1
|
Meng Y, Sun J, Zhang G. A viable remedy for overcoming resistance to anti-PD-1 immunotherapy: Fecal microbiota transplantation. Crit Rev Oncol Hematol 2024; 200:104403. [PMID: 38838927 DOI: 10.1016/j.critrevonc.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Anti-PD-1 immunotherapy is a cancer therapy that focuses explicitly on the PD-1 receptor found on the surface of immune cells. This targeted therapeutic strategy is specifically designed to amplify the immune system's innate capacity to detect and subsequently eliminate cells that have become cancerous. Nevertheless, it should be noted that not all patients exhibit a favourable response to this particular therapeutic modality, necessitating the exploration of novel strategies to augment the effectiveness of immunotherapy. Previous studies have shown that fecal microbiota transplantation (FMT) can enhance the efficacy of anti-PD-1 immunotherapy in advanced melanoma patients. To investigate this intriguing possibility further, we turned to PubMed and conducted a comprehensive search for studies that analyzed the interplay between FMT and anti-PD-1 therapy in the context of tumor treatment. Our search criteria were centred around two key phrases: "fecal microbiota transplantation" and "anti-PD-1 therapy." The studies we uncovered all echo a similar sentiment. They pointed towards the potential of FMT to improve the effectiveness of immunotherapy. FMT may enhance the effectiveness of immunotherapy by altering the gut microbiota and boosting the patient's immunological response. Although promising, additional investigation is needed to improve the efficacy of FMT in the context of cancer therapy and attain a comprehensive understanding of the possible advantages and drawbacks associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
2
|
Liu M, Zou J, Li H, Zhou Y, Lv Q, Cheng Q, Liu J, Wang L, Wang Z. Orally administrated liquid metal agents for inflammation-targeted alleviation of inflammatory bowel diseases. SCIENCE ADVANCES 2024; 10:eadn1745. [PMID: 38996026 PMCID: PMC11244529 DOI: 10.1126/sciadv.adn1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.
Collapse
Affiliation(s)
- Miaodeng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jinhui Zou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heli Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfan Zhou
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiying Lv
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Qian Cheng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Jia Liu
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Zheng Wang
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Yang LS, Gao C, Kang JH. Correlation between intestinal microbiota and occurrence of colorectal cancer: Potential applications. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:418-423. [DOI: 10.11569/wcjd.v32.i6.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
4
|
Kasapoglu M, Yadavalli R, Nawaz S, Althwanay A, AlEdani EM, Kaur H, Butt S. The Impact of Microbiome Interventions on the Progression and Severity of Inflammatory Bowel Disease: A Systematic Review. Cureus 2024; 16:e60786. [PMID: 38779440 PMCID: PMC11110475 DOI: 10.7759/cureus.60786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic intestinal inflammation. The dysbiotic gut microbiome likely contributes to IBD pathogenesis. Microbiome-directed therapies such as fecal microbiota transplantation (FMT), probiotics, and synbiotics may help induce and maintain remission. This systematic review aimed to determine the efficacy of microbiome interventions compared to standard therapy or placebo for IBD treatment. PubMed, EMBASE, Cochrane CENTRAL, and Web of Science were searched for randomized controlled trials on microbiome interventions in IBD from inception to October 2023. The risk of bias was assessed using Cochrane tools. Outcomes included disease activity, endoscopy, histology, quality of life, and adverse events. A total of 18 randomized controlled trials were included. Three trials found intensive (i.e., high frequency of administration and/or large volumes of fecal material) multi-donor FMT superior to autologous FMT or glucocorticoids for UC remission induction. Seven placebo-controlled trials demonstrated higher remission rates with FMT, especially intensive protocols, versus control for mild-to-moderate UC. However, a single FMT did not prevent relapses. Seven probiotic trials showed the potential to improve UC activity and maintain remission. One synbiotic trial reported reduced inflammation and symptoms versus placebo. Serious adverse events were rare. Small sample sizes and protocol heterogeneity limited the conclusions. Current evidence indicates the potential benefits of microbiome interventions, particularly intensive multi-donor FMT, for inducing and maintaining remission in UC. Probiotics may also improve outcomes. Adequately powered trials using standardized protocols are still needed to firmly establish efficacy and safety. Microbiome-directed therapies represent a promising approach for improving IBD outcomes.
Collapse
Affiliation(s)
- Malik Kasapoglu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajesh Yadavalli
- Internal Medicine, Rajiv Gandhi Institute of Medical Sciences, Adilabad, IND
| | - Sarosh Nawaz
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abdulaziz Althwanay
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Esraa M AlEdani
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harleen Kaur
- Medicine and Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, IND
| | - Samia Butt
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
6
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
7
|
Ji H, Feng S, Liu Y, Cao Y, Lou H, Li Z. Effect of GVHD on the gut and intestinal microflora. Transpl Immunol 2024; 82:101977. [PMID: 38184214 DOI: 10.1016/j.trim.2023.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Graft-versus-host disease (GVHD) is one of the most important cause of death in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). The gastrointestinal tract is one of the most common sites affected by GVHD. However, there is no gold standard clinical practice for diagnosing gastrointestinal GVHD (GI-GVHD), and it is mainly diagnosed by the patient's clinical symptoms and related histological changes. Additionally, GI-GVHD causes intestinal immune system disorders, damages intestinal epithelial tissue such as intestinal epithelial cells((IEC), goblet, Paneth, and intestinal stem cells, and disrupts the intestinal epithelium's physical and chemical mucosal barriers. The use of antibiotics and diet alterations significantly reduces intestinal microbial diversity, further reducing bacterial metabolites such as short-chain fatty acids and indole, aggravating infection, and GI-GVHD. gut microbe diversity can be restored by fecal microbiota transplantation (FMT) to treat refractory GI-GVHD. This review article focuses on the clinical diagnosis of GI-GVHD and the effect of GVHD on intestinal flora and its metabolites.
Collapse
Affiliation(s)
- Hao Ji
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shuai Feng
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yuan Liu
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - HuiQuan Lou
- Department of Oral and maxillofacial surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China; Yunnan Province Clinical Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Blood Disease Hospital, The First People's Hospital of Yunnan Province, Kunming, China; National Key Clinical Specialty of Hematology, The First People's Hospital of Yunnan Province, Kunming, China; Yunnan Province Clinical Research Center for Hematologic Disease, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
8
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
9
|
Cao Y, Zhang L, Xiong F, Guo X, Kan X, Song S, Liang B, Liang B, Yu L, Zheng C. Effect of probiotics and fecal microbiota transplantation in dirty rats with established primary liver cancer. Future Microbiol 2024; 19:117-129. [PMID: 37934064 DOI: 10.2217/fmb-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 09/15/2023] [Indexed: 11/08/2023] Open
Abstract
Background: The modulating effects of probiotics and fecal microbiota transplantation (FMT) on gut flora and their direct antitumor effects remain unclear in dirty rats with established primary liver cancer. Materials & methods: Probiotics (VSL#3), FMT or tap water were administrated to three groups. Fresh fecal samples were collected from all groups for 16S rRNA analysis. Liver cancer tissues were collected to evaluate the tumor response. Results: Significant modulation of β-diversity (p = 0.023) was observed after FMT. VSL#3 and FMT had no inhibitory effect on tumors, but the density of Treg cells decreased (p = 0.031) in the FMT group. Conclusion: FMT is a more attractive alternative to probiotics in dirty rats with liver cancer.
Collapse
Affiliation(s)
- Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Lijie Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Bo Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Bin Liang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| |
Collapse
|
10
|
Oliva-Hemker M, Kahn SA, Steinbach WJ. Fecal Microbiota Transplantation: Information for the Pediatrician. Pediatrics 2023; 152:e2023062922. [PMID: 37981872 DOI: 10.1542/peds.2023-062922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 11/21/2023] Open
Abstract
Fecal microbiota transplantation (FMT) involves the delivery of an entire microbial community from a healthy donor to a recipient with the intention of ameliorating or curing a specific disease. Current evidence strongly supports a role for FMT in the treatment of Clostridiodes difficile infection, with cure rates of approximately 80% to 90%. This success has led to increasing attention for FMT as a potential therapeutic intervention for other conditions associated with disturbances of the intestinal microbiome, including inflammatory bowel diseases, autism spectrum disorder, and obesity. This clinical report endorses the joint society statement by the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, and the European Society for Pediatric Gastroenterology, Hepatology and Nutrition and is meant to provide the general pediatrician with a broad overview to enable appropriate guidance to families seeking FMT as treatment of a child's condition.
Collapse
Affiliation(s)
- Maria Oliva-Hemker
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stacy A Kahn
- FMT and Microbial Therapeutics Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Cambridge, Massachusetts
| | - William J Steinbach
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's, Fayetteville, Arkansas
| |
Collapse
|
11
|
Mullish BH, Tohumcu E, Porcari S, Fiorani M, Di Tommaso N, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. The role of faecal microbiota transplantation in chronic noncommunicable disorders. J Autoimmun 2023; 141:103034. [PMID: 37087392 DOI: 10.1016/j.jaut.2023.103034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
The gut microbiome plays a key role in influencing several pathways and functions involved in human health, including metabolism, protection against infection, and immune regulation. Perturbation of the gut microbiome is recognised as a pathogenic factor in several gastrointestinal and extraintestinal disorders, and is increasingly considered as a therapeutic target in these conditions. Faecal microbiota transplantation (FMT) is the transfer of the microbiota from healthy screened stool donors into the gut of affected patients, and is a well-established and highly effective treatment for recurrent Clostridioides difficile infection. Despite the mechanisms of efficacy of FMT not being fully understood, it has been investigated in several chronic noncommunicable disorders, with variable results. This review aims to give an overview of mechanisms of efficacy of FMT in chronic noncommunicable disorders, and to paint the current landscape of its investigation in these medical conditions, including inflammatory bowel disease (IBD), chronic liver disorders, and also extraintestinal autoimmune conditions.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Ege Tohumcu
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marcello Fiorani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Natalia Di Tommaso
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
12
|
Liang D, Liu H, Jin R, Feng R, Wang J, Qin C, Zhang R, Chen Y, Zhang J, Teng J, Tang B, Ding X, Wang X. Escherichia coli triggers α-synuclein pathology in the LRRK2 transgenic mouse model of PD. Gut Microbes 2023; 15:2276296. [PMID: 38010914 PMCID: PMC10730176 DOI: 10.1080/19490976.2023.2276296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Alpha-synuclein (α-syn) pathology is the hallmark of Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) gene is a major-effect risk gene for sporadic PD (sPD). However, what environmental factors may trigger the formation of α-syn pathology in carriers of LRRK2 risk variants are still unknown. Here, we report that a markedly increased abundance of Escherichia coli (E. coli) in the intestinal microbiota was detected in LRRK2 risk variant(R1628P or G2385R) carriers with sPD compared with carriers without sPD. Animal experiments showed that E. coli administration triggered pathological α-syn accumulation in the colon and spread to the brain via the gut-brain axis in Lrrk2 R1628P mice, due to the co-occurrence of Lrrk2 variant-induced inhibition of α-syn autophagic degradation and increased phosphorylation of α-syn caused by curli in E. coli-derived extracellular vesicles. Fecal microbiota transplantation (FMT) effectively ameliorated motor deficits and α-syn pathology in Lrrk2 R1628P mice. Our findings elaborate on the mechanism that E. coli triggers α-syn pathology in Lrrk2 R1628P mice, and highlight a novel gene-environment interaction pattern in LRRK2 risk variants. Even more importantly, the findings reveal the interplay between the specific risk gene and the matched environmental factors triggers the initiation of α-syn pathology in sPD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Han Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Ruoqi Jin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Renyi Feng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jiuqi Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Chi Qin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Yongkang Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jingwen Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Beisha Tang
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuebing Ding
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Xuejing Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Mousavinasab F, Karimi R, Taheri S, Ahmadvand F, Sanaaee S, Najafi S, Halvaii MS, Haghgoo A, Zamany M, Majidpoor J, Khosravifar M, Baniasadi M, Talebi M, Movafagh A, Aghaei-Zarch SM, Khorram N, Farnia P, Kalhor K. Microbiome modulation in inflammatory diseases: Progress to microbiome genetic engineering. Cancer Cell Int 2023; 23:271. [PMID: 37951913 PMCID: PMC10640760 DOI: 10.1186/s12935-023-03095-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023] Open
Abstract
Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota. Microbiome engineering is a rapidly evolving frontier for solutions to improve human health. Microbiome engineering seeks to improve the function of an ecosystem by manipulating the composition of microbes. Thereby, generating potential therapies against metabolic, inflammatory, and immunological diseases will be possible through microbiome engineering. This essay first provides an overview of the traditional technological instruments that might be used for microbiome engineering, such as Fecal Microbiota Transplantation (FMT), prebiotics, and probiotics. Moreover, we will also discuss experimental genetic methods such as Metagenomic Alteration of Gut microbiome by In situ Conjugation (MAGIC), Bacteriophage, and Conjugative plasmids in manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Ronika Karimi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Taheri
- Department of Microbiology, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Saameh Sanaaee
- Department of New Science, Faculty of Cellular and Molecular biology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Haghgoo
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Marzieh Zamany
- Shahid Akbarabadi Clinical Research Development Unit, Iran University of medical Science, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mina Khosravifar
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mohammad Baniasadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Khorram
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Poopak Farnia
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kambiz Kalhor
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA
| |
Collapse
|
14
|
Jenior ML, Leslie JL, Kolling GL, Archbald-Pannone L, Powers DA, Petri WA, Papin JA. Systems-ecology designed bacterial consortium protects from severe Clostridioides difficile infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552483. [PMID: 37609255 PMCID: PMC10441344 DOI: 10.1101/2023.08.08.552483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fecal Microbiota Transplant (FMT) is an emerging therapy that has had remarkable success in treatment and prevention of recurrent Clostridioides difficile infection (rCDI). FMT has recently been associated with adverse outcomes such as inadvertent transfer of antimicrobial resistance, necessitating development of more targeted bacteriotherapies. To address this challenge, we developed a novel systems biology pipeline to identify candidate probiotic strains that would be predicted to interrupt C. difficile pathogenesis. Utilizing metagenomic characterization of human FMT donor samples, we identified those metabolic pathways most associated with successful FMTs and reconstructed the metabolism of encoding species to simulate interactions with C. difficile . This analysis resulted in predictions of high levels of cross-feeding for amino acids in species most associated with FMT success. Guided by these in silico models, we assembled consortia of bacteria with increased amino acid cross-feeding which were then validated in vitro . We subsequently tested the consortia in a murine model of CDI, demonstrating total protection from severe CDI through decreased toxin levels, recovered gut microbiota, and increased intestinal eosinophils. These results support the novel framework that amino acid cross-feeding is likely a critical mechanism in the initial resolution of CDI by FMT. Importantly, we conclude that our predictive platform based on predicted and testable metabolic interactions between the microbiota and C. difficile led to a rationally designed biotherapeutic framework that may be extended to other enteric infections.
Collapse
|
15
|
Qu R, Zhang Y, Ma Y, Zhou X, Sun L, Jiang C, Zhang Z, Fu W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205563. [PMID: 37263983 PMCID: PMC10427379 DOI: 10.1002/advs.202205563] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) is the most common cancer of the digestive system with high mortality and morbidity rates. Gut microbiota is found in the intestines, especially the colorectum, and has structured crosstalk interactions with the host that affect several physiological processes. The gut microbiota include CRC-promoting bacterial species, such as Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis, and CRC-protecting bacterial species, such as Clostridium butyricum, Streptococcus thermophilus, and Lacticaseibacillus paracasei, which along with other microorganisms, such as viruses and fungi, play critical roles in the development of CRC. Different bacterial features are identified in patients with early-onset CRC, combined with different patterns between fecal and intratumoral microbiota. The gut microbiota may be beneficial in the diagnosis and treatment of CRC; some bacteria may serve as biomarkers while others as regulators of chemotherapy and immunotherapy. Furthermore, metabolites produced by the gut microbiota play essential roles in the crosstalk with CRC cells. Harmful metabolites include some primary bile acids and short-chain fatty acids, whereas others, including ursodeoxycholic acid and butyrate, are beneficial and impede tumor development and progression. This review focuses on the gut microbiota and its metabolites, and their potential roles in the development, diagnosis, and treatment of CRC.
Collapse
Affiliation(s)
- Ruize Qu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yi Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Yanpeng Ma
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Xin Zhou
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Lulu Sun
- State Key Laboratory of Women's Reproductive Health and Fertility PromotionPeking UniversityBeijing100191P. R. China
- Department of Endocrinology and MetabolismPeking University Third HospitalBeijing100191P. R. China
| | - Changtao Jiang
- Center of Basic Medical ResearchInstitute of Medical Innovation and ResearchThird HospitalPeking UniversityBeijing100191P. R. China
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesPeking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University)Ministry of EducationBeijing100191P. R. China
- Center for Obesity and Metabolic Disease ResearchSchool of Basic Medical SciencesPeking UniversityBeijing100191P. R. China
| | - Zhipeng Zhang
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| | - Wei Fu
- Department of General SurgeryPeking University Third HospitalBeijing100191P. R. China
- Cancer CenterPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
16
|
Yu J, Meng J, Qin Z, Yu Y, Liang Y, Wang Y, Min D. Dysbiosis of gut microbiota inhibits NMNAT2 to promote neurobehavioral deficits and oxidative stress response in the 6-OHDA-lesioned rat model of Parkinson's disease. J Neuroinflammation 2023; 20:117. [PMID: 37208728 DOI: 10.1186/s12974-023-02782-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND New data are accumulating on gut microbial dysbiosis in Parkinson's disease (PD), while the specific mechanism remains uncharacterized. This study aims to investigate the potential role and pathophysiological mechanism of dysbiosis of gut microbiota in 6-hydroxydopamine (6-OHDA)-induced PD rat models. METHODS The shotgun metagenome sequencing data of fecal samples from PD patients and healthy individuals were obtained from the Sequence Read Archive (SRA) database. The diversity, abundance, and functional composition of gut microbiota were further analyzed in these data. After the exploration of the functional pathway-related genes, KEGG and GEO databases were used to obtain PD-related microarray datasets for differential expression analysis. Finally, in vivo experiments were performed to confirm the roles of fecal microbiota transplantation (FMT) and upregulated NMNAT2 in neurobehavioral symptoms and oxidative stress response in 6-OHDA-lesioned rats. RESULTS Significant differences were found in the diversity, abundance, and functional composition of gut microbiota between PD patients and healthy individuals. Dysbiosis of gut microbiota could regulate NAD+ anabolic pathway to affect the occurrence and development of PD. As a NAD+ anabolic pathway-related gene, NMNAT2 was poorly expressed in the brain tissues of PD patients. More importantly, FMT or overexpression of NMNAT2 alleviated neurobehavioral deficits and reduced oxidative stress in 6-OHDA-lesioned rats. CONCLUSIONS Taken together, we demonstrated that dysbiosis of gut microbiota suppressed NMNAT2 expression, thus exacerbating neurobehavioral deficits and oxidative stress response in 6-OHDA-lesioned rats, which could be rescued by FMT or NMNAT2 restoration.
Collapse
Affiliation(s)
- Jianjun Yu
- Orthopedics of Chinese Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, People's Republic of China
| | - Jianhong Meng
- Orthopedics of Chinese Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, People's Republic of China
| | - Zhengwei Qin
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Harbin, 150036, People's Republic of China
| | - Yuan Yu
- Department of Massage, Heilongjiang Academy of Chinese Medical Sciences, Harbin, 150036, People's Republic of China
| | - Yingxin Liang
- Orthopedics of Chinese Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, People's Republic of China
| | - Yanjun Wang
- Orthopedics of Chinese Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, People's Republic of China
| | - Dongmei Min
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of Guangxi Medical University, No. 156, Heping Road, Liunan District, Liuzhou, 545000, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
17
|
Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans and Candida albicans Clinical Isolates from Children with Early Childhood Caries. Int J Mol Sci 2023; 24:ijms24032991. [PMID: 36769313 PMCID: PMC9917570 DOI: 10.3390/ijms24032991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Probiotics interfere with pathogenic microorganisms or reinstate the natural microbiome. Streptococcus mutans and Candida albicans are well-known emerging pathogenic bacteria/fungi for dental caries. In this study, three probiotic Lactobacilli strains (Lactobacillus plantarum 8014, L. plantarum 14917, and Lactobacillus salivarius 11741) were tested on S. mutans and C. albicans clinical isolates using a multispecies biofilm model simulating clinical cariogenic conditions. The ten pairs of clinical isolates of S. mutans and C. albicans were obtained from children with severe early childhood caries. Our study findings show a remarkable inhibitory effect of L. plantarum 14917 on S. mutans and C. albicans clinical isolates, resulting in significantly reduced growth of S. mutans and C. albicans, a compromised biofilm structure with a significantly smaller microbial and extracellular matrix and a less virulent microcolony structure. FurTre, plantaricin, an antimicrobial peptide produced by L. plantarum, inhibited the growth of S. mutans and C. albicans. The mechanistic assessment indicated that L. plantarum 14917 had a positive inhibitory impact on the expression of S. mutans and C. albicans virulence genes and virulent structure, such as C. albicans hypha formation. Future utilization of L. plantarum 14917 and/or its antimicrobial peptide plantaricin could lead to a new paradigm shift in dental caries prevention.
Collapse
|
18
|
Tkach S, Dorofeyev A, Kuzenko I, Falalyeyeva T, Tsyryuk O, Kovalchuk O, Kobyliak N, Abenavoli L, Boccuto L. Efficacy and safety of fecal microbiota transplantation via colonoscopy as add-on therapy in patients with mild-to-moderate ulcerative colitis: A randomized clinical trial. Front Med (Lausanne) 2023; 9:1049849. [PMID: 36714101 PMCID: PMC9877446 DOI: 10.3389/fmed.2022.1049849] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Growing evidence supports the effectiveness of fecal microbiota transplantation (FMT) in treating ulcerative colitis (UC), although its effects seem to depend on the method of introduction, the number of procedures, the donor material, and the severity of UC. Aim This study aimed to assess FMT's clinical and microbiological efficacy, tolerability, and safety in patients with mild-to-moderate UC. Material and methods Patients with mild-to-moderate UC were randomized into two groups. The first group (standard-care, n = 27) was treated with basic therapy-mesalazine-at a daily dose of 3 g (2 g orally + 1 g rectally). In the second group (FMT group, n = 26), while taking mesalazine at the indicated dose, each patient with UC as add-on therapy underwent a single FMT procedure with fresh material delivered by colonoscopy from a healthy donor. The clinical efficacy of treatment in both groups was evaluated after 4 and 8 weeks. The primary outcome was remission of UC, defined as a partial Mayo score ≤2, and decreased fecal calprotectin. All patients underwent bacteriological examination of feces for quantitative microbiota composition changes. Results Clinical response in the form of a significant decrease in stool frequency and a tendency to normalize its consistency after 4 weeks was detected in 14 (51.9%) patients of the standard care group and 16 patients (61.5%) of the FMT group (p = 0.583). The Mayo score in the standard care group was 3.59 ± 1.21 and in the FMT group-3.15±1.04 (p=0.166). After 8 weeks, the main primary endpoint was achieved in 70.4% of the standard-care group patients as compared to 84.6% of participants who received FMT as add-on therapy (p = 0.215). A more pronounced decrease in Mayo score was observed in the FMT group compared to the standard-care group (1.34 ± 1.44 vs. 2.14 ± 1.4; p = 0.045). All patients also showed a significant decrease in fecal calprotectin levels, which correlated with clinical data, stool frequency, and clinical remission. An improvement in gut microbiota composition was noted in both groups, albeit it was significantly more pronounced in the FMT group. Conclusions FTM in patients with mild-to-moderate UC is a well-tolerated, effective, and safe method of treatment in comparison to basic therapy. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT05538026?term=kobyliak&draw=2&rank=4, identifier: NCT05538026.
Collapse
Affiliation(s)
- Sergii Tkach
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Andrii Dorofeyev
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Iurii Kuzenko
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine,Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Olena Tsyryuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Oleksandr Kovalchuk
- Educational-Scientific Center, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine,Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia”, Catanzaro, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC, United States,Clemson University School of Health Research, Clemson, SC, United States,*Correspondence: Luigi Boccuto ✉
| |
Collapse
|
19
|
Tian H, Cui J, Ye C, Zhao J, Yang B, Xu Y, Ji S, Wang L, Lv X, Ma C, Zhou S, Li N, Wang X, Qin H, Chen Q. Depletion of butyrate-producing microbes of the Firmicutes predicts nonresponse to FMT therapy in patients with recurrent Clostridium difficile infection. Gut Microbes 2023; 15:2236362. [PMID: 37469017 PMCID: PMC10361143 DOI: 10.1080/19490976.2023.2236362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
Approximately 10% of individuals diagnosed with Clostridium difficile infection (CDI) show the resistance to fecal microbiota transplantation (FMT), with the underlying mechanisms remaining elusive. Deciphering the intricate microbiome profile within this particular subset of FMT-refractory patients via clinical FMT investigations assumes paramount importance, as it holds the key to designing targeted therapeutic interventions tailored for CDI, particularly recurrent CDI (rCDI). A cohort of twenty-three patients afflicted with rCDI, exhibiting congruent clinical baselines, was meticulously selected for FMT. Rigorous screening of thousands of healthy individuals identified ten FMT donors who met stringent health standards, while a total of 171 stool samples were collected to serve as healthy controls. To assess the influence of microbiome dynamics on FMT efficacy, fecal samples were collected from four donors over a continuous period of twenty-five weeks. After FMT treatment, seven individuals exhibited an inadequate response to FMT. These non-remission patients displayed a significant reduction in α-diversity indexes. Meanwhile, prior to FMT, the abundance of key butyrate-producing Firmicutes bacteria, including Christensenellaceae_R_7_group, Ruminococcaceae_unclassified, Coprococcus_2, Fusicatenibacter, Oscillospira, and Roseburia, were depleted in non-remission patients. Moreover, Burkholderiales_unclassified, Coprococcus_2, and Oscillospira failed to colonize non-remission patients both pre- and post-treatment. Conversely, patients with a favorable FMT response exhibited a higher relative abundance of Veillonella prior to treatment, whereas its depletion was commonly observed in non-remission individuals. Genera interactions in lower effectiveness FMT donors were more similar to those in non-remission patients, and Burkholderiales_unclassified, Coprococcus_2, and Oscillospira were frequently depleted in these lower effectiveness donors. Older patients were not conducive to the colonization of Veillonella, consistent with their poor prognosis after FMT. FMT non-remission rCDI patients exhibited distinct characteristics that hindered the colonization of beneficial butyrate-producing Firmicutes microbes. These findings hold promise in advancing the precision of FMT therapy for rCDI patients.
Collapse
Affiliation(s)
- Hongliang Tian
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Jiaqu Cui
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Chen Ye
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Jiangman Zhao
- Department of Bioinformatics, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Bo Yang
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yue Xu
- Department of Bioinformatics, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Shushen Ji
- Department of Bioinformatics, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Le Wang
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaoqiong Lv
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Chunlian Ma
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Shailan Zhou
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Ning Li
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xinjun Wang
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Clinical Research Center for Digestive Diseases, Tongji University, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Tenth People’s Hospital of Tongji University, Shanghai, China
| |
Collapse
|
20
|
Li K, Yang J, Zhou X, Wang H, Ren Y, Huang Y, Liu H, Zhong Z, Peng G, Zheng C, Zhou Z. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9120695. [PMID: 36548856 PMCID: PMC9786814 DOI: 10.3390/vetsci9120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a potential treatment for many intestinal diseases. In dogs, FMT has been shown to have positive regulation effects in treating Clostridioides difficile infection (CDI), inflammatory bowel disease (IBD), canine parvovirus (CPV) enteritis, acute diarrhea (AD), and acute hemorrhagic diarrhea syndrome (AHDS). FMT involves transplanting the functional components of a donor's feces into the gastrointestinal tract of the recipient. The effective components of FMT not only include commensal bacteria, but also include viruses, fungi, bacterial metabolites, and immunoglobulin A (IgA) from the donor feces. By affecting microbiota and regulating host immunity, these components can help the recipient to restore their microbial community, improve their intestinal barrier, and induce anti-inflammation in their intestines, thereby affecting the development of diseases. In addition to the above components, mucin proteins and intestinal epithelial cells (IECs) may be functional ingredients in FMT as well. In addition to the abovementioned indications, FMT is also thought to be useful in treating some other diseases in dogs. Consequently, when preparing FMT fecal material, it is important to preserve the functional components involved. Meanwhile, appropriate fecal material delivery methods should be chosen according to the mechanisms these components act by in FMT.
Collapse
Affiliation(s)
- Kerong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Xiaoxiao Zhou
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Huan Wang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Yuxin Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Yunchuan Huang
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
- Correspondence: (C.Z.); (Z.Z.)
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (C.Z.); (Z.Z.)
| |
Collapse
|
21
|
Liu X, Zhang M, Wang X, Liu P, Wang L, Li Y, Wang X, Ren F. Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Front Microbiol 2022; 13:1037257. [PMID: 36532422 PMCID: PMC9748282 DOI: 10.3389/fmicb.2022.1037257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with gut microbiome dysbiosis, but the role of intestinal flora in CKD treatment remains to be elucidated. Fecal microbiota transplantation (FMT) can be utilized to re-establish healthy gut microbiota for a variety of diseases, which offers new insight for treating CKD. First, 5/6 nephrectomy rats (Donor CKD) and sham rats (Donor Sham) were used as donors for FMT, and fecal metagenome were analyzed to explore potential therapeutic targets. Then, to assess the effect of FMT on CKD, sterilized 1/2 nephrectomy rats were transplanted with fecal microbiota from Donor sham (CKD/Sham) or Donor CKD (CKD/CKD) rats, and 1/2 nephrectomy rats without FMT (CKD) or no nephrectomy (Sham) were used as model control or normal control. Results showed that Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 were enriched in Donor CKD, while Lactobacillus johnsonii and Lactobacillus intestinalis were reduced. In addition, the increased abundance of microbial functions included tryptophan metabolism and lysine degradation contributing to the accumulation of protein-bound uremic toxins (PBUTs) in Donor CKD. Genome analysis indicated that FMT successfully differentiated groups of gut microbes and altered specific gut microbiota after 1 week of treatment, with Bacteroides uniformis and Anaerotruncus sp. 1XD22-93 increasing in CKD/CKD group as well as Lactobacillus johnsonii and Lactobacillus intestinalis being improved in CKD/Sham group. In comparison to CKD group, substantial PBUT buildup and renal damage were observed in CKD/CKD. Interestingly, compared to CKD or CKD/CKD group, tryptophan metabolism and lysine degradation were efficiently suppressed in CKD/Sham group, while lysine biosynthesis was promoted. Therefore, FMT considerably reduced PBUTs accumulation. After FMT, PBUTs and renal function in CKD/Sham rats remained the same as in Sham group throughout the experimental period. In summary, FMT could delay the malignant development of CKD by modifying microbial amino acid metabolism through altering the microenvironment of intestinal flora, thereby providing a novel potential approach for treating CKD.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
22
|
Li Y, Ouyang Y, He C. Research trends on clinical fecal microbiota transplantation: A biliometric analysis from 2001 to 2021. Front Immunol 2022; 13:991788. [PMID: 36353639 PMCID: PMC9639330 DOI: 10.3389/fimmu.2022.991788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Numerous studies on fecal microbiota transplantation (FMT) have been conducted in the past two decades. We aimed to assess the research trends and hotspots in the field of FMT through a quantitative method. MATERIALS AND METHODS The clinical studies of FMT published from 2001 to 2021 were extracted from the Web of Science database. We analyzed the countries, institutions, authors, and keywords of these articles and visually illustrated using VOSviewer and CiteSpace software. The current application of FMT in clinical practice, including indications, efficacy, adverse events, as well as its methodology, such as donor, delivery route, were also evaluated. RESULTS A total of 227 records were finally identified. The number and rate of annual publications increased gradually. The USA ranked highest in the number of publications. Harvard University was the most influential institution, and Digestive Diseases and Sciences was the most productive journal. Kassam Zain published the most papers, and the high-frequency keywords were mainly related to diseases and techniques. Healthy donors were the most widely used donors, and frozen stool had the highest frequency of use. The predominant delivery route was endoscopy followed by oral capsules and enema. FMT was most frequently performed for the treatment of recurrent Clostridium Difficile Infection. The overall efficacy of FMT was 76.88%, and the incidence of minor and severe adverse events were 11.63% and 1.59%, respectively. CONCLUSIONS This study delineated a comprehensive landscape of the advancement in FMT field. Although in its infancy, FMT is a burgeoning option for the treatment of a variety of diseases associated with gut dysbiosis. To improve the efficacy and reduce adverse events, future studies are warranted to optimize the methodology of FMT.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, The first affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaobin Ouyang
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Cong He
- Department of Gastroenterology, The first affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Tkach S, Dorofeyev A, Kuzenko I, Sulaieva O, Falalyeyeva T, Kobyliak N. Fecal microbiota transplantation in patients with post-infectious irritable bowel syndrome: A randomized, clinical trial. Front Med (Lausanne) 2022; 9:994911. [PMID: 36341232 PMCID: PMC9631772 DOI: 10.3389/fmed.2022.994911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Research in recent years has shown the potential benefits of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS). Acute infectious gastroenteritis is a well-established risk factor for developing such forms of IBS as post-infectious IBS (PI-IBS). However, the effective use of FMT in patients with IP-IBS has not yet been clarified. Aim The study aimed to conduct a single-center, randomized clinical trial (RCT) to assess FMT’s safety, clinical and microbiological efficacy in patients with PI-IBS. Materials and methods Patients with PI-IBS were randomized into two groups: I (standard-care, n = 29) were prescribed basic therapy, namely a low FODMAP diet, as well as Otilonium Bromide (1 tablet TID) and a multi-strain probiotic (1 capsule BID) for 1 month; II (FMT group, n = 30), each patient with PI-IBS underwent a single FMT procedure with fresh material by colonoscopy. All patients underwent bacteriological examination of feces for quantitative and qualitative microbiota composition changes. The clinical efficacy of treatment was evaluated according to the dynamics of abdominal symptoms, measured using the IBS-SSS scale, fatigue reduction (FAS scale), and a change in the quality of life (IBS-QoL scale). Results FMT was associated with rapid onset of the effect, manifested in a significant difference between IBS-SSS points after 2 weeks of intervention (p < 0.001). In other time points (after 4 and 12 weeks) IBS-SSS did not differ significantly across both groups. Only after 3 months of treatment did their QoL exceed its initial level, as well value for 2 and 4 weeks, to a significant extent. The change in the ratio of the main microbial phenotypes in the form of an increase in the relative abundance of Firmicutes and Bacteroidetes was recorded in all patients after 4 weeks. It should be noted that these changes were significant but eventually normalized only in the group of PI-IBS patients who underwent FMT. No serious adverse reactions were noted. Conclusion This comparative study of the results of FMT use in patients with PI-IBS demonstrated its effectiveness compared to traditional pharmacotherapy, as well as a high degree of safety and good tolerability.
Collapse
Affiliation(s)
- Sergii Tkach
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Andrii Dorofeyev
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Iurii Kuzenko
- Ukrainian Research and Practical Centre of Endocrine Surgery, Transplantation of Endocrine Organs and Tissues of the Ministry of Health of Ukraine, Kyiv, Ukraine
| | | | - Tetyana Falalyeyeva
- Medical Laboratory CSD, Kyiv, Ukraine
- Educational-Scientific Center, “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Medical Laboratory CSD, Kyiv, Ukraine
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
- *Correspondence: Nazarii Kobyliak,
| |
Collapse
|
24
|
Belvoncikova P, Maronek M, Gardlik R. Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. Int J Mol Sci 2022; 23:10729. [PMID: 36142642 PMCID: PMC9503867 DOI: 10.3390/ijms231810729] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota dysbiosis has recently been reported in a number of clinical states, including neurological, psychiatric, cardiovascular, metabolic and autoimmune disorders. Yet, it is not completely understood how colonizing microorganisms are implicated in their pathophysiology and molecular pathways. There are a number of suggested mechanisms of how gut microbiota dysbiosis triggers or sustains extraintestinal diseases; however, none of these have been widely accepted as part of the disease pathogenesis. Recent studies have proposed that gut microbiota and its metabolites could play a pivotal role in the modulation of immune system responses and the development of autoimmunity in diseases such as rheumatoid arthritis, multiple sclerosis or type 1 diabetes. Fecal microbiota transplantation (FMT) is a valuable tool for uncovering the role of gut microbiota in the pathological processes. This review aims to summarize the current knowledge about gut microbiota dysbiosis and the potential of FMT in studying the pathogeneses and therapies of autoimmune diseases. Herein, we discuss the extraintestinal autoimmune pathologies with at least one published or ongoing FMT study in human or animal models.
Collapse
Affiliation(s)
| | | | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
25
|
Podlesny D, Durdevic M, Paramsothy S, Kaakoush NO, Högenauer C, Gorkiewicz G, Walter J, Fricke WF. Identification of clinical and ecological determinants of strain engraftment after fecal microbiota transplantation using metagenomics. Cell Rep Med 2022; 3:100711. [PMID: 35931074 PMCID: PMC9418803 DOI: 10.1016/j.xcrm.2022.100711] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 11/01/2022]
Abstract
Fecal microbiota transplantation (FMT) is a promising therapeutic approach for microbiota-associated pathologies, but our understanding of the post-FMT microbiome assembly process and its ecological and clinical determinants is incomplete. Here we perform a comprehensive fecal metagenome analysis of 14 FMT trials, involving five pathologies and >250 individuals, and determine the origins of strains in patients after FMT. Independently of the underlying clinical condition, conspecific coexistence of donor and recipient strains after FMT is uncommon and donor strain engraftment is strongly positively correlated with pre-FMT recipient microbiota dysbiosis. Donor strain engraftment was enhanced through antibiotic pretreatment and bowel lavage and dependent on donor and recipient ɑ-diversity; strains from relatively abundant species were more likely and from predicted oral, oxygen-tolerant, and gram-positive species less likely to engraft. We introduce a general mechanistic framework for post-FMT microbiome assembly in alignment with ecological theory, which can guide development of optimized, more targeted, and personalized FMT therapies.
Collapse
Affiliation(s)
- Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany.
| | - Marija Durdevic
- Institute of Pathology, Medical University of Graz, Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Graz, Austria
| | - Sudarshan Paramsothy
- Department of Gastroenterology and Hepatology, Concord Repatriation General Hospital, Sydney, NSW, Australia; Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | | | - Christoph Högenauer
- Institute of Pathology, Medical University of Graz, Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Graz, Austria; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Graz, Austria; BioTechMed, Interuniversity Cooperation, Graz, Austria
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
History of fecal transplantation; camel feces contains limited amounts of Bacillus subtilis spores and likely has no traditional role in the treatment of dysentery. PLoS One 2022; 17:e0272607. [PMID: 35947590 PMCID: PMC9365175 DOI: 10.1371/journal.pone.0272607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction
A widely cited story on the origins of fecal transplantation suggests that German soldiers in North Africa used camel feces containing Bacillus subtilis to treat dysentery in World War 2. We investigated if this story is accurate and if there is sufficient Bacillus subtilis in camel feces to be potentially therapeutic.
Methods and results
A literature analysis shows that all references to the story are based on a single review paper that mentions the use of camel feces in passing and only provides indirect evidence for this claim. An extensive literature search failed to find independent evidence that camel feces has traditionally been used in the treatment of dysentery in North Africa. With 16S sequence analysis we did not detect Bacillus subtilis in feces from two different Egyptian camels. Using a more sensitive culture-based assay we could detect low amounts of Bacillus subtilis spores in these fecal samples, with comparable concentrations to those present in human feces and soil.
Conclusions
Because we could not find evidence for the use of camel feces in the treatment of diarrhea and because we show that only low amounts of Bacillus subtilis spores are present in camel feces, we conclude that the use of camel feces should no longer be mentioned in the context of origins of fecal transplantation.
Collapse
|
27
|
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, Chiang JYL, Han S. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci 2022; 23:8343. [PMID: 35955473 PMCID: PMC9368770 DOI: 10.3390/ijms23158343] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Edozie Samuel Okpara
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| |
Collapse
|
28
|
Chen X, Qiu TT, Wang Y, Xu LY, Sun J, Jiang ZH, Zhao W, Tao T, Zhou YW, Wei LS, Li YQ, Zheng YY, Zhou GH, Chen HQ, Zhang J, Feng XB, Wang FY, Li N, Zhang XN, Jiang J, Zhu MS. A Shigella species variant is causally linked to intractable functional constipation. J Clin Invest 2022; 132:e150097. [PMID: 35617029 PMCID: PMC9282927 DOI: 10.1172/jci150097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Intractable functional constipation (IFC) is the most severe form of constipation, but its etiology has long been unknown. We hypothesized that IFC is caused by refractory infection by a pathogenic bacterium. Here, we isolated from patients with IFC a Shigella species - peristaltic contraction-inhibiting bacterium (PIB) - that significantly inhibited peristaltic contraction of the colon by production of docosapentenoic acid (DPA). PIB colonized mice for at least 6 months. Oral administration of PIB was sufficient to induce constipation, which was reversed by PIB-specific phages. A mutated PIB with reduced DPA was incapable of inhibiting colonic function and inducing constipation, suggesting that DPA produced by PIB was the key mediator of the genesis of constipation. PIBs were detected in stools of 56% (38 of 68) of the IFC patients, but not in those of non-IFC or healthy individuals (0 of 180). DPA levels in stools were elevated in 44.12% (30 of 68) of the IFC patients but none of the healthy volunteers (0 of 97). Our results suggest that Shigella sp. PIB may be the critical causative pathogen for IFC, and detection of fecal PIB plus DPA may be a reliable method for IFC diagnosis and classification.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Shaanxi An-Ning-Yunsheng Biotechnology Limited Company, Xi’an, China
| | - Tian-Tian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
- Shaanxi An-Ning-Yunsheng Biotechnology Limited Company, Xi’an, China
| | - Li-Yang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
- Shaanxi An-Ning-Yunsheng Biotechnology Limited Company, Xi’an, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
- Shaanxi An-Ning-Yunsheng Biotechnology Limited Company, Xi’an, China
| | - Zhi-Hui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Yu-Wei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Li-Sha Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Ye-Qiong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Guo-Hua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing, China
| | - Jian Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Bo Feng
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xue-Na Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| | - Jun Jiang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and
| |
Collapse
|
29
|
Chen C, Liang H, Wang J, Ren G, Li R, Cui ZG, Zhang C. Heterophyllin B an Active Cyclopeptide Alleviates Dextran Sulfate Sodium-induced Colitis by Modulating Gut Microbiota and Repairing Intestinal Mucosal Barrier via AMPK Activation. Mol Nutr Food Res 2022; 66:e2101169. [PMID: 35796402 DOI: 10.1002/mnfr.202101169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/12/2022] [Indexed: 12/07/2022]
Abstract
SCOPE Advances in pathology broaden our perception of the intimate interaction between gut microbiota dysbiosis and the pathogenesis of ulcerative colitis (UC), but the potential modulating roles remain to be elucidated. METHODS AND RESULTS DSS-induced colitis was used to investigate the effect of Heterophyllin B (HB), a typical active cyclopeptide extracted from Pseudostellaria heterophylla, on colitis and gut microbiota. Administration of HB substantially mitigated the symptoms of UC as evidenced by increasing body weight and colon length, as well as decreased macrophages infiltration in the colon. Meanwhile, HB significantly alleviated intestinal mucosal barrier dysfunction by reducing the production of inflammatory cytokines, while all the mentioned beneficial effects were significantly eliminated by co-treatment with compound C, a selective AMPK inhibitor. In addition, 16S rDNA gene analyses and fecal microbiota transplantation also revealed that HB dramatically prevented against UC by reshaping intestinal dysbiosis, especially elevated the relative abundance of Akkermansia muciniphila. CONCLUSION These findings illustrated that HB prominently improved intestinal epithelial homeostasis via activating AMPK and ameliorated the colonic inflammation in a gut microbiota-dependent manner, which provide evidence for microbial contribution to UC pathogenesis and suggesting a novel approach for colitis prevention. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ce Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Han Liang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiaoyang Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Guoqing Ren
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui, 910-1193, Japan
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
31
|
Joachim A, Schwerd T, Hölz H, Sokollik C, Konrad LA, Jordan A, Lanzersdorfer R, Schmidt-Choudhury A, Hünseler C, Adam R. [Fecal Microbiota Transfer (FMT) in Children and Adolescents - Review and statement by the GPGE microbiome working group]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:963-969. [PMID: 35533688 DOI: 10.1055/a-1801-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The human microbiome and especially the gastrointestinal microbiota are associated with health and disease. Disturbance in the composition or function of fecal microbiota (dysbiosis) plays a role in the development of pediatric gastrointestinal diseases. Fecal microbiota transfer (FMT) is a special intervention, where microbiota are transferred from a healthy donor.In this review we describe the current state of knowledge for FMT in pediatric patients. There is satisfactory evidence concerning FMT in patients with recurrent C. difficile infection. For inflammatory bowel disease, few studies show a potential benefit.Adverse events occurred frequently in clinical studies, but were mostly mild and transient. There are hardly any data on long-term side effects of FMT, which are particularly significant for pediatrics. In practice, there is uncertainty as to which application route, dosage or frequency should be used. Legally, donor stool is considered a drug in German-speaking countries, for which no marketing authorization exists.In conclusion, knowledge about physiology, efficacy and side effects of FMT is insufficient and legal concerns complicate its implementation. More studies on this topic are needed urgently.
Collapse
Affiliation(s)
| | - Tobias Schwerd
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Klinikum der Universtität München, LMU München, München, Germany
| | - Hannes Hölz
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Klinikum der Universtität München, LMU München, München, Germany
| | - Christiane Sokollik
- Abteilung Pädiatrische Gastroenterologie, Hepatologie und Ernährung, Universitätsklinik für Kinderheilkunde, Inselspital, Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Lukas Alfons Konrad
- Klinik für Neonatologie und allgemeine Pädiatrie, Gesundheit Nordhessen, Klinikum Kassel, Kassel, Germany
| | - Alexander Jordan
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Mannheim, Mannheim, Germany
| | | | - Anjona Schmidt-Choudhury
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum der Ruhr-Universität Bochum, Bochum, Germany
| | | | - Rüdiger Adam
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Mannheim, Mannheim, Germany
| |
Collapse
|
32
|
Hu C, Patil Y, Gong D, Yu T, Li J, Wu L, Liu X, Yu Z, Ma X, Yong Y, Chen J, Gooneratne R, Ju X. Heat Stress-Induced Dysbiosis of Porcine Colon Microbiota Plays a Role in Intestinal Damage: A Fecal Microbiota Profile. Front Vet Sci 2022; 9:686902. [PMID: 35300220 PMCID: PMC8921775 DOI: 10.3389/fvets.2022.686902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
The pathological mechanisms of gastrointestinal disorders, including inflammatory bowel disease (IBD), in pigs are poorly understood. We report the induction of intestinal inflammation in heat-stressed (HS) pigs, fecal microbiota transplantation from pigs to mice, and explain the role of microorganisms in IBD. 24 adult pigs were subjected to HS (34 ± 1 °C; 75–85% relative humidity for 24h) while 24 control pigs (CP) were kept at 25 ± 3°C and the same humidity. Pigs were sacrificed on days 1, 7, 14, 21. Colonic content microbiome analyses were conducted. Pseudo-germ-free mice were fed by gavage with fecal microbiota from HS-pigs and CP to induce pig-like responses in mice. From 7 d, HS-pigs exhibited fever and diarrhea, and significantly lower colonic mucosal thickness, crypt depth/width, and goblet cell number. Compared with each control group, the concentration of cortisol in the peripheral blood of HS pigs gradually increased, significantly so on days 7, 14, and 21 (P < 0.01). While the concentration of LPS in HS pigs' peripheral blood was significantly higher on days 7, 14 (P < 0.01), and 21 (P < 0.05) compared with that of the control group. The colonic microbiome composition of HS-pigs was different to that of CP. By day 14, opportunistic pathogens (e.g., Campylobacterales) had increased in HS-pigs. The composition of the colonic microbiome in mice administered feces from HS-pigs was different from those receiving CP feces. Bacteroides were significantly diminished, Akkermansia were significantly increased, and intestinal damage and goblet cell numbers were higher in mice that received HS-pig feces. Moreover, we verified the relevance of differences in the microbiota of the colon among treatments. Heat stress promotes changes in gut microbiome composition, which can affect the colonic microbial structure of mice through fecal microbiota transplantation; the molecular mechanisms require further investigation. This study enhanced our understanding of stress-induced inflammation in the colon and the increase in diarrhea in mammals subjected to prolonged HS. Our results provide useful information for preventing or ameliorating deficits in pig production caused by prolonged exposure to high temperatures.
Collapse
Affiliation(s)
- Canying Hu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yadnyavalkya Patil
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Dongliang Gong
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Tianyue Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Junyu Li
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Xinbing Ma
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
| | - Jinjun Chen
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Xianghong Ju
- Department of Animal Science, Agricultural College, Guangdong Ocean University, Zhanjiang, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
- Department of Veterinary Medicine, College of Agriculture, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Xianghong Ju
| |
Collapse
|
33
|
Jiang G, Zhang Y, Gan G, Li W, Wan W, Jiang Y, Yang T, Zhang Y, Xu Y, Wang Y, Shen Q, Wei Z, Dini-Andreote F. Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation. ISME COMMUNICATIONS 2022; 2:10. [PMID: 37938685 PMCID: PMC9723603 DOI: 10.1038/s43705-022-00094-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 04/20/2023]
Abstract
The development of strategies for effectively manipulating and engineering beneficial plant-associated microbiomes is a major challenge in microbial ecology. In this sense, the efficacy and potential implications of rhizosphere microbiome transplant (RMT) in plant disease management have only scarcely been explored in the literature. Here, we initially investigated potential differences in rhizosphere microbiomes of 12 Solanaceae eggplant varieties and accessed their level of resistance promoted against bacterial wilt disease caused by the pathogen Ralstonia solanacearum, in a 3-year field trial. We elected 6 resistant microbiomes and further tested the broad feasibility of using RMT from these donor varieties to a susceptible model Solanaceae tomato variety MicroTom. Overall, we found the rhizosphere microbiome of resistant varieties to enrich for distinct and specific bacterial taxa, of which some displayed significant associations with the disease suppression. Quantification of the RMT efficacy using source tracking analysis revealed more than 60% of the donor microbial communities to successfully colonize and establish in the rhizosphere of recipient plants. RTM from distinct resistant donors resulted in different levels of wilt disease suppression, reaching up to 47% of reduction in disease incidence. Last, we provide a culture-dependent validation of potential bacterial taxa associated with antagonistic interactions with the pathogen, thus contributing to a better understanding of the potential mechanism associated with the disease suppression. Our study shows RMT from appropriate resistant donors to be a promising tool to effectively modulate protective microbiomes and promote plant health. Together we advocate for future studies aiming at understanding the ecological processes and mechanisms mediating rates of coalescence between donor and recipient microbiomes in the plant rhizosphere.
Collapse
Affiliation(s)
- Gaofei Jiang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yuling Zhang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wen Wan
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tianjie Yang
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yong Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yangchun Xu
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Qirong Shen
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- Laboratory of Bio-interactions and Crop Health, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
34
|
Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010084. [PMID: 35056392 PMCID: PMC8780626 DOI: 10.3390/medicina58010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota plays an important role in maintaining human health, and its alteration is now associated with the development of various gastrointestinal (ulcerative colitis, irritable bowel syndrome, constipation, etc.) and extraintestinal diseases, such as cancer, metabolic syndrome, neuropsychiatric diseases. In this context, it is not surprising that gut microbiota modification methods may constitute a therapy whose potential has not yet been fully investigated. In this regard, the most interesting method is thought to be fecal microbiota transplantation, which consists of the simultaneous replacement of the intestinal microbiota of a sick recipient with fecal material from a healthy donor. This review summarizes the most interesting findings on the application of fecal microbiota transplantation in gastrointestinal and extraintestinal pathologies.
Collapse
|
35
|
Zhang Y, Xue X, Su S, Zhou H, Jin Y, Shi Y, Lin J, Wang J, Li X, Yang G, Philpott JR, Liang J. Patients and physicians' attitudes change on fecal microbiota transplantation for inflammatory bowel disease over the past 3 years. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1619. [PMID: 34926663 PMCID: PMC8640917 DOI: 10.21037/atm-21-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background In the past 3 years, increasing data and experience has become available regarding fecal microbiota transplantation (FMT) for the treatment of inflammatory bowel disease (IBD). However, how this increase in knowledge has impacted the attitudes of patients and physicians is largely unknown. This study aimed to investigate the change of patients' and physicians' attitudes towards FMT for IBD treatment. Methods Questionnaires for patient and physician attitude on FMT for IBD were pilot-tested and developed. Patients and physicians from the same groups completed the questionnaires in 2016 and 2019, separately. The attitudes towards efficacy, adverse events, and methodological features of FMT in 2016 were compared with those in 2019. Results A total of 1,255 questionnaires from 486 patients and 769 physicians were collected. Over the 3 years, an increased number of patients had heard of FMT and had similarly positive opinions towards using FMT for IBD therapy. Additionally, patients retained the tendency to overestimate the efficacy. The physicians' perceptions became closer to the findings reported in recent studies in 2019 compared with 2016. However, only a minority of patients and physicians understood the frequency required of FMT courses for induction of clinical remission. In particular, both patients and physicians underestimated the risk of mild adverse events and IBD flare. Conclusions Patients are receptive towards FMT as therapy for IBD but opportunity remains to improve understanding of benefit and potential risks. Physicians also demonstrated knowledge gaps in use of this therapy. Aligning patient preference and physician knowledge gap will lead to better education and facilitate the development of decision-making guidelines.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xianmin Xue
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - He Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Junchao Lin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Jiayao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xiaofei Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | | | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| |
Collapse
|
36
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
37
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
38
|
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; 18:503-513. [PMID: 33907321 DOI: 10.1038/s41575-021-00441-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Faecal microbiota transplantation (FMT) is a promising therapy for chronic diseases associated with gut microbiota alterations. FMT cures 90% of recurrent Clostridioides difficile infections. However, in complex diseases, such as inflammatory bowel disease, irritable bowel syndrome and metabolic syndrome, its efficacy remains variable. It is accepted that donor selection and sample administration are key determinants of FMT success, yet little is known about the recipient factors that affect it. In this Perspective, we discuss the effects of recipient parameters, such as genetics, immunity, microbiota and lifestyle, on donor microbiota engraftment and clinical efficacy. Emerging evidence supports the possibility that controlling inflammation in the recipient intestine might facilitate engraftment by reducing host immune system pressure on the newly transferred microbiota. Deciphering FMT engraftment rules and developing novel therapeutic strategies are priorities to alleviate the burden of chronic diseases associated with an altered gut microbiota such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Camille Danne
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France.,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France. .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France. .,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France. .,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France. .,AP-HP Fecal Microbiota transplantation Center, Saint Antoine Hospital, Paris, France.
| |
Collapse
|
39
|
Monaghan TM, Seekatz AM, Markham NO, Yau TO, Hatziapostolou M, Jilani T, Christodoulou N, Roach B, Birli E, Pomenya O, Louie T, Lacy DB, Kim P, Lee C, Kao D, Polytarchou C. Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection Associates With Functional Alterations in Circulating microRNAs. Gastroenterology 2021; 161:255-270.e4. [PMID: 33844988 PMCID: PMC8579492 DOI: 10.1053/j.gastro.2021.03.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS The molecular mechanisms underlying successful fecal microbiota transplantation (FMT) for recurrent Clostridioides difficile infection (rCDI) remain poorly understood. The primary objective of this study was to characterize alterations in microRNAs (miRs) following FMT for rCDI. METHODS Sera from 2 prospective multicenter randomized controlled trials were analyzed for miRNA levels with the use of the Nanostring nCounter platform and quantitative reverse-transcription (RT) polymerase chain reaction (PCR). In addition, rCDI-FMT and toxin-treated animals and ex vivo human colonoids were used to compare intestinal tissue and circulating miRs. miR inflammatory gene targets in colonic epithelial and peripheral blood mononuclear cells were evaluated by quantitative PCR (qPCR) and 3'UTR reporter assays. Colonic epithelial cells were used for mechanistic, cytoskeleton, cell growth, and apoptosis studies. RESULTS miRNA profiling revealed up-regulation of 64 circulating miRs 4 and 12 weeks after FMT compared with screening, of which the top 6 were validated in the discovery cohort by means of RT-qPCR. In a murine model of relapsing-CDI, RT-qPCR analyses of sera and cecal RNA extracts demonstrated suppression of these miRs, an effect reversed by FMT. In mouse colon and human colonoids, C difficile toxin B (TcdB) mediated the suppressive effects of CDI on miRs. CDI dysregulated DROSHA, an effect reversed by FMT. Correlation analyses, qPCR ,and 3'UTR reporter assays revealed that miR-23a, miR-150, miR-26b, and miR-28 target directly the 3'UTRs of IL12B, IL18, FGF21, and TNFRSF9, respectively. miR-23a and miR-150 demonstrated cytoprotective effects against TcdB. CONCLUSIONS These results provide novel and provocative evidence that modulation of the gut microbiome via FMT induces alterations in circulating and intestinal tissue miRs. These findings contribute to a greater understanding of the molecular mechanisms underlying FMT and identify new potential targets for therapeutic intervention in rCDI.
Collapse
Affiliation(s)
- Tanya M Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
| | - Anna M Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Nicholas O Markham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria Hatziapostolou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Tahseen Jilani
- Advanced Data Analysis Centre, School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Niki Christodoulou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Brandi Roach
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eleni Birli
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Odette Pomenya
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Thomas Louie
- Department of Microbiology and infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - D Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Peter Kim
- Department of Mathematics and Statistics, University of Guelph, Ontario, Canada
| | - Christine Lee
- Vancouver Island Health Authority, Victoria, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dina Kao
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, Centre for Health Aging and Understanding Disease, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
40
|
van Lier YF, Davids M, Haverkate NJE, de Groot PF, Donker ML, Meijer E, Heubel-Moenen FCJI, Nur E, Zeerleder SS, Nieuwdorp M, Blom B, Hazenberg MD. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med 2021; 12:12/556/eaaz8926. [PMID: 32801142 DOI: 10.1126/scitranslmed.aaz8926] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Disruption of the intestinal microbiota occurs frequently in allogeneic hematopoietic cell transplantation (allo-HCT) recipients and predisposes them to development of graft-versus-host disease (GvHD). In a prospective, single-center, single-arm study, we investigated the effect of donor fecal microbiota transplantation (FMT) on symptoms of steroid-refractory or steroid-dependent, acute or late-onset acute intestinal GvHD in 15 individuals who had undergone allo-HCT. Study participants received a fecal suspension from an unrelated healthy donor via nasoduodenal infusion. Donor FMT was well tolerated, and infection-related adverse events did not seem to be related to the FMT procedure. In 10 of 15 study participants, a complete clinical response was observed within 1 month after FMT, without additional interventions to alleviate GvHD symptoms. This response was accompanied by an increase in gut microbial α-diversity, a partial engraftment of donor bacterial species, and increased abundance of butyrate-producing bacteria, including Clostridiales and Blautia species. In 6 of the 10 responding donor FMT recipients, immunosuppressant drug therapy was successfully tapered. Durable remission of steroid-refractory or steroid-dependent GvHD after donor FMT was associated with improved survival at 24 weeks after donor FMT. This study highlights the potential of donor FMT as a treatment for steroid-refractory or steroid-dependent GvHD, but larger clinical trials are needed to confirm the safety and efficacy of this procedure.
Collapse
Affiliation(s)
- Yannouck F van Lier
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Mark Davids
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Nienke J E Haverkate
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Pieter F de Groot
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Marjolein L Donker
- Department of Hematology, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands
| | - Ellen Meijer
- Department of Hematology, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands
| | | | - Erfan Nur
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Sacha S Zeerleder
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Immunopathology, Sanquin Research, 1066 CX Amsterdam, Netherlands.,Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.,Department for BioMedical Research, University of Bern, 3010 Bern, Switzerland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Diabetes Center, Department of Internal Medicine, Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands.,Institute for Cardiovascular Research (ICaR), Amsterdam UMC, location VUMC, 1081 HV Amsterdam, Netherlands.,Wallenberg Laboratory, University of Gothenburg, SE-413 45 Goteborg, Sweden
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands. .,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, location AMC, 1105 AZ Amsterdam, Netherlands.,Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, Netherlands
| |
Collapse
|
41
|
Shi Z, Zhang M. Emerging Roles for the Gut Microbiome in Lymphoid Neoplasms. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211024197. [PMID: 34211309 PMCID: PMC8216388 DOI: 10.1177/11795549211024197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphoid neoplasms encompass a heterogeneous group of malignancies with a predilection for immunocompromised individuals, and the disease burden of lymphoid neoplasms has been rising globally over the last decade. At the same time, mounting studies delineated a crucial role of the gut microbiome in the aetiopathogenesis of various diseases. Orchestrated interactions between myriad microorganisms and the gastrointestinal mucosa establish a defensive barrier for a range of physiological processes, especially immunity and metabolism. These findings provide new perspectives to harness our knowledge of the gut microbiota for preclinical and clinical studies of lymphoma. Here, we review recent findings that support a role for the gut microbiota in the development of lymphoid neoplasms and pinpoint relevant molecular mechanisms. Accordingly, we propose the microbiota-gut-lymphoma axis as a promising target for clinical translation, including auxiliary diagnosis, novel prevention and treatment strategies, and predicting clinical outcomes and treatment-related adverse effects of the disease in the future. This review will reveal a fascinating avenue of research in the microbiota-mediated lymphoma field.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| |
Collapse
|
42
|
Goeser F, Sifft B, Stein-Thoeringer C, Farowski F, Strassburg CP, Brossart P, Higgins PG, Scheid C, Wolf D, Holderried TAW, Vehreschild MJGT, Cruz Aguilar MR. Fecal microbiota transfer for refractory intestinal graft-versus-host disease - Experience from two German tertiary centers. Eur J Haematol 2021; 107:229-245. [PMID: 33934412 DOI: 10.1111/ejh.13642] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Steroid refractory graft-vs-host disease (sr-GvHD) represents a challenging complication after allogeneic hematopoietic cell transplantation (allo-HCT). Intestinal microbiota (IM) diversity and dysbiosis were identified as influencing factors for the development of acute GvHD. Fecal microbiota transfer (FMT) is hypothesized to restore IM dysbiosis, but there is limited knowledge about the significance of FMT in the treatment of sr-GvHD. OBJECTIVES We studied the effects of FMT on sr-GvHD in allo-HCT patients from two German tertiary clinical centers (n = 11 patients; period: March 2017 until July 2019). To assess safety and clinical efficacy, we analyzed clinical data pre- and post-FMT (day -14 to +30 relative to FMT). Moreover, IM were analyzed in donor samples and in a subset of patients pre- and post-FMT by 16S rRNA sequencing. RESULTS Post-FMT, we observed no intervention-associated, systemic inflammatory responses and only minor side effects (5/11 patients: abdominal pain and transformation of peristalsis-each 3/11 and vomiting-1/11). Stool frequencies and volumes were significantly reduced [pre- vs post-FMT (d14): P < .05, respectively] as well as clear attenuation regarding both grading and staging of sr-GvHD was present upon FMT. Moreover, IM analyses revealed an increase of alpha diversity as well as a compositional shifts toward the donor post-FMT. CONCLUSIONS In our study, we observed positive effects on sr-GVHD after FMT without the occurrence of major adverse events. Although these findings are in line with published data on beneficial effects of FMT in sr-GvHD, further randomized clinical studies are urgently needed to better define the clinical validity including mode of action.
Collapse
Affiliation(s)
- Felix Goeser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany
| | - Barbara Sifft
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | | | - Fedja Farowski
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Peter Brossart
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | - Paul G Higgins
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Christoph Scheid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Dominik Wolf
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany.,UKIM 5, Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Tobias A W Holderried
- Department of Internal Medicine III, Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, Bonn, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marta Rebeca Cruz Aguilar
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,German Clinical Microbiome Study Group (GCMSG), Germany.,Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Estrela S, Sánchez Á, Rebolleda-Gómez M. Multi-Replicated Enrichment Communities as a Model System in Microbial Ecology. Front Microbiol 2021; 12:657467. [PMID: 33897672 PMCID: PMC8062719 DOI: 10.3389/fmicb.2021.657467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Recent advances in robotics and affordable genomic sequencing technologies have made it possible to establish and quantitatively track the assembly of enrichment communities in high-throughput. By conducting community assembly experiments in up to thousands of synthetic habitats, where the extrinsic sources of variation among replicates can be controlled, we can now study the reproducibility and predictability of microbial community assembly at different levels of organization, and its relationship with nutrient composition and other ecological drivers. Through a dialog with mathematical models, high-throughput enrichment communities are bringing us closer to the goal of developing a quantitative predictive theory of microbial community assembly. In this short review, we present an overview of recent research on this growing field, highlighting the connection between theory and experiments and suggesting directions for future work.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Álvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | |
Collapse
|
44
|
Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18:4-17. [PMID: 33318628 PMCID: PMC7852541 DOI: 10.1038/s41423-020-00592-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is a complex and plastic consortium of microorganisms that are intricately connected with human physiology. The liver is a central immunological organ that is particularly enriched in innate immune cells and constantly exposed to circulating nutrients and endotoxins derived from the gut microbiota. The delicate interaction between the gut and liver prevents accidental immune activation against otherwise harmless antigens. Work on the interplay between the gut microbiota and liver has assisted in understanding the pathophysiology of various liver diseases. Of immense importance is the step from high-throughput sequencing (correlation) to mechanistic studies (causality) and therapeutic intervention. Here, we review the gut microbiota, liver immunology, and the interaction between the gut and liver. In addition, the impairment in the gut-liver axis found in various liver diseases is reviewed here, with an emphasis on alcohol-associated liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), and autoimmune liver disease (AILD). On the basis of growing evidence from these preclinical studies, we propose that the gut-liver axis paves the way for targeted therapeutic modalities for liver diseases.
Collapse
Affiliation(s)
- Rui Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
45
|
Liu C, Huang S, Wu Z, Li T, Li N, Zhang B, Han D, Wang S, Zhao J, Wang J. Cohousing-mediated microbiota transfer from milk bioactive components-dosed mice ameliorate colitis by remodeling colonic mucus barrier and lamina propria macrophages. Gut Microbes 2021; 13:1-23. [PMID: 33789528 PMCID: PMC8018355 DOI: 10.1080/19490976.2021.1903826] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 02/08/2023] Open
Abstract
Human milk oligosaccharides (HMOs) and milk fat globule membrane (MFGM) are highly abundant in breast milk, and have been shown to exhibit potent immunomodulatory effects. Yet, their role in the gut microbiota modulation in relation to colitis remains understudied. Since the mixtures of fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) perfectly mimic the properties and functions of HMOs, the combination of MFGM, FOS, and GOS (CMFG) has therefore been developed and used in this study. Here, CMFG were pre-fed to mice for three weeks to investigate its preventive effect on dextran sodium sulfate (DSS) induced colitis. Moreover, CMFG-treated and vehicle-treated mice were cohoused to further elucidate the preventive role of the gut microbiota transfer in colitis. At the end of the study, 16S rDNA gene amplicon sequencing, short-chain fatty acids (SCFAs) profiling, transcriptome sequencing, histological analysis, immunofluorescence staining and flow cytometry analysis were conducted. Our results showed that CMFG pre-supplementation alleviated DSS-induced colitis as evidenced by decreased disease activity index (DAI) score, reduced body weight loss, increased colon length and mucin secretion, and ameliorated intestinal damage. Moreover, CMFG reduced macrophages in the colon, resulting in decreased levels of IL-1β, IL-6, IL-8, TNF-α, and MPO in the colon and circulation. Furthermore, CMFG altered the gut microbiota composition and promoted SCFAs production in DSS-induced colitis. Markedly, the cohousing study revealed that transfer of gut microbiota from CMFG-treated mice largely improved the DSS-induced colitis as evidenced by reduced intestinal damage and decreased macrophages infiltration in the colon. Moreover, transfer of the gut microbiota from CMFG-treated mice protected against DSS-induced gut microbiota dysbiosis and promotes SCFAs production, which showed to be associated with colitis amelioration. Collectively, these findings demonstrate the beneficial role of CMFG in the gastrointestinal diseases, and further provide evidence for the rational design of effective prophylactic functional diets in both animals and humans.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shilan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:22-43. [PMID: 33291863 PMCID: PMC7820212 DOI: 10.3350/cmh.2020.0129] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with a prevalence that is increasing in parallel with the global rise in obesity and type 2 diabetes mellitus. The pathogenesis of NAFLD is complex and multifactorial, involving environmental, genetic and metabolic factors. The role of the diet and the gut microbiome is gaining interest as a significant factor in NAFLD pathogenesis. Dietary factors induce alterations in the composition of the gut microbiome (dysbiosis), commonly reflected by a reduction of the beneficial species and an increase in pathogenic microbiota. Due to the close relationship between the gut and liver, altering the gut microbiome can affect liver functions; promoting hepatic steatosis and inflammation. This review summarises the current evidence supporting an association between NAFLD and the gut microbiome and dietary factors. The review also explores potential underlying mechanisms underpinning these associations and whether manipulation of the gut microbiome is a potential therapeutic strategy to prevent or treat NAFLD.
Collapse
Affiliation(s)
- Erica Jennison
- Department of Chemical Pathology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Christopher D Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| |
Collapse
|
47
|
Gut mycobiome: A promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188489. [PMID: 33278512 DOI: 10.1016/j.bbcan.2020.188489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
The human gut is mainly habited by a staggering amount and abundance of bacteria as well as fungi. Gut dysbiosis is believed as a pivotal factor in colorectal cancer (CRC) development. Lately increasing evidence from animal or clinical studies suggested that fungal disturbance also contributed to CRC development. This review summarized the current status of fungal dysbiosis in CRC and highlighted the potential tumorigenic mechanisms of fungi. Then the fungal markers and some therapeutic strategies for CRC were discussed. It would provide a better understanding of the correlation of mycobiota and CRC, and modulating fungal community would be a promising target against CRC.
Collapse
|
48
|
Duan H, Yu L, Tian F, Zhai Q, Fan L, Chen W. Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Crit Rev Food Sci Nutr 2020; 62:1427-1452. [PMID: 33198506 DOI: 10.1080/10408398.2020.1843396] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The oral antibiotic therapies administered widely to people and animals can cause gut dysbiosis and barrier disruption inevitably. Increasing attention has been directed toward antibiotic-induced gut dysbiosis, which involves a loss of diversity, changes in the abundances of certain taxa and consequent effects on their metabolic capacity, and the spread of antibiotic-resistant bacterial strains. Treatment with beta-lactam, glycopeptide, and macrolide antibiotics is associated with the depletion of beneficial commensal bacteria in the genera Bifidobacterium and Lactobacillus. The gut microbiota is a reservoir for antibiotic resistance genes, the prevalence of which increases sharply after antibiotic ingestion. The intestinal barrier, which comprises secretory, physical, and immunological barriers, is also a target of antibiotics. Antibiotic induced changes in the gut microbiota composition could induce weakening of the gut barrier through changes in mucin, cytokine, and antimicrobial peptide production by intestinal epithelial cells. Reports have indicated that dietary interventions involving prebiotics, probiotics, omega-3 fatty acids, and butyrate supplementation, as well as fecal microbiota transplantation, can alleviate antibiotic-induced gut dysbiosis and barrier injuries. This review summarizes the characteristics of antibiotic-associated gut dysbiosis and barrier disruption, as well as the strategies for alleviating this condition. This information is intended to provide a foundation for the exploration of safer, more efficient, and affordable strategies to prevent or relieve antibiotic-induced gut injuries.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
49
|
Abstract
In people, fecal microbiota transplantation is recognized as the best treatment modality for recurrent Clostridioides difficile infection in people, and its value is currently investigated in the treatment of other diseases associated with an abnormal gut microbiome. In dogs, intestinal dysbiosis has been documented in many acute and chronic digestive diseases as well as in diseases of other organ systems. There are only few published studies evaluating the benefits of fecal microbiota transplantation (FMT) in canine gastrointestinal disorders. They provide evidence that FMT may be beneficial in the treatment of acute intestinal diseases and hope that the technique might also be useful for the management of chronic enteropathies.
Collapse
|
50
|
Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R, Xu JY. Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol 2020; 26:6141-6162. [PMID: 33177790 PMCID: PMC7596643 DOI: 10.3748/wjg.v26.i40.6141] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The gut-brain axis is a bidirectional information interaction system between the central nervous system (CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex network with the enteric nervous system, the autonomic nervous system, and the neuroendocrine and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. Due to the close anatomical and functional interaction of the gut-liver axis, the microbiota-gut-liver-brain axis has attracted increased attention in recent years. The microbiota-gut-liver-brain axis mediates the occurrence and development of many diseases, and it offers a direction for the research of disease treatment. In this review, we mainly discuss the role of the gut microbiota in the irritable bowel syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the gut-liver-brain axis, and the focus is to clarify the potential mechanisms and treatment of digestive diseases based on the further understanding of the microbiota-gut- liver-brain axis.
Collapse
Affiliation(s)
- Jian-Hong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Xiao-Xu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Wei-Xi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yan-Xia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|