1
|
Zhang Y, Song F, Yang M, Chen C, Cui J, Xing M, Dai Y, Li M, Cao Y, Lu L, Zhu H, Liu Y, Ma C, Wei Q, Qin H, Li J. Gastrointestinal Dysmotility Predisposes to Colitis through Regulation of Gut Microbial Composition and Linoleic Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306297. [PMID: 38477534 PMCID: PMC11132037 DOI: 10.1002/advs.202306297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 03/14/2024]
Abstract
Disrupted gastrointestinal (GI) motility is highly prevalent in patients with inflammatory bowel disease (IBD), but its potential causative role remains unknown. Herein, the role and the mechanism of impaired GI motility in colitis pathogenesis are investigated. Increased colonic mucosal inflammation is found in patients with chronic constipation (CC). Mice with GI dysmotility induced by genetic mutation or chemical insult exhibit increased susceptibility to colitis, dependent on the gut microbiota. GI dysmotility markedly decreases the abundance of Lactobacillus animlalis and increases the abundance of Akkermansia muciniphila. The reduction in L. animlalis, leads to the accumulation of linoleic acid due to compromised conversion to conjugated linoleic acid. The accumulation of linoleic acid inhibits Treg cell differentiation and increases colitis susceptibility via inducing macrophage infiltration and proinflammatory cytokine expression in macrophage. Lactobacillus and A. muciniphila abnormalities are also observed in CC and IBD patients, and mice receiving fecal microbiota from CC patients displayed an increased susceptibility to colitis. These findings suggest that GI dysmotility predisposes host to colitis development by modulating the composition of microbiota and facilitating linoleic acid accumulation. Targeted modulation of microbiota and linoleic acid metabolism may be promising to protect patients with motility disorder from intestinal inflammation.
Collapse
Affiliation(s)
- Youhua Zhang
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Feifei Song
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Muqing Yang
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Jiaqu Cui
- Department of Colorectal DiseaseShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Mengyu Xing
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Yuna Dai
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Man Li
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Yuan Cao
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Ling Lu
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Huiyuan Zhu
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Ying Liu
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Chunlian Ma
- Department of Colorectal DiseaseShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Qing Wei
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Huanlong Qin
- Department of Gastrointestinal SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Jiyu Li
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
- Geriatric Cancer CenterHuaDong Hospital Affiliated to Fudan
UniversityShanghai200040China
| |
Collapse
|
2
|
Büyükbayrak EE, Gündoğdu NEÖ, Gürkan N, Kahraman FR, Akalın M, Akkoç T. Immunological effects of human decidual mesenchymal stem cells in spontaneous and recurrent abortions. J Reprod Immunol 2024; 162:104193. [PMID: 38281405 DOI: 10.1016/j.jri.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/02/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The aim of this study was to evaluate the immunological activities of human decidual mesenchymal stem cells (MSCs) on proliferation, apoptosis and percentage of regulatory T cells (Treg) in abortions and to investigate whether these activities differ in spontaneous abortions (SA) and recurrent abortions (RA). This prospective cohort study included women who had a first-trimester abortion between 2019 and 2022. Women with uterine anomaly, endocrinological disease, known autoimmune or thrombophilic disease, and fetal chromosomal abnormality in abortion material were excluded. Decidual MSCs isolated from abortion materials were classified as spontaneous abortion-MSCs (SA-MSCs) and recurrent abortion-MSCs (RA-MSCs). Peripheral blood mononuclear cells were isolated from venous blood and co-cultured with SA-MSCs and RA-MSCs. The effects of MSCs on proliferation and apoptosis of lymphocytes, and Tregs levels were compared between SA-MSCs and RA-MSCs groups. Thirty cases (15 SA-MSCs and 15 RA-MSCs) were included in the study. The presence of MSC in co-cultures increased percentage of Treg cells while reducing proliferation and apoptosis compared to those without MSCs (p < 0.0001, p < 0.0001 and p < 0.0001). The increase in percentage of Treg cells and the reduction in apoptosis were significantly lower in the RA-MSCs group compared to the SA-MSCs group (p < 0.0001 and p < 0.001, respectively). Although the proliferation reducing effect of the presence of MSCs was lower in the RA-MSCs group compared to the SA-MSCs group, the difference was not significant (p = 0.07). MSCs contribute to maternal immunotolerance to semi-allogeneic fetus by suppressing proliferation and apoptosis, and increasing percentage of Treg cells. However, the immunoregulatory effects of MSCs are lower in RA compared to SA.
Collapse
Affiliation(s)
- Esra Esim Büyükbayrak
- Department of Perinatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | | | - Nihan Gürkan
- Department of Obstetrics and Gynaecology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Fatma Rabia Kahraman
- Department of Immunology, Marmara University Pendik Research Hospital, Istanbul, Turkey
| | - Münip Akalın
- Department of Perinatology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey.
| | - Tunç Akkoç
- Department of Immunology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Dave M, Dev A, Somoza RA, Zhao N, Viswanath S, Mina PR, Chirra P, Obmann VC, Mahabeleshwar GH, Menghini P, Durbin-Johnson B, Nolta J, Soto C, Osme A, Khuat LT, Murphy WJ, Caplan AI, Cominelli F. MSCs mediate long-term efficacy in a Crohn's disease model by sustained anti-inflammatory macrophage programming via efferocytosis. NPJ Regen Med 2024; 9:6. [PMID: 38245543 PMCID: PMC10799947 DOI: 10.1038/s41536-024-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are novel therapeutics for the treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc (SAMP), a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effects and mechanism of action of human bone marrow-derived MSCs (hMSC). hMSC dose-dependently inhibited naïve T lymphocyte proliferation via prostaglandin E2 (PGE2) secretion and reprogrammed macrophages to an anti-inflammatory phenotype. We found that the hMSCs promoted mucosal healing and immunologic response early after administration in SAMP when live hMSCs are present (until day 9) and resulted in a complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSCs mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism that explains their long-term efficacy. Taken together, our findings show that hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation and despite being short-lived, exert long-term effects via sustained anti-inflammatory programming of macrophages via efferocytosis.
Collapse
Affiliation(s)
- Maneesh Dave
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, USA.
- Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA, USA.
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Rodrigo A Somoza
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Nan Zhao
- Division of Gastroenterology and Liver Disease, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Satish Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Pooja Rani Mina
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Prathyush Chirra
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Verena Carola Obmann
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ganapati H Mahabeleshwar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Paola Menghini
- Division of Gastroenterology and Liver Disease, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Blythe Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jan Nolta
- Institute for Regenerative Cures, University of California Davis School of Medicine, Sacramento, CA, USA
- Division of Malignant Hematology/Cell and Marrow Transplantation, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, USA
| | - Christopher Soto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, UC Davis Medical Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Abdullah Osme
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lam T Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - William J Murphy
- Division of Malignant Hematology/Cell and Marrow Transplantation, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, USA
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Fu Y, Zhang C, Xie H, Wu Z, Tao Y, Wang Z, Gu M, Wei P, Lin S, Li R, He Y, Sheng J, Xu J, Wang J, Pan Y. Human umbilical cord mesenchymal stem cells alleviated TNBS-induced colitis in mice by restoring the balance of intestinal microbes and immunoregulation. Life Sci 2023; 334:122189. [PMID: 37865178 DOI: 10.1016/j.lfs.2023.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
AIMS Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-β1 (TGF-β1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- Chinese PLA General Hospital and Medical School, Beijing 100853, China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Zisheng Wu
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yurong Tao
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Ruoran Li
- Chinese PLA General Hospital and Medical School, Beijing 100853, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Junfeng Xu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
5
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Truong Thuy Nguyen V, Taheri N, Choi EL, Kellogg TA, Linden DR, Hayashi Y. Insulin-Like Growth Factor1 Preserves Gastric Pacemaker Cells and Motor Function in Aging via ERK1/2 Activation. Cell Mol Gastroenterol Hepatol 2023; 16:369-383. [PMID: 37301443 PMCID: PMC10372898 DOI: 10.1016/j.jcmgh.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND & AIMS Impaired gastric motor function in the elderly causes reduced food intake leading to frailty and sarcopenia. We previously found that aging-related impaired gastric compliance was mainly owing to depletion of interstitial cells of Cajal (ICC), pacemaker cells, and neuromodulator cells. These changes were associated with reduced food intake. Transformation-related protein 53-induced suppression of extracellular signal-regulated protein kinase (ERK)1/2 in ICC stem cell (ICC-SC) cell-cycle arrest is a key process for ICC depletion and gastric dysfunction during aging. Here, we investigated whether insulin-like growth factor 1 (IGF1), which can activate ERK in gastric smooth muscles and invariably is reduced with age, could mitigate ICC-SC/ICC loss and gastric dysfunction in klotho mice, a model of accelerated aging. METHODS Klotho mice were treated with the stable IGF1 analog LONG R3 recombinant human (rh) IGF1 (150 μg/kg intraperitoneally twice daily for 3 weeks). Gastric ICC/ICC-SC and signaling pathways were studied by flow cytometry, Western blot, and immunohistochemistry. Gastric compliance was assessed in ex vivo systems. Transformation-related protein 53 was induced with nutlin 3a and ERK1/2 signaling was activated by rhIGF-1 in the ICC-SC line. RESULTS LONG R3 rhIGF1 treatment prevented reduced ERK1/2 phosphorylation and gastric ICC/ICC-SC decrease. LONG R3 rhIGF1 also mitigated the reduced food intake and impaired body weight gain. Improved gastric function by LONG R3 rhIGF1 was verified by in vivo systems. In ICC-SC cultures, rhIGF1 mitigated nutlin 3a-induced reduced ERK1/2 phosphorylation and cell growth arrest. CONCLUSIONS IGF1 can mitigate age-related ICC/ICC-SC loss by activating ERK1/2 signaling, leading to improved gastric compliance and increased food intake in klotho mice.
Collapse
Affiliation(s)
- Vy Truong Thuy Nguyen
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Negar Taheri
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Egan L Choi
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - David R Linden
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yujiro Hayashi
- Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
7
|
Dave M, Dev A, Somoza RA, Zhao N, Viswanath S, Mina PR, Chirra P, Obmann VC, Mahabeleshwar GH, Menghini P, Johnson BD, Nolta J, Soto C, Osme A, Khuat LT, Murphy W, Caplan AI, Cominelli F. Mesenchymal stem cells ameliorate inflammation in an experimental model of Crohn's disease via the mesentery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541829. [PMID: 37292753 PMCID: PMC10245893 DOI: 10.1101/2023.05.22.541829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Mesenchymal stem cells (MSCs) are novel therapeutics for treatment of Crohn's disease. However, their mechanism of action is unclear, especially in disease-relevant chronic models of inflammation. Thus, we used SAMP-1/YitFc, a chronic and spontaneous murine model of small intestinal inflammation, to study the therapeutic effect and mechanism of human bone marrow-derived MSCs (hMSC). Design hMSC immunosuppressive potential was evaluated through in vitro mixed lymphocyte reaction, ELISA, macrophage co-culture, and RT-qPCR. Therapeutic efficacy and mechanism in SAMP were studied by stereomicroscopy, histopathology, MRI radiomics, flow cytometry, RT-qPCR, small animal imaging, and single-cell RNA sequencing (Sc-RNAseq). Results hMSC dose-dependently inhibited naïve T lymphocyte proliferation in MLR via PGE 2 secretion and reprogrammed macrophages to an anti-inflammatory phenotype. hMSC promoted mucosal healing and immunologic response early after administration in SAMP model of chronic small intestinal inflammation when live hMSCs are present (until day 9) and resulted in complete response characterized by mucosal, histological, immunologic, and radiological healing by day 28 when no live hMSCs are present. hMSC mediate their effect via modulation of T cells and macrophages in the mesentery and mesenteric lymph nodes (mLN). Sc-RNAseq confirmed the anti-inflammatory phenotype of macrophages and identified macrophage efferocytosis of apoptotic hMSCs as a mechanism of action that explains their long-term efficacy. Conclusion hMSCs result in healing and tissue regeneration in a chronic model of small intestinal inflammation. Despite being short-lived, exert long-term effects via macrophage reprogramming to an anti-inflammatory phenotype. Data Transparency Statement Single-cell RNA transcriptome datasets are deposited in an online open access repository 'Figshare' (DOI: https://doi.org/10.6084/m9.figshare.21453936.v1 ).
Collapse
|
8
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Shi MY, Liu L, Yang FY. Strategies to improve the effect of mesenchymal stem cell therapy on inflammatory bowel disease. World J Stem Cells 2022; 14:684-699. [PMID: 36188115 PMCID: PMC9516464 DOI: 10.4252/wjsc.v14.i9.684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis and is an idiopathic, chronic inflammatory disease of the colonic mucosa. The occurrence of IBD, causes irreversible damage to the colon and increases the risk of carcinoma. The routine clinical treatment of IBD includes drug treatment, endoscopic treatment and surgery. The vast majority of patients are treated with drugs and biological agents, but the complete cure of IBD is difficult. Mesenchymal stem cells (MSCs) have become a new type of cell therapy for the treatment of IBD due to their immunomodulatory and nutritional functions, which have been confirmed in many clinical trials. This review discusses some potential mechanisms of MSCs in the treatment of IBD, summarizes the experimental results, and provides new insights to enhance the therapeutic effects of MSCs in future applications.
Collapse
Affiliation(s)
- Meng-Yue Shi
- School of Medicine, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Fu-Yuan Yang
- Health Science Center, Yangtze University, Jingzhou 434020, Hubei Province, China
| |
Collapse
|
10
|
Fu Y, Li J, Li M, Xu J, Rong Z, Ren F, Wang Y, Sheng J, Chang Z. Umbilical Cord Mesenchymal Stem Cells Ameliorate Inflammation-Related Tumorigenesis via Modulating Macrophages. Stem Cells Int 2022; 2022:1617229. [PMID: 35694239 PMCID: PMC9178412 DOI: 10.1155/2022/1617229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been documented to be effective for the therapy of inflammation-related diseases but raised concerns on possible tumorigenic effects. Since most of the tumors are induced or promoted by chronic inflammation, one could expect that MSCs might be beneficial for the cancer therapy because of their potent roles on inhibiting inflammation. This study is aimed at performing a safety evaluation and evaluating the role of human umbilical cord mesenchymal stem cells (HUC-MSCs) on tumorigenesis. We found that HUC-MSCs cultured within 20 generations had no significant changes in proliferation, cell cycle, cellular senescence, apoptosis, and expression of mesenchymal stem cell markers. HUC-MSCs were unable to form any tumor in immunodeficiency or normal mice with or without inflammatory stimulation. Intriguingly, we observed that HUC-MSCs inhibited tumorigenesis in B16-derived or AOM/DSS-induced colon cancer models. We reasoned that the effect of HUC-MSCs on tumorigenesis might be through regulating the inflammatory response. Indeed, HUC-MSCs dramatically ameliorated the disease symptoms and pathological changes of DSS-induced colitis mice. We deciphered the mechanism that HUC-MSCs inhibited tumorigenesis through reducing the proportion of macrophages, which were decreased in the mice suffered from AOM/DSS-induced colon cancer. Correspondingly, the expression levels of TNF-α and IL-6, which were secreted by macrophages, were significantly decreased in the plasma of colon cancer and colitis mice after injection of HUC-MSCs. This study revealed the role of inhibiting macrophages and shed light on the therapeutic application of HUC-MSCs in inflammation-induced tumorigenesis.
Collapse
Affiliation(s)
- Yanxia Fu
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Li
- TsCell Biotech Inc., Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Rong
- Department of Gynaecology and Obstetrics, Jishuitan Hospital, Beijing 100096, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Institute of Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Huizinga JD, Hussain A, Chen JH. Interstitial cells of Cajal and human colon motility in health and disease. Am J Physiol Gastrointest Liver Physiol 2021; 321:G552-G575. [PMID: 34612070 DOI: 10.1152/ajpgi.00264.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our understanding of human colonic motility, and autonomic reflexes that generate motor patterns, has increased markedly through high-resolution manometry. Details of the motor patterns are emerging related to frequency and propagation characteristics that allow linkage to interstitial cells of Cajal (ICC) networks. In studies on colonic motor dysfunction requiring surgery, ICC are almost always abnormal or significantly reduced. However, there are still gaps in our knowledge about the role of ICC in the control of colonic motility and there is little understanding of a mechanistic link between ICC abnormalities and colonic motor dysfunction. This review will outline the various ICC networks in the human colon and their proven and likely associations with the enteric and extrinsic autonomic nervous systems. Based on our extensive knowledge of the role of ICC in the control of gastrointestinal motility of animal models and the human stomach and small intestine, we propose how ICC networks are underlying the motor patterns of the human colon. The role of ICC will be reviewed in the autonomic neural reflexes that evoke essential motor patterns for transit and defecation. Mechanisms underlying ICC injury, maintenance, and repair will be discussed. Hypotheses are formulated as to how ICC dysfunction can lead to motor abnormalities in slow transit constipation, chronic idiopathic pseudo-obstruction, Hirschsprung's disease, fecal incontinence, diverticular disease, and inflammatory conditions. Recent studies on ICC repair after injury hold promise for future therapies.
Collapse
Affiliation(s)
- Jan D Huizinga
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Amer Hussain
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Ji-Hong Chen
- Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Chen M, Yu Y, Yang S, Yang D. Pretreatment with licochalcone a enhances therapeutic activity of rat bone marrow mesenchymal stem cells in animal models of colitis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1050-1057. [PMID: 34804422 PMCID: PMC8591761 DOI: 10.22038/ijbms.2021.56520.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Colitis has a high prevalence rate, limited treatment options, and needs to be solved urgently. Application of Licochacone A (LA) or rBMMSCs alone in the treatment of colitis has a certain but limited effect. This study aims to develop an LA-based strategy to improve mesenchymal stem cells' (MSCs') therapeutic capacity in mice DSS-induced colitis by increasing the number of MSCs migrating to the inflammation site. MATERIALS AND METHODS In vivo, we injected MSCs pretreated with LA, MSCs alone, or PBS into the tail vein of colitis mice, and assessed the colon length, disease activity index (DAI) score, body weight, HAI score, and tracked the location of MSCs at day 10. In vitro, we knocked down the CXCR4 gene by siRNA and then treated it with LA, then tested the mRNA level of CXCR4 and the migration ability of group CXCR4, CXCR4+LA, LA, and control to verify the relationship between this effect and the SDF-1-CXCR4 signaling pathway. RESULTS The mice that received LA- pretreated MSCs had ameliorated body weight loss, preserved colon morphology, and decreased DAI and histological activity index (HAI) compared with the MSCs group. Besides, the number of MSCs migrating to the inflammation site significantly increased in group LA+MSCs, and expression of CXCR4 significantly increased too. Furthermore, we found that LA could partly revise the decrease of the migration of MSCs and the expression of CXCR4 mRNA caused by CXCR4-siRNA. CONCLUSION LA may improve the migration ability of MSCs through increasing CXCR4 expression therapy enhancing their therapeutic activity.
Collapse
Affiliation(s)
- Meng Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yang Yu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China,Corresponding author: Deqin Yang. Endodontics Department, Stomatological Hospital of Chongqing Medical University, #426 Songshi Bei Road, Yubei, 401147 Chongqing, PR China.
| |
Collapse
|
13
|
Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, Danaii S, Yousefi M. The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure. Immunol Lett 2021; 236:20-30. [PMID: 34090942 DOI: 10.1016/j.imlet.2021.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Maternal-fetal immune dysregulation is one of the risk factors that increases the probability of embryo rejection and reproductive failure. The stimulation of immunological tolerance and suppression of immunological rejection are prerequisites for protecting embryos and preventing immunological attacks. Hence, it appears that immunomodulatory and immunosuppressive therapies can manage reproductive failures by controlling immune cells. The current medical literature has shown that immunotherapy approaches and cell therapy have promising results in improving pregnancy outcomes and live birth rates. These outcomes are obtained by regulating maternal immune responses, and exerting positive effects on human reproductive processes.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli-Khiavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Parhizkar
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ramin Pourakbari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Chang HH, Chen IL, Wang YL, Chang MC, Tsai YL, Lan WC, Wang TM, Yeung SY, Jeng JH. Regulation of the regenerative activity of dental pulp stem cells from exfoliated deciduous teeth (SHED) of children by TGF-β1 is associated with ALK5/Smad2, TAK1, p38 and MEK/ERK signaling. Aging (Albany NY) 2020; 12:21253-21272. [PMID: 33148869 PMCID: PMC7695363 DOI: 10.18632/aging.103848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) regulates wound healing/regeneration and aging processes. Dental pulp stem cells from human exfoliated deciduous teeth (SHED) are cell sources for treatment of age-related disorders. We studied the effect of TGF-β1 on SHED and related signaling. SHED were treated with TGF-β1 with/without pretreatment/co-incubation by SB431542, U0126, 5Z-7-oxozeaenol or SB203580. Sircol collagen assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) assay, RT-PCR, western blotting and PathScan phospho-ELISA were used to measure the effects. We found that SHED expressed ALK1, ALK3, ALK5, TGF-RII, betaglycan and endoglin mRNA. TGF-β1 stimulated p-Smad2, p-TAK1, p-ERK, p-p38 and cyclooxygenase-2 (COX-2) protein expression. It enhanced proliferation and collagen content of SHED that were attenuated by SB431542, 5Z-7-oxozeaenol and SB203580, but not U0126. TGF-β1 (0.5-1 ng/ml) stimulated ALP of SHED, whereas 5-10 ng/ml TGF-β1 suppressed ALP. SB431542 reversed the effects of TGF-β1. However, 5Z-7-oxozeaenol, SB203580 and U0126 only reversed the stimulatory effect of TGF-β1 on ALP. Four inhibitors attenuated TGF-β1-induced COX-2 expression. TGF-β1-stimulated TIMP-1 and N-cadherin was inhibited by SB431542 and 5Z-7-oxozeaenol. These results indicate that TGF-β1 affects SHED by differential regulation of ALK5/Smad2/3, TAK1, p38 and MEK/ERK. TGF-β1 and SHED could potentially be used for tissue engineering/regeneration and treatment of age-related diseases.
Collapse
Affiliation(s)
- Hsiao-Hua Chang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Il-Ly Chen
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Mei-Chi Chang
- Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan.,Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Tong-Mei Wang
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan
| | - Sin-Yuet Yeung
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, and School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan.,School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Hayashi Y, Asuzu DT, Bardsley MR, Gajdos GB, Kvasha SM, Linden DR, Nagy RA, Saravanaperumal SA, Syed SA, Toyomasu Y, Yan H, Chini EN, Gibbons SJ, Kellogg TA, Khazaie K, Kuro-o M, Machado Espindola Netto J, Singh MP, Tidball JG, Wehling-Henricks M, Farrugia G, Ordog T. Wnt-induced, TRP53-mediated Cell Cycle Arrest of Precursors Underlies Interstitial Cell of Cajal Depletion During Aging. Cell Mol Gastroenterol Hepatol 2020; 11:117-145. [PMID: 32771388 PMCID: PMC7672319 DOI: 10.1016/j.jcmgh.2020.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Gastric dysfunction in the elderly may cause reduced food intake, frailty, and increased mortality. The pacemaker and neuromodulator cells interstitial cells of Cajal (ICC) decline with age in humans, and their loss contributes to gastric dysfunction in progeric klotho mice hypomorphic for the anti-aging Klotho protein. The mechanisms of ICC depletion remain unclear. Klotho attenuates Wnt (wingless-type MMTV integration site) signaling. Here, we examined whether unopposed Wnt signaling could underlie aging-associated ICC loss by up-regulating transformation related protein TRP53 in ICC stem cells (ICC-SC). METHODS Mice aged 1-107 weeks, klotho mice, APCΔ468 mice with overactive Wnt signaling, mouse ICC-SC, and human gastric smooth muscles were studied by RNA sequencing, reverse transcription-polymerase chain reaction, immunoblots, immunofluorescence, histochemistry, flow cytometry, and methyltetrazolium, ethynyl/bromodeoxyuridine incorporation, and ex-vivo gastric compliance assays. Cells were manipulated pharmacologically and by gene overexpression and RNA interference. RESULTS The klotho and aged mice showed similar ICC loss and impaired gastric compliance. ICC-SC decline preceded ICC depletion. Canonical Wnt signaling and TRP53 increased in gastric muscles of klotho and aged mice and middle-aged humans. Overstimulated canonical Wnt signaling increased DNA damage response and TRP53 and reduced ICC-SC self-renewal and gastric ICC. TRP53 induction persistently inhibited G1/S and G2/M cell cycle phase transitions without activating apoptosis, autophagy, cellular quiescence, or canonical markers/mediators of senescence. G1/S block reflected increased cyclin-dependent kinase inhibitor 1B and reduced cyclin D1 from reduced extracellular signal-regulated kinase activity. CONCLUSIONS Increased Wnt signaling causes age-related ICC loss by up-regulating TRP53, which induces persistent ICC-SC cell cycle arrest without up-regulating canonical senescence markers.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Yujiro Hayashi, PhD, Mayo Clinic, Guggenheim 10, 200 First Street SW, Rochester, Minnesota 55906. fax: (507) 255-6318.
| | - David T. Asuzu
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael R. Bardsley
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sergiy M. Kvasha
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Rea A. Nagy
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A. Syed
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yoshitaka Toyomasu
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Eduardo N. Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center and Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | - Makoto Kuro-o
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas,Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Jair Machado Espindola Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center and Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - James G. Tidball
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | | | - Gianrico Farrugia
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Tamas Ordog
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota,Correspondence Address correspondence to: Tamas Ordog, MD, Mayo Clinic, Guggenheim 10, 200 First Street SW, Rochester, Minnesota 55906. fax: (507) 255-6318.
| |
Collapse
|
16
|
Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O'Malley G, Ryan AE, Ritter T. TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection In Vivo. Mol Ther 2020; 28:2023-2043. [PMID: 32531237 PMCID: PMC7474271 DOI: 10.1016/j.ymthe.2020.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-β1 (TGF-β MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-β MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-β MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-β MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-β MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-β MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-β1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.
Collapse
Affiliation(s)
- Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Luke Watson
- Orbsen Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Steven McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
17
|
Li S, Hu X, Tian R, Guo Y, Chen J, Li Z, Zhao X, Kuang L, Ran D, Zhao H, Zhang X, Wang J, Xia L, Yue J, Yao G, Fu Q, Shi H. RNA-Seq-based transcriptomic profiling of primary interstitial cells of Cajal in response to bovine viral diarrhea virus infection. Vet Res Commun 2019; 43:143-153. [PMID: 31102142 DOI: 10.1007/s11259-019-09754-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022]
Abstract
Infections with bovine viral diarrhea virus (BVDV) contribute significantly to health-related economic losses in the beef and dairy industries and are widespread throughout the world. Severe acute BVDV infection is characterized by a gastrointestinal (GI) inflammatory response. The mechanism of inflammatory lesions caused by BVDV remains unknown. The interstitial cells of Cajal (ICC) network plays a pivotal role as a pacemaker in the generation of electrical slow waves for GI motility, and it is crucial for the reception of regulatory inputs from the enteric nervous system. The present study investigated whether ICC were a good model for studying GI inflammatory lesions caused by BVDV infection. Primary ICC were isolated from the duodenum of Merino sheep. The presence of BVDV was detected in ICC grown for five passages after BVDV infection, indicating that BVDV successfully replicated in ICC. After infection with BVDV strain TC, the cell proliferation proceeded slowly or declined. Morphological changes, including swelling, dissolution, and formation of vacuoles in the ICC were observed, indicating quantitative, morphological and functional changes in the cells. RNA sequencing (RNA-Seq) was performed to investigate differentially expressed genes (DEGs) in BVDV-infected ICC and explore the molecular mechanism of underlying quantitative, morphological and functional changes of ICC. Eight hundred six genes were differentially expressed after BVDV infection, of which 538 genes were upregulated and 268 genes were downregulated. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the 806 DEGs were significantly enriched in 27 pathways, including cytokine-cytokine receptor interaction, interleukin (IL)-17 signaling and mitogen-activated protein kinase (MAPK) signaling pathways. The DEGs and raw files of high-throughput sequencing of this study were submitted to the NCBI Gene Expression Omnibus (GEO) database (accession number GSE122344). Finally, 21 DEGs were randomly selected, and the relative repression levels of these genes were tested using the quantitative real-time PCR (qRT-PCR) to validate the RNA-Seq results. The results showed that the related expression levels of 21 DEGs were similar to RNA-Seq. This study is the first to establish a new infection model for investigating GI inflammatory lesions induced by BVDV infection. RNA-Seq-based transcriptomic profiling can provide a basis for study on BVDV-associated inflammatory lesions.
Collapse
Affiliation(s)
- Shengnan Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xinyan Hu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Ruixin Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yanting Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Junzhen Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Zhen Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xinyan Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Ling Kuang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Duoliang Ran
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Xiaohong Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jinquan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| | - Qiang Fu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| | - Huijun Shi
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China.
| |
Collapse
|
18
|
Adipose-Derived Tissue in the Treatment of Dermal Fibrosis: Antifibrotic Effects of Adipose-Derived Stem Cells. Ann Plast Surg 2019; 80:297-307. [PMID: 29309331 DOI: 10.1097/sap.0000000000001278] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment of hypertrophic scars and other fibrotic skin conditions with autologous fat injections shows promising clinical results; however, the underlying mechanisms of its antifibrotic action have not been comprehensively studied. Adipose-derived stem cells, or stromal cell-derived factors, inherent components of the transplanted fat tissue, seem to be responsible for its therapeutic effects on difficult scars. The mechanisms by which this therapeutic effect takes place are diverse and are mostly mediated by paracrine signaling, which switches on various antifibrotic molecular pathways, modulates the activity of the central profibrotic transforming growth factor β/Smad pathway, and normalizes functioning of fibroblasts and keratinocytes in the recipient site. Direct cell-to-cell communications and differentiation of cell types may also play a positive role in scar treatment, even though they have not been extensively studied in this context. A more thorough understanding of the fat tissue antifibrotic mechanisms of action will turn this treatment from an anecdotal remedy to a more controlled, timely administered technology.
Collapse
|
19
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D, Du M. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16:908-920. [PMID: 30778166 DOI: 10.1038/s41423-019-0204-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4 + T cell proliferation and promoting the decidual macrophage switch to M2 in a tumor necrosis factor-stimulated gene-6 (TSG-6)-dependent manner. Cell-to-cell contact with proinflammatory macrophages increased the TSG-6 production by the MSCs, thereby enhancing the suppressive regulation of T cells and macrophages. Moreover, proinflammatory macrophages in contact with the MSCs upregulated the expression of CD200 on the stem cells and facilitated the reprogramming of macrophages towards an anti-inflammatory skew through the interaction of CD200 with CD200R on proinflammatory macrophages. Therefore, the results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance. Our study also indicates the potential application of MSCs in clinical recurrent miscarriages.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Di Zhang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Dong
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Zheng
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yikong Lin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiefang Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
20
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Kawata Y, Tsuchiya A, Seino S, Watanabe Y, Kojima Y, Ikarashi S, Tominaga K, Yokoyama J, Yamagiwa S, Terai S. Early injection of human adipose tissue-derived mesenchymal stem cell after inflammation ameliorates dextran sulfate sodium-induced colitis in mice through the induction of M2 macrophages and regulatory T cells. Cell Tissue Res 2019; 376:257-271. [PMID: 30635774 DOI: 10.1007/s00441-018-02981-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs) are sometimes refractory to current therapy or associated with severe adverse events during immunosuppressive therapy; thus, new therapies are urgently needed. Recently, mesenchymal stem cells (MSCs) have attracted attention based on their multitude of functions including anti-inflammatory effects. However, proper timing of MSC therapy and the mechanisms underlying the therapeutic effects of MSCs on colitis are not fully elucidated. Human adipose tissue-derived mesenchymal stem cells (hAdMSCs; 1 × 106) were administrated via the tail vein on day 3 (early) or 11 (delayed) using a 7-day dextran sulfate sodium (DSS)-induced mouse model of colitis. The effects were evaluated based on colon length, disease activity index (DAI) and histological score. Cytokine-encoding mRNA levels T cells and macrophages were evaluated by real-time PCR and flow cytometry. Regarding the timing of administration, early (day 3) injection significantly ameliorated DSS-induced colitis in terms of both DAI and histological score, compared to those parameters with delayed (day 11) injection. With early cell injection, the tissue mRNA levels of anti-inflammatory cytokine genes (Il10, Tgfb) increased, whereas those of inflammatory cytokine genes (Il6, Tnfa and Il17a) decreased significantly. Regarding the associated mechanism, hAdMSCs suppressed T cell proliferation and activation in vitro, increased the number of regulatory T cells in vivo and changed the polarity of macrophages (into the anti-inflammatory M2 phenotype) in vitro. Timing of injection is critical for the effective therapeutic effects of hAdMSCs. Furthermore, part of the associated mechanism includes T cell activation and expansion and altered macrophage polarization.
Collapse
Affiliation(s)
- Yuzo Kawata
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Satoshi Seino
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shunzo Ikarashi
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
22
|
Yang FY, Chen R, Zhang X, Huang B, Tsang LL, Li X, Jiang X. Preconditioning Enhances the Therapeutic Effects of Mesenchymal Stem Cells on Colitis Through PGE2-Mediated T-Cell Modulation. Cell Transplant 2018; 27:1352-1367. [PMID: 30095002 PMCID: PMC6168994 DOI: 10.1177/0963689718780304] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based cell therapy has been demonstrated as a promising strategy in the treatment of inflammatory bowel disease (IBD), which is considered an immune disease. While the exact mechanisms underlying the therapeutic effect of MSCs are still unclear, MSCs display anti-inflammatory and immunomodulatory effects by interacting with various immunoregulatory cells. Our previous studies have shown that MSCs can be preconditioned and deconditioned with enhanced cell survival, differentiation and migration. In this study, we evaluated the effect of preconditioning on the immunoregulatory function of human umbilical cord-derived MSCs (hUCMSCs) and their therapeutic effect on treating IBD. Our results show that intraperitoneal administration of deconditioned hUCMSCs (De-hUCMSCs) reduces the disease activity index (DAI), histological colitis score and destruction of the epithelial barrier, and increases the body weight recovery more intensively than that of un-manipulated hUCMSCs. In addition, De-hUCMSCs but not hUCMSCs elicit anti-apoptotic effects via induction of the ERK pathway during the early stage of IBD development. In vitro co-culture studies indicate that De-hUCMSCs suppress T-cell proliferation and activation more markedly than hUCMSCs. Moreover, De-hUCMSCs block the induction of inflammatory cytokines such as tumor necrosis factor (TNF)α and interleukin (IL)-2, while promoting the secretion of the anti-inflammatory cytokine IL-10 in T-cells. Mechanically, we find that prostaglandin E2 (PGE2) secretion is significantly increased in De-hUCMSCs, the suppression of which dramatically abrogates the inhibitory effect of De-hUCMSCs on T-cell activation, implying that the crosstalk between De-hUCMSCs and T-cells is mediated by PGE2. Together, we have demonstrated that preconditioning enhances the immunosuppressive and therapeutic effects of hUCMSCs on treating IBD via increased secretion of PGE2.
Collapse
Affiliation(s)
- Fu Yuan Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohu Zhang
- Sichuan University, The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Huang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou Higher Education Mega Center, Guangzhou, China
- Innovative Research and Development Laboratory of TCM, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong, University of Southampton Joint Laboratory for Regenerative Medicine, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- School of Biomedical Sciences Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
23
|
Zheng XB, He XW, Zhang LJ, Qin HB, Lin XT, Liu XH, Zhou C, Liu HS, Hu T, Cheng HC, He XS, Wu XR, Chen YF, Ke J, Wu XJ, Lan P. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol Rep (Oxf) 2018; 7:127-138. [PMID: 30976426 PMCID: PMC6454852 DOI: 10.1093/gastro/goy017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Objective Increasing interest has developed in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSCs) for the treatment of inflammatory bowel disease (IBD) and IBD-induced cancer. However, whether MSCs have the ability to suppress or promote tumor development remains controversial. The stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis is well known to play a critical role in the homing of MSCs. In this study, we aimed to evaluate the role of CXCR4-overexpressing MSCs on the tumorigenesis of IBD. Methods MSCs were transduced with lentiviral vector carrying either CXCR4 or green fluorescent protein (GFP). Chemotaxis and invasion assays were used to detect CXCR4 expression. A mouse model of colitis-associated tumorigenesis was established using azoxymethane and dextran sulfate sodium (DSS). The mice were divided into three groups and then injected with phosphate buffer saline (PBS), MSC-GFP or MSC-CXCR4. Results Compared with the mice injected with MSC-GFP, the mice injected with MSC-CXCR4 showed relieved weight loss, longer colons, lower tumor numbers and decreased tumor load; expression of pro-inflammatory cytokines decreased, and signal transducer and activator of transcription 3 (STAT3) phosphorylation level in colon tissue was down-regulated. Conclusion CXCR4-overexpressing MSCs exhibited effective anti-tumor function, which may be associated with enhanced homing to inflamed intestinal tissues.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Wen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Long-Juan Zhang
- Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hua-Bo Qin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xu-Tao Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xuan-Hui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Chi Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Hai-Chun Cheng
- Department of Gastrointestinal Surgery, Shenzhen Baoan Shajing People's Hospital, Guangzhou Medical University, Shenzhen, Guangdong, P.R. China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yu-Feng Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Jia Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
24
|
Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression. Oncotarget 2018; 7:78226-78241. [PMID: 27793025 PMCID: PMC5346634 DOI: 10.18632/oncotarget.12909] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) arise within the interstitial cell of Cajal (ICC) lineage due to activating KIT/PDGFRA mutations. Both ICC and GIST possess primary cilia (PC), which coordinate PDGFRA and Hedgehog signaling, regulators of gastrointestinal mesenchymal development. Therefore, we hypothesized that Hedgehog signaling may be altered in human GIST and controls KIT expression. Quantitative RT-PCR, microarrays, and next generation sequencing were used to describe Hedgehog/PC-related genes in purified human ICC and GIST. Genetic and pharmacologic approaches were employed to investigate the effects of GLI manipulation on KIT expression and GIST cell viability. We report that Hedgehog pathway and PC components are expressed in ICC and GIST and subject to dysregulation during GIST oncogenesis, irrespective of KIT/PDGFRA mutation status. Using genomic profiling, 10.2% of 186 GIST studied had potentially deleterious genomic alterations in 5 Hedgehog-related genes analyzed, including in the PTCH1 tumor suppressor (1.6%). Expression of the predominantly repressive GLI isoform, GLI3, was inversely correlated with KIT mRNA levels in GIST cells and non-KIT/non-PDGFRA mutant GIST. Overexpression of the 83-kDa repressive form of GLI3 or small interfering RNA-mediated knockdown of the activating isoforms GLI1/2 reduced KIT mRNA. Treatment with GLI1/2 inhibitors, including arsenic trioxide, significantly increased GLI3 binding to the KIT promoter, decreased KIT expression, and reduced viability in imatinib-sensitive and imatinib-resistant GIST cells. These data offer new evidence that genes necessary for Hedgehog signaling and PC function in ICC are dysregulated in GIST. Hedgehog signaling activates KIT expression irrespective of mutation status, offering a novel approach to treat imatinib-resistant GIST.
Collapse
|
25
|
Joddar B, Tasnim N, Thakur V, Kumar A, McCallum RW, Chattopadhyay M. Delivery of Mesenchymal Stem Cells from Gelatin-Alginate Hydrogels to Stomach Lumen for Treatment of Gastroparesis. Bioengineering (Basel) 2018; 5:E12. [PMID: 29414870 PMCID: PMC5874878 DOI: 10.3390/bioengineering5010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/12/2022] Open
Abstract
Gastroparesis (GP) is associated with depletion of interstitial cells of Cajal (ICCs) and enteric neurons, which leads to pyloric dysfunction followed by severe nausea, vomiting and delayed gastric emptying. Regenerating these fundamental structures with mesenchymal stem cell (MSC) therapy would be helpful to restore gastric function in GP. MSCs have been successfully used in animal models of other gastrointestinal (GI) diseases, including colitis. However, no study has been performed with these cells on GP animals. In this study, we explored whether mouse MSCs can be delivered from a hydrogel scaffold to the luminal surfaces of mice stomach explants. Mouse MSCs were seeded atop alginate-gelatin, coated with poly-l-lysine. These cell-gel constructs were placed atop stomach explants facing the luminal side. MSCs grew uniformly all across the gel surface within 48 h. When placed atop the lumen of the stomach, MSCs migrated from the gels to the tissues, as confirmed by positive staining with vimentin and N-cadherin. Thus, the feasibility of transplanting a cell-gel construct to deliver stem cells in the stomach wall was successfully shown in a mice stomach explant model, thereby making a significant advance towards envisioning the transplantation of an entire tissue-engineered 'gastric patch' or 'microgels' with cells and growth factors.
Collapse
Affiliation(s)
- Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Vikram Thakur
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| | - Alok Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.
| | - Richard W McCallum
- Department of Internal Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905, USA.
| | - Munmun Chattopadhyay
- Department of Biomedical Sciences, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA.
| |
Collapse
|
26
|
Dave M, Menghini P, Sugi K, Somoza RA, Lee Z, Jain M, Caplan A, Cominelli F. Ultrasound-guided Intracardiac Injection of Human Mesenchymal Stem Cells to Increase Homing to the Intestine for Use in Murine Models of Experimental Inflammatory Bowel Diseases. J Vis Exp 2017. [PMID: 28892033 DOI: 10.3791/55367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Crohn's disease (CD) is a common chronic inflammatory disease of the small and large intestines. Murine and human mesenchymal stem cells (MSCs) have immunosuppressive potential and have been shown to suppress inflammation in mouse models of intestinal inflammation, even though the route of administration can limit their homing and effectiveness 1,3,4,5. Local application of MSCs to colonic injury models has shown greater efficacy at ameliorating inflammation in the colon. However, there is paucity of data on techniques to enhance the localization of human bone marrow-derived MSCs (hMSCs) to the small intestine, the site of inflammation in the SAMP-1/YitFc (SAMP) model of experimental Crohn's disease. This work describes a novel technique for the ultrasound-guided intracardiac injection of hMSCs in SAMP mice, a well-characterized spontaneous model of chronic intestinal inflammation. Sex- and age-matched, inflammation-free AKR/J (AKR) mice were used as controls. To analyze the biodistribution and the localization, hMSCs were transduced with a lentivirus containing a triple reporter. The triple reporter consisted of firefly luciferase (fl), for bioluminescent imaging; monomeric red fluorescent protein (mrfp), for cell sorting; and truncated herpes simplex virus thymidine kinase (ttk), for positron emission tomography (PET) imaging. The results of this study show that 24 h after the intracardiac administration, hMSCs localize in the small intestine of SAMP mice as opposed to inflammation-free AKR mice. This novel, ultrasound-guided injection of hMSCs in the left ventricle of SAMP mice ensures a high success rate of cell delivery, allowing for the rapid recovery of mice with minimal morbidity and mortality. This technique could be a useful method for the enhanced localization of MSCs in other models of small-intestinal inflammation, such as TNFΔRE6. Future studies will determine if the increased localization of hMSCs by intra-arterial delivery can lead to increased therapeutic efficacy.
Collapse
Affiliation(s)
- Maneesh Dave
- Division of Gastroenterology and Liver Disease, University Hospitals, Digestive Health Research Institute, Case Western Reserve University;
| | - Paola Menghini
- Division of Gastroenterology and Liver Disease, University Hospitals, Digestive Health Research Institute, Case Western Reserve University
| | - Keiki Sugi
- Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University; Department of Medicine, Harrington Discovery Institute, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center
| | - Rodrigo A Somoza
- Department of Biology - Skeletal Research Center, Case Western Reserve University
| | - Zhenghong Lee
- Department of Radiology, University Hospitals Case Medical Center
| | - Mukesh Jain
- Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University; Department of Medicine, Harrington Discovery Institute, Harrington Heart and Vascular Institute, University Hospitals Case Medical Center
| | - Arnold Caplan
- Department of Biology - Skeletal Research Center, Case Western Reserve University
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, University Hospitals, Digestive Health Research Institute, Case Western Reserve University;
| |
Collapse
|
27
|
Hayashi Y, Toyomasu Y, Saravanaperumal SA, Bardsley MR, Smestad JA, Lorincz A, Eisenman ST, Cipriani G, Nelson Holte MH, Al Khazal FJ, Syed SA, Gajdos GB, Choi KM, Stoltz GJ, Miller KE, Kendrick ML, Rubin BP, Gibbons SJ, Bharucha AE, Linden DR, Maher LJ, Farrugia G, Ordog T. Hyperglycemia Increases Interstitial Cells of Cajal via MAPK1 and MAPK3 Signaling to ETV1 and KIT, Leading to Rapid Gastric Emptying. Gastroenterology 2017; 153:521-535.e20. [PMID: 28438610 PMCID: PMC5526732 DOI: 10.1053/j.gastro.2017.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Yoshitaka Toyomasu
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Siva Arumugam Saravanaperumal
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael R. Bardsley
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John A. Smestad
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Andrea Lorincz
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Fatimah J. Al Khazal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sabriya A. Syed
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Gabriella B. Gajdos
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota,Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kyoung Moo Choi
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
| | - Gary J. Stoltz
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Katie E. Miller
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Brian P. Rubin
- Departments of Anatomic Pathology and Cancer Biology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Adil E. Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Tamas Ordog
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
28
|
CTLA4-CD28 chimera gene modification of T cells enhances the therapeutic efficacy of donor lymphocyte infusion for hematological malignancy. Exp Mol Med 2017; 49:e360. [PMID: 28751785 PMCID: PMC5565951 DOI: 10.1038/emm.2017.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Donor lymphocyte infusion (DLI) followed by hematopoietic stem cell transplantation has served as an effective prevention/treatment modality against the relapse of some hematologic tumors, such as chronic myeloid leukemia (CML). However, the therapeutic efficacies of DLI for other types of leukemia, including acute lymphocytic leukemia (ALL), have been limited thus far. Therefore, we examined whether increasing the reactivity of donor T cells by gene modification could enhance the therapeutic efficacy of DLI in a murine model of ALL. When a CTLA4-CD28 chimera gene (CTC28) in which the intracellular signaling domain of CTLA4 was replaced with the CD28 signaling domain was introduced into CD4 and CD8 T cells in DLI, the graft-versus-tumor (GVT) effect was significantly increased. This effect was correlated with an increased expansion of donor CD8 T cells in vivo, and the depletion of CD8 T cells abolished this effect. The CD8 T cell expansion and the enhanced GVT effect were dependent on the transduction of both CD4 and CD8 T cells with CTC28, which emphasizes the role of dual modification in this therapeutic effect. The CTC28-transduced T cells that expanded in vivo also exhibited enhanced functionality. Although the potentiation of the GVT effect mediated by the CTC28 gene modification of T cells was accompanied by an increase of graft-versus-host disease (GVHD), the GVHD was not lethal and was mitigated by treatment with IL-10 gene-modified third-party mesenchymal stem cells. Thus, the combined genetic modification of CD4 and CD8 donor T cells with CTC28 could be a promising strategy for enhancing the therapeutic efficacy of DLI.
Collapse
|
29
|
Abstract
Recent advances in inflammatory bowel disease (IBD) therapeutics include novel medical, surgical, and endoscopic treatments. Among these, stem cell therapy is still in its infancy, although multiple studies suggest that the immunomodulatory effect of stem cell therapy may reduce inflammation and tissue injury in patients with IBD. This review discusses the novel avenue of stem cell therapy and its potential role in the management of ulcerative colitis and Crohn's disease. We conducted a comprehensive literature search to identify studies examining the role of stem cell therapy (without conditioning and immunomodulatory regimens) in IBD. Taken together, these studies suggest a promising role for stem cell therapy in IBD although the substantial challenges, such as cost and inadequate/incomplete characterization of effect, limit their current use in clinical practice.
Collapse
|
30
|
Horváth VJ, Putz Z, Izbéki F, Körei AE, Gerő L, Lengyel C, Kempler P, Várkonyi T. Diabetes-related dysfunction of the small intestine and the colon: focus on motility. Curr Diab Rep 2015; 15:94. [PMID: 26374571 DOI: 10.1007/s11892-015-0672-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In contrast to gastric dysfunction, diabetes-related functional impairments of the small and large intestine have been studied less intensively. The gastrointestinal tract accomplishes several functions, such as mixing and propulsion of luminal content, absorption and secretion of ions, water, and nutrients, defense against pathogens, and elimination of waste products. Diverse functions of the gut are regulated by complex interactions among its functional elements, including gut microbiota. The network-forming tissues, the enteric nervous system) and the interstitial cells of Cajal, are definitely impaired in diabetic patients, and their loss of function is closely related to the symptoms in diabetes, but changes of other elements could also play a role in the development of diabetes mellitus-related motility disorders. The development of our understanding over the recent years of the diabetes-induced dysfunctions in the small and large intestine are reviewed in this article.
Collapse
Affiliation(s)
- Viktor József Horváth
- 1st Department of Medicine, Semmelweis University, Korányi Sándor utca 2/a, 1083, Budapest, Hungary.
| | - Zsuzsanna Putz
- 1st Department of Medicine, Semmelweis University, Korányi Sándor utca 2/a, 1083, Budapest, Hungary
| | - Ferenc Izbéki
- Fejér Megyei Szent György Egyetemi Oktató Kórház, Székesfehérvár, Hungary
| | - Anna Erzsébet Körei
- 1st Department of Medicine, Semmelweis University, Korányi Sándor utca 2/a, 1083, Budapest, Hungary
| | - László Gerő
- 1st Department of Medicine, Semmelweis University, Korányi Sándor utca 2/a, 1083, Budapest, Hungary
| | - Csaba Lengyel
- 1st Department of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Kempler
- 1st Department of Medicine, Semmelweis University, Korányi Sándor utca 2/a, 1083, Budapest, Hungary
| | - Tamás Várkonyi
- 1st Department of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
31
|
Ordog T, Zörnig M, Hayashi Y. Targeting Disease Persistence in Gastrointestinal Stromal Tumors. Stem Cells Transl Med 2015; 4:702-7. [PMID: 25934947 DOI: 10.5966/sctm.2014-0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/16/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED SummaryGastrointestinal stromal tumors (GISTs) represent 20%-40% of human sarcomas. Although approximately half of GISTs are cured by surgery, prognosis of advanced disease used to be poor due to the high resistance of these tumors to conventional chemo- and radiotherapy. The introduction of molecularly targeted therapy (e.g., with imatinib mesylate) following the discovery of the role of oncogenic mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor α (PDGFRA) significantly increased patient survival. However, GIST cells persist in 95%-97% of imatinib-treated patients who eventually progress and die of the disease because of the emergence of clones with drug-resistant mutations. Because these secondary mutations are highly heterogeneous, even second- and third-line drugs that are effective against certain genotypes have only moderately increased progression-free survival. Consequently, alternative strategies such as targeting molecular mechanisms underlying disease persistence should be considered. We reviewed recently discovered cell-autonomous and microenvironmental mechanisms that could promote the survival of GIST cells in the presence of tyrosine kinase inhibitor therapy. We particularly focused on the potential role of adult precursors for interstitial cells of Cajal (ICCs), the normal counterpart of GISTs. ICC precursors share phenotypic characteristics with cells that emerge in a subset of patients treated with imatinib and in young patients with GIST characterized by loss of succinate dehydrogenase complex proteins and lack of KIT or PDGFRA mutations. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to tumor genotype and phenotype. SIGNIFICANCE Gastrointestinal stromal tumors (GISTs) are one of the most common connective tissue cancers. Most GISTs that cannot be cured by surgery respond to molecularly targeted therapy (e.g., with imatinib); however, tumor cells persist in almost all patients and eventually acquire drug-resistant mutations. Several mechanisms contribute to the survival of GIST cells in the presence of imatinib, including the activation of "escape" mechanisms and the selection of stem-like cells that are not dependent on the expression of the drug targets for survival. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to the genetic makeup and other characteristics of the tumors.
Collapse
Affiliation(s)
- Tamas Ordog
- Center for Individualized Medicine, Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, and Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA;
| | - Martin Zörnig
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Yujiro Hayashi
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, and Enteric Neuroscience Program, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|