship between peripheral CRF and interstitial cells of Cajal (ICC). METHODS Mice were intraperitoneally injected with CRF receptor agonists to determine their effects on colonic ICC. Chronic heterotypic stress (CHeS) was applied to mice to determine endogenous CRF-CRF receptor signaling on colonic ICC. RESULTS We found that stressin1, a selective CRF receptor 1 (CRF1 ) agonist, significantly increased the expression of CRF1 but had no effect on the expression of CRF2 in the smooth muscles of murine colon. The protein expression of c-Kit, Anoctamin-1 (ANO1), and stem cell factor (SCF) in the colonic smooth muscles was significantly decreased in stressin1-treated mice. Accordingly, 2-(4-Chloro-2-methylphenoxy)-N'-(2-methoxybenzylidene) acetohydrazide (Ani 9), a selective ANO1 blocker, had a less significant inhibitory effect on CMMC in stressin1-treated mice compared to the saline-treated ones. Similarly, we also found that ICC and ANO1 were reduced in the colonic smooth muscles of mice by treatment with sauvagine (ip), a CRF2 agonist. However, different with stressin1, sauvagine decreased the expression of CRF2 besides increasing CRF1 expression in the colonic smooth muscles. Similar results of CRF1 and c-Kit expressions were also obtained from the colon of CHeS-treated mice. CONCLUSION All these results suggest that CRF may be involved in the abnormality of colonic motility through peripheral CRF1 to decrease the number and function of ICC, which provides a potential target for treating stress-induced gastrointestinal motility disorder.
Collapse
Affiliation(s)
- Xu Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Ping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Han-Yue Fu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Li Lu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Xie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Veličkov AI, Djordjević B, Lazarević M, Veličkov AV, Petrović V, Jović M, Denčić T, Radenković G. Distributions of Platelet-Derived Growth Factor Receptor-α Positive Cells and Interstitial Cells of Cajal in the Colon of Rats with Diabetes Mellitus Type 2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020308. [PMID: 36837509 PMCID: PMC9964132 DOI: 10.3390/medicina59020308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: Diabetic gastroenteropathy (DG) is a common complication of diabetes mellitus type 2. Interstitial cells are non-neural cells of mesenchymal origin inserted between nerve elements and smooth muscle cells, necessary for normal function and peristaltic contractions in the gastrointestinal (GI) tract. There are at least two types of interstitial cells within the GI muscle layer-interstitial cells of Cajal (ICC) and interstitial platelet-derived growth factor receptor α-positive cells (IPC). The mechanism of diabetic gastroenteropathy is unclear, and interstitial cells disorders caused by metabolic changes in diabetes mellitus (DM) could explain the symptoms of DG (slow intestinal transit, constipation, fecal incontinence). The aim of this study was to identify PDGFRα and c-kit immunoreactive cells in the colon of rats with streptozotocin-nicotinamide-induced diabetes mellitus type 2, as well as to determine their distribution in relation to smooth muscle cells and enteric nerve structures. Materials and Methods: Male Wistar rats were used, and diabetes type 2 was induced by an intraperitoneal injection of streptozotocin, immediately after intraperitoneal application of nicotinamide. The colon specimens were exposed to PDGFRα and anti-c-kit antibodies to investigate interstitial cells; enteric neurons and smooth muscle cells were immunohistochemically labeled with NF-M and desmin antibodies. Results: Significant loss of the intramuscular ICC, myenteric ICC, and loss of their connection in intramuscular linear arrays and around the ganglion of the myenteric plexus were observed with no changes in nerve fiber distribution in the colon of rats with diabetes mellitus type 2. IPC were rarely present within the colon muscle layer with densely distributed PDGFRα+ cells in the colon mucosa and submucosa of both experimental groups. In summary, a decrease in intramuscular ICC, discontinuities and breakdown of contacts between myenteric ICC without changes in IPC and nerve fibers distribution were observed in the colon of streptozotocin/nicotinamide-induced diabetes type 2 rats.
Collapse
Affiliation(s)
- Aleksandra Ivana Veličkov
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
- Correspondence:
| | - Branka Djordjević
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Milica Lazarević
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Asen Veselin Veličkov
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Centre Niš, 18000 Niš, Serbia
| | - Vladimir Petrović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Marko Jović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Tijana Denčić
- Department of Pathology, Faculty of Medicine, Clinical Centre Niš, University of Niš, 18000 Niš, Serbia
| | - Goran Radenković
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| |
Collapse
|
15
|
Song Y, Yin D, Zhang Z, Chi L. Research progress of treatment of functional dyspepsia with traditional Chinese medicine compound based on cell signal pathway. Front Pharmacol 2023; 13:1089231. [PMID: 36699059 PMCID: PMC9868459 DOI: 10.3389/fphar.2022.1089231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Functional dyspepsia (FD) is the most common clinical gastrointestinal disease, with complex and prolonged clinical symptoms. The prevalence of FD is increasing year by year, seriously affecting the quality of life of patients. The main causes of FD are related to abnormal gastrointestinal dynamics, increased visceral sensitivity, Helicobacter pylori (HP) infection, intestinal flora disturbance and psychological factors. A review of the relevant literature reveals that the mechanisms of traditional Chinese medicine (TCM) in the treatment of FD mainly involve the following pathways:5-HT signal pathway, AMPK signal pathway,C-kit signal pathway, CRF signal pathway, PERK signal pathway,NF-κB signal pathway. Based on a holistic concept, TCM promotes gastrointestinal motility, regulates visceral sensitivity and alleviates gastrointestinal inflammation through multiple signal pathways, reflecting the advantages of multi-level, multi-pathway and multi-targeted treatment of FD.
Collapse
Affiliation(s)
- Yujiao Song
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Defei Yin
- Digestive System Department II, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Zhenyi Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| | - Lili Chi
- Digestive System Department II, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Yujiao Song, ; Defei Yin, ; Zhenyi Zhang, ; Lili Chi,
| |
Collapse
|
16
|
Srougi V, Bandeira RASDT, Reis ST, dos Santos GA, Andrade HDS, Leite KRM, Hamilton-Cho D, Mitre AI, Arap MA, Srougi M, Duarte RJ. The influence of interstitial cells of Cajal density in the outcomes of pyeloplasty in adults: A prospective analysis. Urologia 2022; 90:30-35. [PMID: 35765765 DOI: 10.1177/03915603221107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose: To evaluate if the density of interstitial cells of Cajal (ICC) in the ureteropelvic junction (UPJ) influences the outcomes of pyeloplasty in adults. Methods: Twenty-three patients with the diagnosis of ureteropelvic junction obstruction (UPJO) that underwent laparoscopic dismembered pyeloplasty were included. ICC density was measured using immunohistochemistry reaction for c-KIT expression in the resected UPJ segment. Pyeloplasty outcome was evaluated by patient self-report pain, urinary outflow using DTPA renogram and hydronephrosis assessment using ultrasound (US) at 12 months of follow-up. A logistic regression analysis was performed to assess the association of pyeloplasty outcomes and ICC density. Results: Low, moderate, and high ICC density were present in 17.4%, 30.4%, and 52.2% of the patients, respectively. Complete pain resolution was observed in 100%, 85.7%, and 75% of patients with low, moderate and high ICC density, respectively ( p = 0.791). DTPA renogram improved in 75%, 85.7%, and 91.7% of patients with low, moderate and high ICC density, respectively ( p = 0.739). Hydronephrosis improved in 25%, 85.7%, and 91.7% of patients with low, moderate and high ICC density, respectively ( p = 0.032). Conclusions: Patients with high ICC density have a significant amelioration of hydronephrosis after pyeloplasty. However, ICC density is not associated with functional outcomes.
Collapse
Affiliation(s)
- Victor Srougi
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Hospital Moriah, Sao Paulo, Brazil
| | | | - Sabrina Thalita Reis
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Minas Gerais State University (UEMG), Campos Passos, Brazil
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gabriel Arantes dos Santos
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- D’Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | | | - Katia Ramos Moreira Leite
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - David Hamilton-Cho
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Anuar Ibrahim Mitre
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marco Antonio Arap
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Hospital Sirio Libanes, Sao Paulo, Brazil
| | - Miguel Srougi
- Division of Urology, University of Sao Paulo Medical School, Sao Paulo, Brazil
- Laboratory of Medical Investigation (LIM55), Urology Department, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- D’Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | | |
Collapse
|
17
|
Ding F, Guo R, Cui ZY, Hu H, Zhao G. Clinical application and research progress of extracellular slow wave recording in the gastrointestinal tract. World J Gastrointest Surg 2022; 14:544-555. [PMID: 35979419 PMCID: PMC9258241 DOI: 10.4240/wjgs.v14.i6.544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
The physiological function of the gastrointestinal (GI) tract is based on the slow wave generated and transmitted by the interstitial cells of Cajal. Extracellular myoelectric recording techniques are often used to record the characteristics and propagation of slow wave and analyze the models of slow wave transmission under physiological and pathological conditions to further explore the mechanism of GI dysfunction. This article reviews the application and research progress of electromyography, bioelectromagnetic technology, and high-resolution mapping in animal and clinical experiments, summarizes the clinical application of GI electrical stimulation therapy, and reviews the electrophysiological research in the biliary system.
Collapse
Affiliation(s)
- Fan Ding
- Center of Gallbladder Disease, East Hospital of Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200331, China
| | - Run Guo
- Department of Ultrasonography, East Hospital of Tongji University, Shanghai 200120, China
| | - Zheng-Yu Cui
- Department of Internal Medicine of Traditional Chinese Medicine, East Hospital of Tongji University, Shanghai 200120, China
| | - Hai Hu
- Center of Gallbladder Disease, East Hospital of Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200331, China
| | - Gang Zhao
- Center of Gallbladder Disease, East Hospital of Tongji University, Shanghai 200120, China
- Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200331, China
| |
Collapse
|
18
|
Hiroshige T, Uemura KI, Hirashima S, Togo A, Ohta K, Nakamura KI, Igawa T. Three-dimensional analysis of interstitial cells in the lamina propria of the murine vas deferens by confocal laser scanning microscopy and FIB/SEM. Sci Rep 2022; 12:9484. [PMID: 35676513 PMCID: PMC9177838 DOI: 10.1038/s41598-022-13245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to explore the three-dimensional (3D) ultrastructure of interstitial cells (ICs) within the lamina propria of the murine vas deferens and the spatial relationships between epithelial cells and surrounding cells. Focused ion beam scanning electron microscopy and confocal laser scanning microscopy were performed. ICs within the lamina propria had a flat, sheet-like structure of cytoplasm with multiple cellular processes. In addition, two types of 3D structures that comprised cell processes of flat, sheet-like ICs were observed: one was an accordion fold-like structure and the other was a rod-shaped structure. ICs were located parallel to the epithelium and were connected to each other via gap junctions or adherens junctions. Moreover, multiple sphere-shaped extracellular vesicle-like structures were frequently observed around the ICs. The ICs formed a complex 3D network comprising sheet-like cytoplasm and multiple cell processes with different 3D structures. From this morphological study, we noted that ICs within the lamina propria of murine vas deferens may be involved in signal transmission between the epithelium and smooth muscle cells by physical interaction and by exchanging extracellular vesicles.
Collapse
Affiliation(s)
- Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Shingo Hirashima
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Keisuke Ohta
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
19
|
Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods. Cell Mol Bioeng 2022; 15:193-205. [PMID: 35401841 PMCID: PMC8938532 DOI: 10.1007/s12195-021-00716-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Introduction The network of Interstitial Cells of Cajal (ICC) plays a plethora of key roles in maintaining, coordinating, and regulating the contractions of the gastrointestinal (GI) smooth muscles. Several GI functional motility disorders have been associated with ICC degradation. This study extended a previously reported 2D morphological analysis and applied it to 3D spatial quantification of three different types of ICC networks in the distal stomach guided by confocal imaging and machine learning methods. The characterization of the complex changes in spatial structure of the ICC network architecture contributes to our understanding of the roles that different types of ICC may play in post-prandial physiology, pathogenesis, and/or amelioration of GI dsymotility- bridging structure and function. Methods A validated classification method using Trainable Weka Segmentation was applied to segment the ICC from a confocal dataset of the gastric antrum of a transgenic mouse, followed by structural analysis of the segmented images. Results The machine learning model performance was compared to manually segmented subfields, achieving an area under the receiver-operating characteristic (AUROC) of 0.973 and 0.995 for myenteric ICC (ICC-MP; n = 6) and intramuscular ICC (ICC-IM; n = 17). The myenteric layer in the distal antrum increased in thickness (from 14.5 to 34 μm) towards the lesser curvature, whereas the thickness decreased towards the lesser curvature in the proximal antrum (17.7 to 9 μm). There was an increase in ICC-MP volume from proximal to distal antrum (406,960 ± 140,040 vs. 559,990 ± 281,000 μm3; p = 0.000145). The % of ICC volume was similar for ICC-LM and for ICC-CM between proximal (3.6 ± 2.3% vs. 3.1 ± 1.2%; p = 0.185) and distal antrum (3.2 ± 3.9% vs. 2.5 ± 2.8%; p = 0.309). The average % volume of ICC-MP was significantly higher than ICC-IM at all points throughout sample (p < 0.0001). Conclusions The segmentation and analysis methods provide a high-throughput framework of investigating the structural changes in extended ICC networks and their associated physiological functions in animal models.
Collapse
|
20
|
Interstitial Cells of Cajal: Potential Targets for Functional Dyspepsia Treatment Using Medicinal Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9952691. [PMID: 34306162 PMCID: PMC8263244 DOI: 10.1155/2021/9952691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Introduction The pathophysiology of functional dyspepsia (FD) remains uncertain, but the interstitial cells of Cajal (ICCs), pacemakers that regulate gastrointestinal motility, are garnering attention as key modulators and therapeutic targets in FD. This review comprehensively discusses the involvement of ICCs in the pharmacologic actions of FD and as therapeutic targets for herbal products for FD. Methods A search of the literature was performed using PubMed by pairing “interstitial cells of Cajal” with “medicinal plant, herbal medicine, phytotherapy, flavonoids, or traditional Chinese medicine (TCM).” Results From the 55 articles screened in the initial survey, 34 articles met our study criteria. The search results showed that herbal products can directly depolarize ICCs to generate pacemaker potentials and increase the expression of c-kit and stem cell factors, helping to repair ICCs. Under certain pathological conditions, medicinal plants also protect ICCs from oxidative stress and/or inflammation-induced impairment. Two representative herbal decoctions (Banhasasim-tang, 半夏泻心汤, and Yukgunja-tang, 六君子汤) have been shown to modulate ICC functions by both clinical and preclinical data. Conclusion This review strongly indicates the potential of herbal products to target ICCs and suggests that further ICC-based studies would be promising for the development of FD treatment agents.
Collapse
|
21
|
Wang TH, Angeli TR, Ishida S, Du P, Gharibans A, Paskaranandavadivel N, Imai Y, Miyagawa T, Abell TL, Farrugia G, Cheng LK, O’Grady G. The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach. Physiol Rep 2021; 8:e14659. [PMID: 33355992 PMCID: PMC7757374 DOI: 10.14814/phy2.14659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Loss of interstitial cells of Cajal (ICC) has been associated with gastric dysfunction and is also observed during normal aging at ~13% reduction per decade. The impact of ICC loss on gastric slow wave conduction velocity is currently undefined. This study correlated human gastric slow wave velocity with ICC loss and aging. High-resolution gastric slow wave mapping data were screened from a database of 42 patients with severe gastric dysfunction (n = 20) and controls (n = 22). Correlations were performed between corpus slow wave conduction parameters (frequency, velocity, and amplitude) and corpus ICC counts in patients, and with age in controls. Physiological parameters were further integrated into computational models of gastric mixing. Patients: ICC count demonstrated a negative correlation with slow wave velocity in the corpus (i.e., higher velocities with reduced ICC; r2 = .55; p = .03). ICC count did not correlate with extracellular slow wave amplitude (p = .12) or frequency (p = .84). Aging: Age was positively correlated with slow wave velocity in the corpus (range: 25-74 years; r2 = .32; p = .02). Age did not correlate with extracellular slow wave amplitude (p = .40) or frequency (p = .34). Computational simulations demonstrated that the gastric emptying rate would increase at higher slow wave velocities. ICC loss and aging are associated with a higher slow wave velocity. The reason for these relationships is unexplained and merit further investigation. Increased slow wave velocity may modulate gastric emptying higher, although in gastroparesis other pathological factors must dominate to prevent emptying.
Collapse
Affiliation(s)
| | - Timothy R. Angeli
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | | | - Peng Du
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Armen Gharibans
- Department of SurgeryUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | | | - Yohsuke Imai
- Graduate School of EngineeringKobe UniversityKobeJapan
| | - Taimei Miyagawa
- Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
| | - Thomas L. Abell
- Division of GastroenterologyUniversity of LouisvilleLouisvilleKYUSA
| | | | - Leo K. Cheng
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Gregory O’Grady
- Department of SurgeryUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
22
|
Polygonally Meshed Dipole Model Simulation of the Electrical Field Produced by the Stomach and Intestines. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:2971358. [PMID: 33178331 PMCID: PMC7607902 DOI: 10.1155/2020/2971358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Cutaneous electrogastrography (EGG) is used in clinical and physiological fields to noninvasively measure the electrical activity of the stomach and intestines. Dipole models that mathematically express the electrical field characteristics generated by the stomach and intestines have been developed to investigate the relationship between the electrical control activity (ECA) (slow waves) shown in EGG and the internal gastric electrical activity. However, these models require a mathematical description of the movement of an annular band of dipoles, which limits the shape that can be modeled. In this study, we propose a novel polygonally meshed dipole model to conveniently reproduce ECA based on the movement of the annular band in complex shapes, such as the shape of the stomach and intestines, constructed in three-dimensional (3D) space. We show that the proposed model can reproduce ECA simulation results similar to those obtained using conventional models. Moreover, we show that the proposed model can reproduce the ECA produced by a complex geometrical shape, such as the shape of the intestines. The study results indicate that ECA simulations can be conducted based on structures that more closely resemble real organs than those used in conventional dipole models, with which, because of their intrinsic construction, it would be difficult to include realistic complex shapes, using the mathematical description of the movement of an annular band of dipoles. Our findings provide a powerful new approach for computer simulations based on the electric dipole model.
Collapse
|
23
|
Avci R, Paskaranandavadivel N, Du P, Vanderwinden JM, Cheng LK. Continuum Based Bioelectrical Simulations using Structurally Realistic Gastrointestinal Pacemaker Cell Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2483-2486. [PMID: 33018510 DOI: 10.1109/embc44109.2020.9176392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cellular and tissue level bioelectrical activity was simulated over structurally realistic 3D interstitial cell of Cajal (ICC) networks reconstructed from confocal images of a wild type (WT) mouse model with a normal ICC distribution and a Spry4 knockout (KO) mouse model with a mild ICC hyperplasia. First, the ICC pixels within the confocal images were segmented. Then, the segmented images were visually inspected and the 3D surface mesh of the ICC tissue network was created from the 90 slices spanning the myenteric plexus ICC network. After two additional concentric meshes (representing the non-ICC and tissue bath regions) surrounding the ICC region were added, a 3D tetrahedral volume mesh containing the three regions was reconstructed. The electrical propagation through the tissue network was simulated using the bidomain continuum model. The results showed that the ICC network of the WT mouse had a smaller volume than the KO mouse (0.008 vs 0.012 mm3). The simulated bioelectrical activity for both mice showed an isotropic propagation from the initial activation region. Mean velocities of 4.2±1.5 and 4.1±1.3 mm/s were reported for the WT and KO mice, respectively. The velocity in the x-direction was higher than the y-direction for the WT mouse with a percent difference of 14.8%. On the other hand, the velocity in the y-direction was higher for the KO mouse with a percent difference of 9.5%. For both cases, there was no propagation in the z-direction as all the solution points along the same z-depth were simultaneously activated.
Collapse
|
24
|
Mah SA, Avci R, Cheng LK, Du P. Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract. WIREs Mech Dis 2020; 13:e1507. [PMID: 33026190 DOI: 10.1002/wsbm.1507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
The interstitial cells of Cajal (ICC) form interconnected networks throughout the gastrointestinal (GI) tract. ICC act as the pacemaker cells that initiate the rhythmic bioelectrical slow waves and intermediary between the GI musculature and nerves, both of which are critical to GI motility. Disruptions to the number of ICC and the integrity of ICC networks have been identified as a key pathophysiological mechanism in a number of clinically challenging GI disorders. The current analyses of ICC generally rely on either functional recordings taken directly from excised tissue or morphological analysis based on images of labeled ICC, where the structural-functional relationship is investigated in an associative manner rather than mechanistically. On the other hand, computational physiology has played a significant role in facilitating our understanding of a number of physiological systems in both health and disease, and investigations in the GI field are beginning to incorporate several mathematical models of the ICC. The main aim of this review is to present the major modeling advances in GI electrophysiology, in order to introduce a multi-scale framework for mathematically quantifying the functional consequences of ICC degradation at both cellular and tissue scales. The outcomes will inform future investigators utilizing modeling techniques in their studies. This article is categorized under: Metabolic Diseases > Computational Models.
Collapse
Affiliation(s)
- Sue Ann Mah
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Recep Avci
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Leo K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
25
|
Defective development and microcirculation of intestine in Npr2 mutant mice. Sci Rep 2020; 10:14761. [PMID: 32901096 PMCID: PMC7479618 DOI: 10.1038/s41598-020-71812-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Intractable gastrointestinal (GI) diseases often develop during infancy. Our group previously reported that natriuretic peptide receptor B (NPR-B)-deficient Npr2slw/slw mice exhibit severe intestinal dysfunction, such as stenosis and distention, which resembles the dysfunction observed in Hirschsprung’s disease-allied disorders. However, the root cause of intestinal dysfunction and the detailed of pathophysiological condition in the intestine are not yet clear. Here, we report that the intestine of preweaning Npr2slw/slw mice showed bloodless blood vessels, and nodes were found in the lymphatic vessel. Additionally, the lacteals, smooth muscle, blood vessel, and nerves were barely observed in the villi of preweaning Npr2slw/slw mice. Moreover, intramuscular interstitial cells of Cajal (ICC-IM) were clearly reduced. In contrast, villi and ICC-IM were developed normally in surviving adult Npr2slw/slw mice. However, adult Npr2slw/slw mice exhibited partially hypoplastic blood vessels and an atrophied enteric nervous. Furthermore, adult Npr2slw/slw mice showed markedly reduced white adipose tissue. These findings suggest that the cause of GI dysfunction in preweaning Npr2slw/slw mice is attributed to defective intestinal development with microcirculation disorder. Thus, it is suggested that NPR-B signaling is involved in intestinal development and control of microcirculation and fat metabolism. This report provides new insights into intractable GI diseases, obesity, and NPR-B signaling.
Collapse
|
26
|
Fleming MA, Ehsan L, Moore SR, Levin DE. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol Res Pract 2020; 2020:8024171. [PMID: 32963521 PMCID: PMC7495222 DOI: 10.1155/2020/8024171] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is innervated by the enteric nervous system (ENS), an extensive neuronal network that traverses along its walls. Due to local reflex circuits, the ENS is capable of functioning with and without input from the central nervous system. The functions of the ENS range from the propulsion of food to nutrient handling, blood flow regulation, and immunological defense. Records of it first being studied emerged in the early 19th century when the submucosal and myenteric plexuses were discovered. This was followed by extensive research and further delineation of its development, anatomy, and function during the next two centuries. The morbidity and mortality associated with the underdevelopment, infection, or inflammation of the ENS highlight its importance and the need for us to completely understand its normal function. This review will provide a general overview of the ENS to date and connect specific GI diseases including short bowel syndrome with neuronal pathophysiology and current therapies. Exciting opportunities in which the ENS could be used as a therapeutic target for common GI diseases will also be highlighted, as the further unlocking of such mechanisms could open the door to more therapy-related advances and ultimately change our treatment approach.
Collapse
Affiliation(s)
- Mark A. Fleming
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Lubaina Ehsan
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Sean R. Moore
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel E. Levin
- Department of Surgery, Division of Pediatric Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Comparison of the Status of Interstitial Cells of Cajal in the Smooth Muscle of the Antrum and Pylorus in Diabetic Male and Female Patients with Severe Gastroparesis. GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2030023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Females dominate in the area of gastroparesis (GP), making up to 70–80% of these patients. One attractive hypothesis is that females have less smooth muscle reserve and thus less resilience to recover from an insult. Our aim was to investigate if there are gender differences in the number of interstitial cells of Cajal (ICC) in the antral and pyloric smooth muscle of diabetic (DM) patients with severe gastroparesis refractory to standard medical management. Full thickness antral and pyloric biopsies were obtained during surgery to implant a gastric electrical stimulation system and perform a pyloroplasty. Thirty-eight DM patients (66% females, n = 25; mean age 44) who failed medical therapies provided antral biopsies. Pyloric tissue samples were also collected from 29 of these patients (65% females, n = 19). Tissues were stained with H&E and c-Kit for the presence of ICC. ICC depletion was defined as less than 10 cells/HPF. In the antrum, 40% of females had significant ICC depletion, similar to 38% in males. In the pylorus, 68% of females had depletion of ICC, compared to 80% depletion in males. When combining both antral and pyloric smooth muscle regions, ICC depletion was similar in males (40%) when compared to females (38%). In diabetic patients with severe GP, females and males showed similar degrees of reduction in antral ICC, while more males had depletion of pyloric smooth muscle ICC compared to their female counterparts. Future larger studies should focus on whether differences in other smooth muscle biomarkers can be identified between males and females.
Collapse
|
28
|
Huang ZP, Qiu H, Wang K, Chao WB, Zhu HB, Chen H, Liu Y, Yu BP. The impact of acute stress disorder on gallbladder interstitial cells of Cajal. J Cell Physiol 2020; 235:8424-8431. [PMID: 32329051 DOI: 10.1002/jcp.29686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022]
Abstract
Physical and psychological stress exerts a substantial effect on gastrointestinal motility disorders, where trauma enhances symptoms of digestive dysfunction. Interstitial cells of Cajal (ICCs) act as pacemakers for gastrointestinal motility regulation and are likely important in stress-associated gastrointestinal motility disorders. This study explored the mechanisms underlying gallbladder ICCs function under acute stress conditions using a rabbit chest puncture and cholecystectomy model. The stem cell factor (SCF)/c-kit pathway is essential for the development of ICCs, and gene expression was investigated to identify stress-induced transcriptional alterations. Immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling assays were used to determine ICCs apoptosis, whereas western blot analysis and reverse-transcription polymerase chain reaction were used to detect changes in the SCF/c-kit signaling pathway. These methods revealed a reduction in ICCs via apoptosis following stress, and ICCs increased over time after stressor removal. Therefore, this study demonstrates the impact of stress on ICCs development and survival and further confirms the link between stress and gastrointestinal motility.
Collapse
Affiliation(s)
- Zhen-Peng Huang
- Guangzhou Institute of Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hu Qiu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi Province, China
| | - Wei-Bo Chao
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi Province, China
| | - Hao-Bin Zhu
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi Province, China
| | - Hang Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi Province, China
| | - Yue Liu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shannxi Province, China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
29
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
30
|
Ramos D, Catita J, López-Luppo M, Valença A, Bonet A, Carretero A, Navarro M, Nacher V, Mendez-Ferrer S, Meseguer A, Casellas A, Mendes-Jorge L, Ruberte J. Vascular Interstitial Cells in Retinal Arteriolar Annuli Are Altered During Hypertension. Invest Ophthalmol Vis Sci 2019; 60:473-487. [PMID: 30707220 DOI: 10.1167/iovs.18-25000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose It has been suggested that arteriolar annuli localized in retinal arterioles regulate retinal blood flow acting as sphincters. Here, the morphology and protein expression profile of arteriolar annuli have been analyzed under physiologic conditions in the retina of wild-type, β-actin-Egfp, and Nestin-gfp transgenic mice. Additionally, to study the effect of hypertension, the KAP transgenic mouse has been used. Methods Cellular architecture has been studied using digested whole mount retinas and transmission electron microscopy. The profile of protein expression has been analyzed on paraffin sections and whole mount retinas by immunofluorescence and histochemistry. Results The ultrastructural analysis of arteriolar annuli showed a different cell population found between endothelial and muscle cells that matched most of the morphologic criteria established to define interstitial Cajal cells. The profile of protein expression of these vascular interstitial cells (VICs) was similar to that of interstitial Cajal cells and different from the endothelial and smooth muscle cells, because they expressed β-actin, nestin, and CD44, but they did not express CD31 and α-SMA or scarcely express F-actin. Furthermore, VICs share with pericytes the expression of NG2 and platelet-derived growth factor receptor beta (PDGFR-β). The high expression of Ano1 and high activity of nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase observed in VICs was diminished during hypertensive retinopathy suggesting that these cells might play a role on the motility of arteriolar annuli and that this function is altered during hypertension. Conclusions A novel type of VICs has been described in the arteriolar annuli of mouse retina. Remarkably, these cells undergo important molecular modifications during hypertensive retinopathy and might thus be a therapeutic target against this disease.
Collapse
Affiliation(s)
- David Ramos
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Anatomy, Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana López-Luppo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Andreia Valença
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aina Bonet
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana Carretero
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marc Navarro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Victor Nacher
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Simon Mendez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and NHS-Blood and Transplant, Cambridge, United Kingdom
| | - Anna Meseguer
- Renal Physiopathology Group, CIBBM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Luísa Mendes-Jorge
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesús Ruberte
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
31
|
Parsons SP, Huizinga JD. Phase waves and trigger waves: emergent properties of oscillating and excitable networks in the gut. J Physiol 2018; 596:4819-4829. [PMID: 30055053 PMCID: PMC6187044 DOI: 10.1113/jp273425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022] Open
Abstract
The gut is enmeshed by a number of cellular networks, but there is only a limited understanding of how these networks generate the complex patterns of activity that drive gut contractile functions. Here we review two fundamental types of cell behaviour, excitable and oscillating, and the patterns that networks of such cells generate, trigger waves and phase waves, respectively. We use both the language of biophysics and the theory of nonlinear dynamics to define these behaviours and understand how they generate patterns. Based on this we look for evidence of trigger and phase waves in the gut, including some of our recent work on the small intestine.
Collapse
Affiliation(s)
- Sean P. Parsons
- Farncombe Family Digestive Health Research InstituteDepartment of MedicineMcMaster UniversityHamiltonONCanada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research InstituteDepartment of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
32
|
Lin MJ, Chen L, Huang ZP, Qiu H, Yu BP. Neutrophils injure gallbladder interstitial Cajal-like cells in a guinea pig model of acute cholecystitis. J Cell Physiol 2018; 234:4291-4301. [PMID: 30146704 DOI: 10.1002/jcp.27197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Acute cholecystitis is a common disease with gallbladder dysmotility. Disease pathogenesis involves immune cell infiltration as well as changes in gallbladder interstitial Cajal-like cells (ICLCs). However, it remains unclear if or how the immune cells affect ICLC morphology, density, distribution, and function in gallbladder tissue during acute cholecystitis. In this study, we explored the acute cholecystitis-related alterations in gallbladder ICLCs in a guinea pig model, focusing on the effects of neighboring neutrophils. Adult guinea pigs were randomly divided into four groups (control, 24 hr common bile duct ligation [CBDL], 48-hr CBDL, and antipolymorphonuclear neutrophil [PMN] treated) and analyzed using methylene blue staining and immunofluorescence. Gallbladder contractility was also monitored. To culture gallbladder ICLCs, collagenase digestion was performed on tissue from 10- to 15-day-old guinea pigs. Neutrophils isolated from the peripheral blood of experimental animals 48-hr postsurgery were also cocultured with the gallbladder ICLCs. Intracellular calcium was detected with Fluo-4 AM dye. Our results showed that gallbladder ICLC density significantly declined during acute cholecystitis and was accompanied by shortening of the cellular processes and damage to their network-like structure. However, pretreatment with anti-PMN partially prevented these changes. Gallbladder contraction was also significantly decreased during acute cholecystitis, and this appeared to be mediated by the neutrophils. Moreover, ICLCs cocultured with neutrophils also had shortened and reduced processes and impaired network-like structure formation. Intracellular calcium transient was less sensitive to contraction agonists and inhibitors when cocultured with neutrophils. Taken together, neutrophils greatly affect gallbladder ICLCs and dysmotility during acute cholecystitis.
Collapse
Affiliation(s)
- Meng-Juan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen-Peng Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Qiu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bao-Ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Xiao J. Aging Decreases the Density of Colonic Interstitial Cells of Cajal Associated With Constipation in Rats. J Neurogastroenterol Motil 2018; 24:326-328. [PMID: 29605988 PMCID: PMC5885733 DOI: 10.5056/jnm18016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jun Xiao
- Department of Gastroenterology and Hubei Provincial Center and Key Laboratory for the Intestinal and Colorectal Disease, Wuhan University Zhongnan Hospital, Wuhan, China
| |
Collapse
|
34
|
Vather R, O'Grady G, Lin AY, Du P, Wells CI, Rowbotham D, Arkwright J, Cheng LK, Dinning PG, Bissett IP. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg 2018; 105:907-917. [PMID: 29656582 DOI: 10.1002/bjs.10808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recovery after colonic surgery is invariably delayed by disturbed gut motility. It is commonly assumed that colonic motility becomes quiescent after surgery, but this hypothesis has not been evaluated rigorously. This study quantified colonic motility through the early postoperative period using high-resolution colonic manometry. METHODS Fibre-optic colonic manometry was performed continuously before, during and after surgery in the left colon and rectum of patients undergoing right hemicolectomy, and in healthy controls. Motor events were characterized by pattern, frequency, direction, velocity, amplitude and distance propagated. RESULTS Eight patients undergoing hemicolectomy and nine healthy controls were included in the study. Colonic motility became markedly hyperactive in all operated patients, consistently dominated by cyclic motor patterns. Onset of cyclic motor patterns began to a minor extent before operation, occurring with increasing intensity nearer the time of surgery; the mean(s.d.) active duration was 12(7) per cent over 3 h before operation and 43(17) per cent within 1 h before surgery (P = 0.024); in fasted controls it was 2(4) per cent (P < 0·001). After surgery, cyclic motor patterns increased markedly in extent and intensity, becoming nearly continuous (active duration 94(13) per cent; P < 0·001), with peak frequency 2-4 cycles per min in the sigmoid colon. This postoperative cyclic pattern was substantially more prominent than in non-operative controls, including in the fed state (active duration 27(20) per cent; P < 0·001), and also showed higher antegrade velocity (P < 0·001). CONCLUSION Distal gut motility becomes markedly hyperactive with colonic surgery, dominated by cyclic motor patterns. This hyperactivity likely represents a novel pathophysiological aspect of the surgical stress response. Hyperactive motility may contribute to gut dysfunction after surgery, potentially offering a new therapeutic target to enhance recovery.
Collapse
Affiliation(s)
- R Vather
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - G O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - A Y Lin
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - P Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - C I Wells
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - D Rowbotham
- Department of Gastroenterology, Auckland District Health Board, Auckland, New Zealand
| | - J Arkwright
- Department of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, South Australia, Australia
| | - L K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - P G Dinning
- Human Physiology, Flinders University, Adelaide, South Australia, Australia.,Department of Gastroenterology and Surgery, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - I P Bissett
- Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Sathar S, Trew ML, Cheng LK. Tissue specific simulations of interstitial cells of cajal networks using unstructured meshes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2015:8062-5. [PMID: 26738164 DOI: 10.1109/embc.2015.7320264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gastrointestinal motility is facilitated by specialized pacemaker cells called Interstitial Cells of Cajal (ICC). ICC play a critical role in coordinating normal motility and its degradation in the gastrointestinal tract is associated with many functional motility disorders. Nonetheless, the degree of degradation and associated clinical impact remains unclear. Continuum modeling frameworks offers a virtual mean to simulate the electrical activity, and analyze the ICC activity in both normal and diseased states. Confocal images of the ICC networks were obtained from the intestine of normal mice. In this study, a new approach is presented where meshes of ICC networks were generated using a Delaunay triangulation and used to solve finite-element based reaction-diffusion equations describing gastrointestinal electrophysiology. The electrical activity was simulated on the ICC network and solutions were compared to those of a regular mesh based on individual pixel locations. The simulation results showed the proposed approach to be approximately 80% more efficient than a pixel-based mesh. The difference in activation time for the entire network between the different methods was observed to be around 4% (about 20 ms). The proposed approach will enable efficient examination of the ICC slow wave activity in larger networks and for longer temporal duration that has been previously impossible. This will provide valuable insights relating ICC degradation to gastrointestinal motility disorders.
Collapse
|
36
|
White AR, Holmes GM. Anatomical and Functional Changes to the Colonic Neuromuscular Compartment after Experimental Spinal Cord Injury. J Neurotrauma 2018; 35:1079-1090. [PMID: 29205096 DOI: 10.1089/neu.2017.5369] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A profound reduction in colorectal transit time accompanies spinal cord injury (SCI), yet the colonic alterations after SCI have yet to be understood fully. The loss of descending supraspinal input to lumbosacral neural circuits innervating the colon is recognized as one causal mechanism. Remodeling of the colonic enteric nervous system/smooth muscle junction in response to inflammation, however, is recognized as one factor leading to colonic dysmotility in other pathophysiological models. We investigated the alterations to the neuromuscular junction in rats with experimental high-thoracic (T3) SCI. One day to three weeks post-injury, both injured and age-matched controls underwent in vivo experimentation followed by tissue harvest for histological evaluation. Spontaneous colonic contractions were reduced significantly in the proximal and distal colon of T3-SCI rats. Histological evaluation of proximal and distal colon demonstrated significant reductions of colonic mucosal crypt depth and width. Markers of intestinal inflammation were assayed by qRT-PCR. Specifically, Icam1, Ccl2 (MCP-1), and Ccl3 (MIP-1α) mRNA was acutely elevated after T3-SCI. Smooth muscle thickness and collagen content of the colon were increased significantly in T3-SCI rats. Colonic cross sections immunohistochemically processed for the pan-neuronal marker HuC/D displayed a significant decrease in colonic enteric neuron density that became more pronounced at three weeks after injury. Our data suggest that post-SCI inflammation and remodeling of the enteric neuromuscular compartment accompanies SCI. These morphological changes may provoke the diminished colonic motility that occurs during this same period, possibly through the disruption of intrinsic neuromuscular control of the colon.
Collapse
Affiliation(s)
- Amanda R White
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
37
|
Electroacupuncture at ST36 Increases Bone Marrow-Derived Interstitial Cells of Cajal via the SDF-1/CXCR4 and mSCF/Kit-ETV1 Pathways in the Stomach of Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7878053. [PMID: 29599809 PMCID: PMC5828650 DOI: 10.1155/2018/7878053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/29/2017] [Accepted: 12/25/2017] [Indexed: 12/21/2022]
Abstract
Background The loss of interstitial cells of Cajal (ICC) is observed in diabetic gastroparesis. Electroacupuncture (EA) maintains ICC networks, but the effects and mechanisms of EA on ICC of bone marrow derivation in the stomach have not been investigated. Methods C57BL/6 mice were randomized into six groups: control, diabetic (DM), bone marrow transplantation (BMT) + DM, BMT + DM + sham EA (SEA), BMT + DM + low-frequency EA (LEA), and BMT + DM + high-frequency (HEA). c-Kit+GFP+ cells in the stomach were detected by immunofluorescence staining. Western blotting and qRT-PCR were employed to determine c-Kit, GFP, SDF-1, CXCR4, mSCF, pERK, and ETV1 expression. Results (1) c-Kit+GFP+ cells were elevated in the BMT + DM + LEA and HEA groups. (2) The mRNA and protein levels of GFP, SDF-1, and CXCR4 were increased in the BMT + DM + LEA and BMT + DM + HEA groups. (3) The mRNA and protein levels of mSCF, c-Kit, pERK, and ETV1 were significantly reduced in the DM group but markedly elevated in the BMT + DM + LEA and HEA groups. Conclusion EA at ST36 increases bone marrow-derived ICC in the stomach of diabetic mice via the SDF-1/CXCR4 and mSCF/c-Kit-ETV1 pathways.
Collapse
|
38
|
Lin MJ, Yu BP. Colonic Hypermotility in a Rat Model of Irritable Bowel Syndrome Is Associated with Upregulation of TMEM16A in Myenteric Plexus. Dig Dis Sci 2018; 63:3329-3338. [PMID: 30155840 PMCID: PMC6244964 DOI: 10.1007/s10620-018-5261-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common disease with intestinal dysmotility, whose mechanism remains elusive. TMEM16A is a calcium-activated chloride channel (CaCC) involved in intestinal slow-wave generation. AIMS To investigate whether TMEM16A is involved in colonic dysmotility in IBS. METHODS A rat model of IBS was established by chronic water avoidance stress (WAS). Colonic pathological alterations were evaluated histologically, and intestinal motility was assessed by intestinal transit time (ITT) and fecal water content (FWC). Visceral sensitivity was determined by visceromotor response (VMR) to colorectal distension (CRD). TMEM16A expression was evaluated by RT-PCR, Western blot, and immunofluorescence. Colonic muscle strip contractility was measured by isometric transducers, and the effect of niflumic acid (NFA), a CaCC antagonist, on colonic motility was examined. RESULTS After 10 days of WAS exposure, ITT was decreased and FWC was elevated. Furthermore, VMR magnitude of WAS rats in response to CRD was significantly enhanced. Protein and mRNA levels of TMEM16A in colon were considerably increased after WAS. The percentage of TMEM16A-positive neurons in myenteric plexus (MP) of WAS rats was significantly higher than controls. Pharmacological blockade of TMEM16A activity by NFA considerably enhanced ITT, with concentration-dependent declines in FWC and VMR magnitude in NFA-treated rats. Further, spontaneous contraction of colonic strips of NFA-treated rats was significantly ameliorated in a concentration-dependent manner in vitro. CONCLUSIONS Upregulation of TMEM16A in MP neurons may play an important role in chronic stress-induced colonic hypermotility, making CaCC-blocking drugs a putatively effective treatment method for colonic hypermotility in IBS.
Collapse
Affiliation(s)
- Meng-juan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuhan, 430060 Hubei People’s Republic of China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, People’s Republic of China
| | - Bao-ping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 238 Jiefang Rd, Wuhan, 430060 Hubei People’s Republic of China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, People’s Republic of China
| |
Collapse
|
39
|
Veličkov A, Radenković G, Petrović V, Veličkov A. DIABETIC ALTERATIONS OF INTERSTITIAL CELLS OF CAJAL. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 2017; 7:15937. [PMID: 29162937 PMCID: PMC5698334 DOI: 10.1038/s41598-017-16191-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Spontaneous contractile activity, such as gut peristalsis, is ubiquitous in animals and is driven by pacemaker cells. In humans, disruption of the contraction pattern leads to gastrointestinal conditions, which are also associated with gut microbiota dysbiosis. Spontaneous contractile activity is also present in animals lacking gastrointestinal tract. Here we show that spontaneous body contractions in Hydra are modulated by symbiotic bacteria. Germ-free animals display strongly reduced and less regular contraction frequencies. These effects are partially restored by reconstituting the natural microbiota. Moreover, soluble molecule(s) produced by symbiotic bacteria may be involved in contraction frequency modulation. As the absence of bacteria does not impair the contractile ability itself, a microbial effect on the pacemakers seems plausible. Our findings indicate that the influence of bacteria on spontaneous contractile activity is present in the early-branching cnidarian hydra as well as in Bilateria, and thus suggest an evolutionary ancient origin of interaction between bacteria and metazoans, opening a window into investigating the roots of human motility disorders.
Collapse
|
41
|
Krohn B, Sathar S, Rohrle O, Vanderwinden JM, O'Grady G, Cheng LK. A framework for simulating gastric electrical propagation in confocal microscopy derived geometries. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4215-4218. [PMID: 29060827 DOI: 10.1109/embc.2017.8037786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interstitial Cells of Cajal (ICC) initiate and actively propagate electrical events in the gastrointestinal tract known as slow-waves. The slow-waves coordinate the contraction of the gastrointestinal tract necessary for breakdown and mixing of ingested food. Degradation of the ICC numbers has been linked to several gastrointestinal motility disorders. However, limitations in imaging techniques and techniques for the quantification of ICC network structure have hindered our understanding of these disorders. We evaluated different machine learning techniques to segment ICC networks imaged using confocal microscopy. The accuracy the segmented networks were then quantified and compared using numerical metrics. Structurally realistic finite element meshes were constructed and used to simulate the propagation of electrical activation over the tissue blocks. The presented framework provides a system to quantify the structure and function of an ICC tissue sample. These methods are also applicable to other biological tissues and networks.
Collapse
|
42
|
Jiménez-Herrera S, Ochando-Pulido JM, Martínez-Ferez A. Comparison between different liquid-liquid and solid phase methods of extraction prior to the identification of the phenolic fraction present in olive oil washing wastewater from the two-phase olive oil extraction system. GRASAS Y ACEITES 2017. [DOI: 10.3989/gya.0225171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phenolic compounds from olive mill wastewater (OMW), are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE) and solid phase extraction (SPE) methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW) were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW) were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid.
Collapse
|
43
|
Paskaranandavadivel N, Cheng LK, Du P, Rogers JM, O'Grady G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol 2017; 313:G265-G276. [PMID: 28546283 DOI: 10.1152/ajpgi.00127.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/31/2023]
Abstract
Slow waves play a central role in coordinating gastric motor activity. High-resolution mapping of extracellular potentials from the stomach provides spatiotemporal detail on normal and dysrhythmic slow-wave patterns. All mapping studies to date have focused exclusively on tissue activation; however, the recovery phase contains vital information on repolarization heterogeneity, the excitable gap, and refractory tail interactions but has not been investigated. Here, we report a method to identify the recovery phase in slow-wave mapping data. We first developed a mathematical model of unipolar extracellular potentials that result from slow-wave propagation. These simulations showed that tissue repolarization in such a signal is defined by the steepest upstroke beyond the activation phase (activation was defined by accepted convention as the steepest downstroke). Next, we mapped slow-wave propagation in anesthetized pigs by recording unipolar extracellular potentials from a high-resolution array of electrodes on the serosal surface. Following the simulation result, a wavelet transform technique was applied to detect repolarization in each signal by finding the maximum positive slope beyond activation. Activation-recovery (ARi) and recovery-activation (RAi) intervals were then computed. We hypothesized that these measurements of recovery profile would differ for slow waves recorded during normal and spatially dysrhythmic propagation. We found that the ARi of normal activity was greater than dysrhythmic activity (5.1 ± 0.8 vs. 3.8 ± 0.7 s; P < 0.05), whereas RAi was lower (9.7 ± 1.3 vs. 12.2 ± 2.5 s; P < 0.05). During normal propagation, RAi and ARi were linearly related with negative unit slope indicating entrainment of the entire mapped region. This relationship was weakened during dysrhythmia (slope: -0.96 ± 0.2 vs -0.71 ± 0.3; P < 0.05).NEW & NOTEWORTHY The theoretical basis of the extracellular gastric slow-wave recovery phase was defined using mathematical modeling. A novel technique utilizing the wavelet transform was developed and validated to detect the extracellular slow-wave recovery phase. In dysrhythmic wavefronts, the activation-to-recovery interval (ARi) was shorter and recovery-to-activation interval (RAi) was longer compared with normal wavefronts. During normal activation, RAi vs. ARi had a slope of -1, whereas the weakening of the slope indicated a dysrhythmic propagation.
Collapse
Affiliation(s)
- N Paskaranandavadivel
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; .,Department of Surgery, University of Auckland, Auckland, New Zealand
| | - L K Cheng
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, Vanderbilt University, Nashville, Tennessee; and
| | - P Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - J M Rogers
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - G O'Grady
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Surgery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep 2017; 7:41436. [PMID: 28216670 PMCID: PMC5316981 DOI: 10.1038/srep41436] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 02/08/2023] Open
Abstract
Assessment of colonic motor dysfunction is rarely done because of inadequate methodology and lack of knowledge about normal motor patterns. Here we report on elucidation of intraluminal pressure patterns using High Resolution Colonic Manometry during a baseline period and in response to a meal, in 15 patients with constipation, chronically dependent on laxatives, 5 healthy volunteers and 9 patients with minor, transient, IBS-like symptoms but no sign of constipation. Simultaneous pressure waves (SPWs) were the most prominent propulsive motor pattern, associated with gas expulsion and anal sphincter relaxation, inferred to be associated with fast propagating contractions. Isolated pressure transients occurred in most sensors, ranging in amplitude from 5–230 mmHg. Rhythmic haustral boundary pressure transients occurred at sensors about 4–5 cm apart. Synchronized haustral pressure waves, covering 3–5 cm of the colon occurred to create a characteristic intrahaustral cyclic motor pattern at 3–6 cycles/min, propagating in mixed direction. This activity abruptly alternated with erratic patterns resembling the segmentation motor pattern of the small intestine. High amplitude propagating pressure waves (HAPWs) were too rare to contribute to function assessment in most subjects. Most patients, dependent on laxatives for defecation, were able to generate normal motor patterns in response to a meal.
Collapse
|
45
|
Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol 2017; 595:2021-2041. [PMID: 28054347 DOI: 10.1113/jp273618] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The internal anal sphincter develops tone important for maintaining high anal pressure and continence. Controversy exists regarding the mechanisms underlying tone development. We examined the hypothesis that tone depends upon electrical slow waves (SWs) initiated in intramuscular interstitial cells of Cajal (ICC-IM) by activation of Ca2+ -activated Cl- channels (ANO1, encoded by Ano1) and voltage-dependent L-type Ca2+ channels (CavL , encoded by Cacna1c). Measurement of membrane potential and contraction indicated that ANO1 and CavL have a central role in SW generation, phasic contractions and tone, independent of stretch. ANO1 expression was examined in wildtype and Ano1/+egfp mice with immunohistochemical techniques. Ano1 and Cacna1c expression levels were examined by quantitative PCR in fluorescence-activated cell sorting. ICC-IM were the predominant cell type expressing ANO1 and the most likely candidate for SW generation. SWs in ICC-IM are proposed to conduct to smooth muscle where Ca2+ entry via CavL results in phasic activity that sums to produce tone. ABSTRACT The mechanism underlying tone generation in the internal anal sphincter (IAS) is controversial. We examined the hypothesis that tone depends upon generation of electrical slow waves (SWs) initiated in intramuscular interstitial cells of Cajal (ICC-IM) by activation of Ca2+ -activated Cl- channels (encoded by Ano1) and voltage-dependent L-type Ca2+ channels (encoded by Cacna1c). Phasic contractions and tone in the IAS were nearly abolished by ANO1 and CavL antagonists. ANO1 antagonists also abolished SWs as well as transient depolarizations that persisted after addition of CavL antagonists. Tone development in the IAS did not require stretch of muscles, and the sensitivity of contraction to ANO1 antagonists was the same in stretched versus un-stretched muscles. ANO1 expression was examined in wildtype and Ano1/+egfp mice with immunohistochemical techniques. Dual labelling revealed that ANO1 expression could be resolved in ICC but not smooth muscle cells (SMCs) in the IAS and rectum. Ano1, Cacna1c and Kit gene expression were the same in extracts of IAS and rectum muscles. In IAS cells isolated with fluorescence-activated cell sorting, Ano1 expression was 26.5-fold greater in ICC than in SMCs while Cacna1c expression was only 2-fold greater in SMCs than in ICC. These data support a central role for ANO1 and CavL in the generation of SWs and tone in the IAS. ICC-IM are the probable cellular candidate for ANO1 currents and SW generation. We propose that ANO1 and CavL collaborate to generate SWs in ICC-IM followed by conduction to adjacent SMCs where phasic calcium entry through CavL sums to produce tone.
Collapse
Affiliation(s)
- C A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - E E Hannah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - M H Zhu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - H E Lyle
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - J R Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, 94143, USA
| | - K M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - S M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - K D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
46
|
Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? Biomol Concepts 2017; 7:93-102. [PMID: 26992201 DOI: 10.1515/bmc-2015-0034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/22/2016] [Indexed: 01/01/2023] Open
Abstract
In the interstitium of the connective tissue several types of cells occur. The fibroblasts, responsible for matrix formation, the mast cells, involved in local response to inflammatory stimuli, resident macrophages, plasma cells, lymphocytes, granulocytes and monocytes, all engaged in immunity responses. Recently, another type of interstitial cell, found in all organs so far examined, has been added to the previous ones, the telocytes (TC). In the gut, in addition to the cells listed above, there are also the interstitial cells of Cajal (ICC), a peculiar type of cell exclusively detected in the alimentary tract with multiple functions including pace-maker activity. The possibility that TC and ICC could correspond to a unique cell type, where the former would represent an ICC variant outside the gut, was initially considered, however, further studies have clearly shown that ICC and TC are two distinct types of cells. In the gut, while the features and the roles of the ICC are established, part of the scientific community is still disputing these 'new' interstitial cells to which several names such as fibroblast-like cells (FLCs), interstitial Cajal-like cells or, most recently, PDGFRα+ cells have been attributed. This review will detail the main features and roles of the TC and ICC with the aim to establish their relationships and hopefully define the identity of the TC in the gut.
Collapse
|
47
|
Guo T, Li J, Li J, Kong D, Bi C, He Z, Tang D, Jin X, Jin L. Association between hyperpolarization-activated channel in interstitial cells of Cajal and gastrointestinal dysmotility induced by malignant ascites. Oncol Lett 2017; 13:1601-1608. [PMID: 28454297 PMCID: PMC5403200 DOI: 10.3892/ol.2017.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/03/2016] [Indexed: 12/20/2022] Open
Abstract
Advanced malignant ascites is accompanied by gastrointestinal dysmotility, and patients often feel abdominal pain, abdominal distention, nausea and constipation. Gastrointestinal dysmotility is not only painful for the patients, but it reduces the absorption of nutrients and affects the physical recovery of patients with malignant ascites. It is reported that changes in interstitial cells of Cajal (ICCs) are responsible for the gastrointestinal dysmotility induced by malignant ascites, but the mechanism is not completely understood. The present study observed a significantly decreased expression of ion channels, including hyperpolarization-activated cyclic nucleotide-gated potassium channel 2 (HCN2) and cyclic adenosine monophosphate, in the condition of malignant ascites. Using electrophysiology, it was identified that malignant ascites led to lower amplitude and slower frequency signals in cells of the small intestine. In addition, when ICCs were cultured with malignant ascites in vitro, the expression of HCN2 of ICCs was significantly reduced, and the data of flow cytometry revealed that the Ca2+ concentration of ICCs was also decreased. The results of electron microscopy analysis demonstrated the nuclei of ICCs were pyknotic, and the processes of ICCs were reduced in malignant ascites. The present study suggests the small intestinal dysmotility caused by malignant ascites may be associated with changes in HCN2 of ICCs, which offers a potential therapeutic target for gastrointestinal dysmotility in advanced malignant ascites.
Collapse
Affiliation(s)
- Tieyun Guo
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jiade Li
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Li
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dan Kong
- Department of Gynecology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Chunli Bi
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zheng He
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Dai Tang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Lianhong Jin
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
48
|
Electroacupuncture at ST36 Protects ICC Networks via mSCF/Kit-ETV1 Signaling in the Stomach of Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3980870. [PMID: 28203258 PMCID: PMC5292169 DOI: 10.1155/2017/3980870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 01/02/2023]
Abstract
Background. Electroacupuncture (EA) at ST36 has been used to regulate gastric motility and effectively improve gastric emptying in diabetic patients. Nevertheless, the specific mechanisms underlying the efficacy of this treatment remain unknown. The aim of this study was to assess the variations of interstitial cells of Cajal (ICC) and explore the changes in mSCF/KIT-ETV1 signaling in the antrum and corpus of diabetic mice after treatment with EA. Methods. Male C57BL/6 mice were randomized into five groups: control group, diabetic group (DM), diabetic-plus-sham EA group (SEA), diabetic-plus-low-frequency EA group (LEA), and diabetic-plus-high-frequency EA group (HEA). The expression levels of Ano1, c-Kit, and ETV1 were assessed by immunofluorescence in the antrum and corpus. Western blotting and PCR methods were further used to evaluate c-Kit, mSCF, and ETV1 expression. Results. (1) c-Kit and Ano1 were obviously decreased in the DM group, but c-Kit reduced much more than Ano1. (2) The mSCF, c-Kit, and ETV1 mRNA and protein levels were obviously decreased in the DM group in both the antrum and the corpus (P < 0.01), but they were significantly elevated in the LEA and HEA groups (P < 0.01). Conclusions. Ano1 is a reliable marker to detect ICC changes in diabetes; low- and high-frequency EA at acupoint ST36 can protect the networks of ICC possibly via normal activation of mSCF/KIT-ETV1 signaling.
Collapse
|
49
|
Touré AM, Charrier B, Pilon N. Male-specific colon motility dysfunction in the TashT mouse line. Neurogastroenterol Motil 2016; 28:1494-507. [PMID: 27278627 DOI: 10.1111/nmo.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND In Hirschsprung disease (HSCR), the absence of myenteric neural ganglia in the distal bowel prevents motility and thereby causes functional intestinal obstruction. Although surgical resection of the aganglionic segment allows HSCR children to survive this condition, a number of patients still suffer from impaired motility despite having myenteric ganglia in their postoperative distal bowel. Such phenomenon is also observed in patients suffering from other enteric neuropathies and, in both cases, colonic dysmotility is believed to result from abnormalities of myenteric ganglia and/or associated interstitial cells of Cajal (ICC). To better understand this, we used a recently described HSCR mouse model called TashT. METHODS Intestinal motility parameters were assessed and correlated with extent of aganglionosis and with neuronal density in ganglionated regions. The neural composition of the myenteric plexus and the status of ICC networks was also evaluated using immunofluorescence. KEY RESULTS TashT(Tg/Tg) mice display a strong male bias in the severity of both colonic aganglionosis and hypoganglionosis, which are associated with male-specific reduced colonic motility. TashT(Tg/Tg) male mice also exhibit a specific increase in nNos(+) neurons that is restricted to the most distal ganglionated regions. In contrast, Calretinin(+) myenteric neurons, Sox10(+) myenteric glial cells, and cKit(+) ICC are not affected in TashT(Tg/Tg) mice. CONCLUSIONS AND INFERENCES Male-specific impairment of colonic motility in TashT(Tg/Tg) mice is associated with both severe hypoganglionosis and myenteric neuronal imbalance. Considering these parameters in the clinic might be important for the management of postoperative HSCR patients.
Collapse
Affiliation(s)
- A M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - B Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada
| | - N Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Montreal, Canada.
| |
Collapse
|
50
|
D'Addio F, Fiorina P. Type 1 Diabetes and Dysfunctional Intestinal Homeostasis. Trends Endocrinol Metab 2016; 27:493-503. [PMID: 27185326 DOI: 10.1016/j.tem.2016.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Despite the relatively high frequency of gastrointestinal (GI) disorders in individuals with type 1 diabetes (T1D), termed diabetic enteropathy (DE), the pathogenic mechanisms of these disorders remain to be elucidated. While previous studies have assumed that DE is a manifestation of diabetic autonomic neuropathy, other contributing factors such as enteric hormones, inflammation, and microbiota were later recognized. More recently, the emerging role of intestinal stem cells (ISCs) in several GI diseases has led to a new understanding of DE. Given the absence of diagnostic methods and the lack of broadly efficacious therapeutic remedies in DE, targeting factors and pathways that control ISC homeostasis and are dysfunctional in DE may represent a new path for the detection and cure of DE.
Collapse
Affiliation(s)
- Francesca D'Addio
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Transplant Medicine, IRCCS Ospedale San Raffaele, Milan 20132, Italy.
| |
Collapse
|