1
|
Hagen SJ. Gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2024; 40:477-483. [PMID: 38935320 DOI: 10.1097/mog.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS Studies on acute superficial lesions have been sparse in the past year, with more focus given to novel mechanisms of mucosal protection, and the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury. For this, adenoviral therapy showed organ specific targeting with mRNA and protein expression of effectors to protect against mucosal injury and ulceration. A large database of plant-based agents known to protect against injury and ulceration was published, along with studies using plant-based compounds delivered with alginates, polysaccharide/gel floating rafts, or incorporated into nanoparticles or green carbon dots to improve targeting and retention at the ulcerated lesion. With RNA technology developing rapidly, particularly single-cell RNA sequencing, important and novel data was forthcoming on mucosal regeneration. In particular, the role of interleukin-17 hub proteins in mucosal healing was highlighted. The presence and role of injury reserve cells was determined, as was the composition of ligand gradients for cell differentiation in both stomach and duodenum. The role of amphiregulin in parietal cell differentiation from lineage-restricted stem cells and the Yap1 gene signature in metaplasia vs. healing ulcers were of particular importance. Additionally, studies unveiled the important role of mesenchymal stromal cells in differentiation and repair mechanisms, in Muse cells as an exciting new therapy for mucosal repair after injury, and the role of sympathetic neurons in activating the immune system to regulate mucosal repair mechanisms. SUMMARY Recent studies highlight novel mechanisms that promote mucosal regeneration after injury of the gastroduodenal mucosa.
Collapse
Affiliation(s)
- Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lee SH, Won Y, Gibbs D, Caldwell B, Goldstein A, Choi E, Goldenring JR. Amphiregulin Switches Progenitor Cell Fate for Lineage Commitment During Gastric Mucosal Regeneration. Gastroenterology 2024; 167:469-484. [PMID: 38492892 PMCID: PMC11260537 DOI: 10.1053/j.gastro.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND & AIMS Isthmic progenitors, tissue-specific stem cells in the stomach corpus, maintain mucosal homeostasis by balancing between proliferation and differentiation to gastric epithelial lineages. The progenitor cells rapidly adopt an active state in response to mucosal injury. However, it remains unclear how the isthmic progenitor cell niche is controlled during the regeneration of damaged epithelium. METHODS We recapitulated tissue recovery process after acute mucosal injury in the mouse stomach. Bromodeoxyuridine incorporation was used to trace newly generated cells during the injury and recovery phases. To define the epithelial lineage commitment process during recovery, we performed single-cell RNA-sequencing on epithelial cells from the mouse stomachs. We validated the effects of amphiregulin (AREG) on mucosal recovery, using recombinant AREG treatment or AREG-deficient mice. RESULTS We determined that an epidermal growth factor receptor ligand, AREG, can control progenitor cell lineage commitment. Based on the identification of lineage-committed subpopulations in the corpus epithelium through single-cell RNA-sequencing and bromodeoxyuridine incorporation, we showed that isthmic progenitors mainly transition into short-lived surface cell lineages but are less frequently committed to long-lived parietal cell lineages in homeostasis. However, mucosal regeneration after damage directs the lineage commitment of isthmic progenitors towards parietal cell lineages. During recovery, AREG treatment promoted repopulation with parietal cells, while suppressing surface cell commitment of progenitors. In contrast, transforming growth factor-α did not alter parietal cell regeneration, but did induce expansion of surface cell populations. AREG deficiency impairs parietal cell regeneration but increases surface cell commitment. CONCLUSIONS These data demonstrate that different epidermal growth factor receptor ligands can distinctly regulate isthmic progenitor-driven mucosal regeneration and lineage commitment.
Collapse
Affiliation(s)
- Su-Hyung Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Yoonkyung Won
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gibbs
- Institute for Systems Biology, Seattle, Washington
| | - Brianna Caldwell
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
3
|
Arimura S, To S, Mills JC. Changing Fate: How EGFRs "Pit" Cell Versus Cell in the Stomach. Gastroenterology 2024; 167:441-442. [PMID: 38663820 DOI: 10.1053/j.gastro.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Affiliation(s)
- Sumimasa Arimura
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sarah To
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jason C Mills
- Section of Gastroenterology & Hepatology, Department of Medicine, Houston, Texas; Department of Pathology & Immunology, Houston, Texas; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
4
|
Cho CJ, Brown JW, Mills JC. Origins of cancer: ain't it just mature cells misbehaving? EMBO J 2024; 43:2530-2551. [PMID: 38773319 PMCID: PMC11217308 DOI: 10.1038/s44318-024-00099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 05/23/2024] Open
Abstract
A pervasive view is that undifferentiated stem cells are alone responsible for generating all other cells and are the origins of cancer. However, emerging evidence demonstrates fully differentiated cells are plastic, can be coaxed to proliferate, and also play essential roles in tissue maintenance, regeneration, and tumorigenesis. Here, we review the mechanisms governing how differentiated cells become cancer cells. First, we examine the unique characteristics of differentiated cell division, focusing on why differentiated cells are more susceptible than stem cells to accumulating mutations. Next, we investigate why the evolution of multicellularity in animals likely required plastic differentiated cells that maintain the capacity to return to the cell cycle and required the tumor suppressor p53. Finally, we examine an example of an evolutionarily conserved program for the plasticity of differentiated cells, paligenosis, which helps explain the origins of cancers that arise in adults. Altogether, we highlight new perspectives for understanding the development of cancer and new strategies for preventing carcinogenic cellular transformations from occurring.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Adkins-Threats M, Arimura S, Huang YZ, Divenko M, To S, Mao H, Zeng Y, Hwang JY, Burclaff JR, Jain S, Mills JC. Metabolic regulator ERRγ governs gastric stem cell differentiation into acid-secreting parietal cells. Cell Stem Cell 2024; 31:886-903.e8. [PMID: 38733994 PMCID: PMC11162331 DOI: 10.1016/j.stem.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Parietal cells (PCs) produce gastric acid to kill pathogens and aid digestion. Dysregulated PC census is common in disease, yet how PCs differentiate is unclear. Here, we identify the PC progenitors arising from isthmal stem cells, using mouse models and human gastric cells, and show that they preferentially express cell-metabolism regulator and orphan nuclear receptor Estrogen-related receptor gamma (Esrrg, encoding ERRγ). Esrrg expression facilitated the tracking of stepwise molecular, cellular, and ultrastructural stages of PC differentiation. EsrrgP2ACreERT2 lineage tracing revealed that Esrrg expression commits progenitors to differentiate into mature PCs. scRNA-seq indicated the earliest Esrrg+ PC progenitors preferentially express SMAD4 and SP1 transcriptional targets and the GTPases regulating acid-secretion signal transduction. As progenitors matured, ERRγ-dependent metabolic transcripts predominated. Organoid and mouse studies validated the requirement of ERRγ for PC differentiation. Our work chronicles stem cell differentiation along a single lineage in vivo and suggests ERRγ as a therapeutic target for PC-related disorders.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Division of Biomedical and Biological Sciences, Washington University, St. Louis, MO 63130, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sumimasa Arimura
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita Divenko
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah To
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Heather Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenie Y Hwang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, TX 78249, USA
| | - Joseph R Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Shilpa Jain
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Miao ZF, Sun JX, Huang XZ, Bai S, Pang MJ, Li JY, Chen HY, Tong QY, Ye SY, Wang XY, Hu XH, Li JY, Zou JW, Xu W, Yang JH, Lu X, Mills JC, Wang ZN. Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway. Dev Cell 2024; 59:1175-1191.e7. [PMID: 38521055 DOI: 10.1016/j.devcel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/07/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China.
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Shi Bai
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jia-Yi Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Han-Yu Chen
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Shi-Yu Ye
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jing-Ying Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jin-Wei Zou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Wen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jun-Hao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Xi Lu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China
| | - Jason C Mills
- Section of Gastroenterology & Hepatology, Department of Medicine, Departments of Pathology & Immunology, Molecular and Cellular Biology, Baylor College of Medicine, 535E Anderson-Jones Building, One Baylor Plaza, Houston, TX, USA.
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Won Y, Jang B, Lee SH, Reyzer ML, Presentation KS, Kim H, Caldwell B, Zhang C, Lee HS, Lee C, Trinh VQ, Tan MCB, Kim K, Caprioli RM, Choi E. Oncogenic Fatty Acid Metabolism Rewires Energy Supply Chain in Gastric Carcinogenesis. Gastroenterology 2024; 166:772-786.e14. [PMID: 38272100 PMCID: PMC11040571 DOI: 10.1053/j.gastro.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND & AIMS Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Republic of Korea
| | - Su-Hyung Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Kimberly S Presentation
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hye Seung Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vincent Q Trinh
- The Digital Histology and Advanced Pathology Research, The Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal, Montréal, Québec, Canada
| | - Marcus C B Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
8
|
Liu L, Fan XH, Tang XD. Revolutionizing Gastric Cancer Prevention: Novel Insights on Gastric Mucosal Inflammation-Cancer Transformation and Chinese Medicine. Chin J Integr Med 2024:10.1007/s11655-024-3806-5. [PMID: 38676828 DOI: 10.1007/s11655-024-3806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 04/29/2024]
Abstract
The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Hui Fan
- School of Pharmacy, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang Province, 314100, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
9
|
Sohn Y, Flores Semyonov B, El-Mekkoussi H, Wright CVE, Kaestner KH, Choi E, Goldenring JR. Telocyte Recruitment During the Emergence of a Metaplastic Niche in the Stomach. Cell Mol Gastroenterol Hepatol 2024; 18:101347. [PMID: 38670488 PMCID: PMC11177065 DOI: 10.1016/j.jcmgh.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND & AIM Telocytes, a recently identified type of subepithelial interstitial cell, have garnered attention for their potential roles in tissue homeostasis and repair. However, their contribution to gastric metaplasia remains unexplored. This study elucidates the role of telocytes in the development of metaplasia within the gastric environment. METHODS To investigate the presence and behavior of telocytes during metaplastic transitions, we used drug-induced acute injury models (using DMP-777 or L635) and a genetically engineered mouse model (Mist1-Kras). Lineage tracing via the Foxl1-CreERT2;R26R-tdTomato mouse model was used to track telocyte migratory dynamics. Immunofluorescence staining was used to identify telocyte markers and evaluate their correlation with metaplasia-related changes. RESULTS We confirmed the existence of FOXL1+/PDGFRα+ double-positive telocytes in the stomach's isthmus region. As metaplasia developed, we observed a marked increase in the telocyte population. The distribution of telocytes expanded beyond the isthmus to encompass the entire gland and closely reflected the expansion of the proliferative cell zone. Rather than a general response to mucosal damage, the shift in telocyte distribution was associated with the establishment of a metaplastic cell niche at the gland base. Furthermore, lineage-tracing experiments highlighted the active recruitment of telocytes to the emerging metaplastic cell niche, and we observed expression of Wnt5a, Bmp4, and Bmp7 in PDGFRα+ telocytes. CONCLUSIONS These results suggest that telocytes contribute to the evolution of a gastric metaplasia niche. The dynamic behavior of these stromal cells, their responsiveness to metaplastic changes, and potential association with Wnt5a, Bmp4, and Bmp7 signaling emphasize the significance of telocytes in tissue adaptation and repair.
Collapse
Affiliation(s)
- Yoojin Sohn
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Blake Flores Semyonov
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilana El-Mekkoussi
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Program in Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
10
|
Salas-Escabillas DJ, Hoffman MT, Moore JS, Brender SM, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579982. [PMID: 38405804 PMCID: PMC10888969 DOI: 10.1101/2024.02.12.579982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplastic ducts that act as precursors of neoplasia and cancer. Tuft cells are solitary chemosensory cells not found in the normal pancreas but arise in metaplasia and neoplasia, diminishing as neoplastic lesions progress to carcinoma. Metaplastic tuft cells (mTCs) function to suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we have created a lineage tracing model that uses a tamoxifen-inducible tuft-cell specific Pou2f3CreERT/+ driver to induce transgene expression, including the lineage tracer tdTomato or the oncogene Myc. mTC lineage trace models of pancreatic neoplasia and carcinoma were used to follow mTC fate. We found that mTCs, in the carcinoma model, transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in PDA patients. Using conditional knock-out and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this Tuft-to-Neuroendocrine-Transition (TNT).
Collapse
Affiliation(s)
- Daniel J. Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Megan T. Hoffman
- Department of Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | - Dan Long
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | | | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | | | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI
- Cancer Biology Program, Wayne State University, Detroit, MI
| |
Collapse
|
11
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
12
|
Adkins-Threats M, Huang YZ, Mills JC. Highlights of how single-cell analyses are illuminating differentiation and disease in the gastric corpus. Am J Physiol Gastrointest Liver Physiol 2024; 326:G205-G215. [PMID: 38193187 PMCID: PMC11211037 DOI: 10.1152/ajpgi.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Single-cell RNA-sequencing (scRNA-seq) has emerged as a powerful technique to identify novel cell markers, developmental trajectories, and transcriptional changes during cell differentiation and disease onset and progression. In this review, we highlight recent scRNA-seq studies of the gastric corpus in both human and murine systems that have provided insight into gastric organogenesis, identified novel markers for the various gastric lineages during development and in adults, and revealed transcriptional changes during regeneration and tumorigenesis. Overall, by elucidating transcriptional states and fluctuations at the cellular level in healthy and disease contexts, scRNA-seq may lead to better, more personalized clinical treatments for disease progression.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Yang-Zhe Huang
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Graduate School of Biomedical Sciences, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, Texas, United States
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
13
|
Yu C, Qiu J, Xiong M, Ren B, Zhong M, Zhou S, Li Y, Zeng M, Song H. Protective effect of Lizhong Pill on nonsteroidal anti-inflammatory drug-induced gastric mucosal injury in rats: Possible involvement of TNF and IL-17 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116991. [PMID: 37536648 DOI: 10.1016/j.jep.2023.116991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine formula Lizhong Pill (LZP) and its herbal constituents are frequently utilized in Asian (China, Saudi Arabia, India, Japan, etc.) and some European (Russia, Sweden, UK, etc.) nations to treat various gastrointestinal ailments. AIM OF THE STUDY This study aimed to investigate the protective impact and potential mechanism of LZP against indomethacin (IND)-induced gastric mucosal injury in rats. MATERIAL AND METHODS Using a biochemical kit, we investigated the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) in rat serum, as well as pepsin in rat stomach tissue, using an IND-induced rat model of gastric mucosal injury. Various imaging tools, including HE staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were used to examine the gastric mucosa's surface morphology and ultrastructure. Furthermore, molecular docking was employed to predict the binding capacity of the primary bioactive components of LZP to the critical molecular protein targets in the IL-17 and TNF signaling pathways. At the same time, immunofluorescence was used to determine the protein expressions of CASP3, VCAM1, MAPK15, MMP3, IL-17RA, and TNFR1. RESULTS The present study demonstrates that LZP (3.75 and 7.50 g/kg) significantly reduces the gastric mucosal injury index induced by IND. This effect is evidenced by the improved morphology, surface, and structure of the gastric mucosa, as determined by HE, SEM, and TEM findings. Additionally, 3.75 and 7.50 g/kg LZP intervention significantly increased SOD and CAT contents and inhibited pepsin and GST activities. Molecular docking analysis revealed that the small molecular components of LZP can bind spontaneously to crucial proteins involved in the IL-17 and TNF signaling pathways, including MAPK15, MMP3, VCAM1, and CASP3. The immunofluorescence findings proved that LZP (3.75 and 7.50 g/kg) can inhibit the protein expressions of MAPK15, MMP3, VCAM1, CASP3, IL-17RA, and TNFR1. CONCLUSIONS Our investigation findings demonstrate that LZP can potentially ameliorate IND-induced damage to the gastric mucosa by inhibiting IL-17 and TNF signaling pathways. These results offer encouraging support for using alternative medicine to manage drug-induced gastric mucosal injury.
Collapse
Affiliation(s)
- Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jingyue Qiu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Sainan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Yuejun Li
- Department of Oncology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan Province, China.
| | - Meiyan Zeng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
14
|
Xiong M, Chen X, Wang H, Tang X, Wang Q, Li X, Ma H, Ye X. Combining transcriptomics and network pharmacology to reveal the mechanism of Zuojin capsule improving spasmolytic polypeptide-expressing metaplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117075. [PMID: 37625606 DOI: 10.1016/j.jep.2023.117075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spasmolytic polypeptide-expressing metaplasia (SPEM) is a gastric precancerous lesion (GPL). Zuojin capsule (ZJC), consisting of Coptis chinensis Franch. (Ranunculaceae, recorded in the Chinese Pharmacopoeia as Rhizoma Coptidis) and Tetradium ruticarpum (A.Juss.) T.G.Hartley (Rutaceae, recorded in the Chinese Pharmacopoeia as Fructus Evodiae), has long been used for various gastrointestinal diseases. However, the effect and mechanism of ZJC on SPEM remain unclear. AIM OF THE STUDY To clarify the role of ZJC in improving SPEM and study its mechanism. MATERIALS AND METHODS The study utilized SPEM mice induced by 250 mg/kg body weight of tamoxifen (TAM) to assess the effects of ZJC and investigate its possible mechanisms. A strategy of transcriptomics combined with network pharmacology was conducted to explore the targets and mechanisms of ZJC in improving SPEM. The "ingredients-target-pathway" network was constructed, and the possible connections were verified by RT-qPCR and Western blot assays. RESULTS ZJC significantly attenuated the abnormal serological indices, destruction of the gastric mucosal structure, hyperplasia of gastric pits, increased gastric mucus, massive secretion of CD44 and TFF2, oxyntic atrophy and massive proliferation of stem/progenitor cells in TAM-induced SPEM mice. Combined transcriptomics and network pharmacology analysis, 50 core targets of ZJC related to SPEM improvement were obtained. KEGG results showed that the core targets were significantly enriched in the cell cycle, and PI3K-AKT signaling pathway. The top-ranked targets according to PPI network analysis were CDK1, CCNB1, and CCNA2, which are also associated with cell cycle. Combined experiments demonstrated that ZJC can induce G2/M phase cycle arrest and inhibit TAM-induced malignant proliferation by regulating abnormal activation of cell cycle-related proteins such as CDK1, CCNB1, CCNA2 and PI3K-AKT signaling pathways. CONCLUSIONS ZJC may improve TAM-induced SPEM by inhibiting abnormal activation of cell cycle-related proteins (CDK1, CCNB1, CCNA2) and PI3K-AKT signaling pathway. This finding supports the use of ZJC, a famous traditional Chinese medicine compound, as a potential treatment for gastric precancerous lesions.
Collapse
Affiliation(s)
- Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Hongmei Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiang Tang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Qiaojiao Wang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xuegang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024; 31:7-24. [PMID: 38181752 PMCID: PMC10769195 DOI: 10.1016/j.stem.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.
Collapse
Affiliation(s)
- Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Hans Clevers
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| |
Collapse
|
16
|
Manieri E, Tie G, Malagola E, Seruggia D, Madha S, Maglieri A, Huang K, Fujiwara Y, Zhang K, Orkin SH, Wang TC, He R, McCarthy N, Shivdasani RA. Role of PDGFRA + cells and a CD55 + PDGFRA Lo fraction in the gastric mesenchymal niche. Nat Commun 2023; 14:7978. [PMID: 38042929 PMCID: PMC10693581 DOI: 10.1038/s41467-023-43619-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
PDGFRA-expressing mesenchyme supports intestinal stem cells. Stomach epithelia have related niche dependencies, but their enabling mesenchymal cell populations are unknown, in part because previous studies pooled the gastric antrum and corpus. Our high-resolution imaging, transcriptional profiling, and organoid assays identify regional subpopulations and supportive capacities of purified mouse corpus and antral PDGFRA+ cells. Sub-epithelial PDGFRAHi myofibroblasts are principal sources of BMP ligands and two molecularly distinct pools distribute asymmetrically along antral glands but together fail to support epithelial growth in vitro. In contrast, PDGFRALo CD55+ cells strategically positioned beneath gastric glands promote epithelial expansion in the absence of other cells or factors. This population encompasses a small fraction expressing the BMP antagonist Grem1. Although Grem1+ cell ablation in vivo impairs intestinal stem cells, gastric stem cells are spared, implying that CD55+ cell activity in epithelial self-renewal derives from other subpopulations. Our findings shed light on spatial, molecular, and functional organization of gastric mesenchyme and the spectrum of signaling sources for epithelial support.
Collapse
Affiliation(s)
- Elisa Manieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Davide Seruggia
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrianna Maglieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kun Huang
- Molecular Imaging Core and Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yuko Fujiwara
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Kevin Zhang
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stuart H Orkin
- Department of Hematology, Boston Children's Hospital, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Edelmuth RCL, Riascos MC, Al Asadi H, Greenberg JA, Miranda IC, Najah H, Crawford CV, Schnoll-Sussman FH, Finnerty BM, Fahey TJ, Zarnegar R. Gastric development of pancreatic acinar cell metaplasia after Vonoprazan therapy in rats. Surg Endosc 2023; 37:9366-9372. [PMID: 37644156 DOI: 10.1007/s00464-023-10371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Vonoprazan is a new acid-suppressing drug that received FDA approval in 2022. It reversibly inhibits gastric acid secretion by competing with the potassium ions on the luminal surface of the parietal cells (potassium-competitive acid blockers or P-CABs). Vonoprazan has been on the market for a short time and there are many clinical trials to support its clinical application. However, medical experience and comprehensive clinical data is still limited, especially on how and if, gastric histology is altered due to therapy. METHODS A 12-week experiment trial with 30 Wistar rats was to assess the presence of gastrointestinal morphologic abnormalities upon administration of omeprazole and vonoprazan. At six weeks of age, rats were randomly assigned to one of 5 groups: (1) saline as negative control group, (2) oral omeprazole (40 mg/kg), as positive control group, (3) oral omeprazole (40 mg/kg) for 4 weeks, proceeded by 8 weeks off omeprazole, (4) oral vonoprazan (4 mg/kg), as positive control group, and (5) oral vonoprazan (4 mg/kg) for 4 weeks, proceeded by 8 weeks off vonoprazan. RESULTS We identified non-inflammatory alterations characterized by parietal (oxyntic) cell loss and chief (zymogen) cell hyperplasia and replacement by pancreatic acinar cell metaplasia (PACM). No significant abnormalities were identified in any other tissues in the hepatobiliary and gastrointestinal tracts. CONCLUSION PACM has been reported in gastric mucosa, at the esophagogastric junction, at the distal esophagus, and in Barrett esophagus. However, the pathogenesis of this entity is still unclear. Whereas some authors have suggested that PACM is an acquired process others have raised the possibility of PACM being congenital in nature. Our results suggest that the duration of vonoprazan administration at a dose of 4 mg/kg plays an important role in the development of PACM.
Collapse
Affiliation(s)
- Rodrigo C L Edelmuth
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Maria Cristina Riascos
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Hala Al Asadi
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Jacques A Greenberg
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Ileana C Miranda
- Laboratory of Comparative Pathology, Weill Cornell Medical College, New York-Presbyterian Hospital, Memorial Sloan Kettering Cancer Center, The Rockefeller University, New York, NY, USA
| | - Haythem Najah
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Felice H Schnoll-Sussman
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Brendan M Finnerty
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Thomas J Fahey
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA
| | - Rasa Zarnegar
- Department of Surgery, Division of Endocrine & Minimally Invasive Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, 525 East 68Th Street, K-836, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Shiokawa D, Sakai H, Koizumi M, Okimoto Y, Mori Y, Kanda Y, Ohata H, Honda H, Okamoto K. Elevated stress response marks deeply quiescent reserve cells of gastric chief cells. Commun Biol 2023; 6:1183. [PMID: 37985874 PMCID: PMC10662433 DOI: 10.1038/s42003-023-05550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Gastrointestinal tract organs harbor reserve cells, which are endowed with cellular plasticity and regenerate functional units in response to tissue damage. However, whether the reserve cells in gastrointestinal tract exist as long-term quiescent cells remain incompletely understood. In the present study, we systematically examine H2b-GFP label-retaining cells and identify a long-term slow-cycling population in the gastric corpus but not in other gastrointestinal organs. The label-retaining cells, which reside near the basal layers of the corpus, comprise a subpopulation of chief cells. The identified quiescent cells exhibit induction of Atf4 and its target genes including Atf3, a marker of paligenosis, and activation of the unfolded protein response, but do not show elevated expression of Troy, Lgr5, or Mist. External damage to the gastric mucosa induced by indomethacin treatment triggers proliferation of the quiescent Atf4+ population, indicating that the gastric corpus harbors a specific cell population that is primed to facilitate stomach regeneration.
Collapse
Affiliation(s)
- Daisuke Shiokawa
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Ehime University Hospital Translational Research Center, Shitsukawa, Toon, 791-0295, Ehime, Japan
| | - Hiroaki Sakai
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
| | - Yoshie Okimoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yutaro Mori
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Yusuke Kanda
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hirokazu Ohata
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Tokyo Women's Medical University, 81- Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan.
| | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
19
|
Sirajudeen S, Shah I, Karam SM, Al Menhali A. Seven-Month Vitamin D Deficiency Inhibits Gastric Epithelial Cell Proliferation, Stimulates Acid Secretion, and Differentially Alters Cell Lineages in the Gastric Glands. Nutrients 2023; 15:4648. [PMID: 37960302 PMCID: PMC10649607 DOI: 10.3390/nu15214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vitamin D (VD) deficiency can result from insufficiency of either light exposure or VD intake. We investigated the biological effects of VD deficiency for 7 months on the mouse gastric glands. Varying degrees of VD deficiency were induced in C57BL/6 mice by keeping them on standard diet with constant-dark conditions (SDD) or VD deficient diet with constant-dark conditions (VDD). Samples of serum, glandular stomach, and gastric contents were collected for LCMS/MS, RT-PCR, immunohistochemistry, and acid content measurements. Both SDD and VDD mice had a significant decline in 25OHVD metabolite, gastric epithelial cell proliferation, and mucin 6 gene expression. These effects were enhanced with the severity of VD deficiency from SDD to VDD. Besides and compared to the control group, SDD mice only displayed a significant increase in the number of zymogenic cells (p ≤ 0.0001) and high expression of the adiponectin (p ≤ 0.05), gastrin (p ≤ 0.0001), mucin 5AC (*** p ≤ 0.001) and the Cyclin-dependent kinase inhibitor 1A (**** p ≤ 0.0001). These phenotypes were unique to SDD gastric samples and not seen in the VDD or control groups. This study suggests that the body reacts differently to diverse VD deficiency sources, light or diet.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates;
| | - Iltaf Shah
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates;
- Zayed bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates; (I.S.); (S.M.K.)
| |
Collapse
|
20
|
Hagen SJ. Pathophysiology updates: gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2023; 39:512-516. [PMID: 37678191 PMCID: PMC10592096 DOI: 10.1097/mog.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF REVIEW Although the mucosal barrier serves as a primary interface between the environment and host, little is known about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation, and/or neoplasia development. RECENT FINDINGS Recent studies on acute superficial lesions have focused on calcium signaling and focal adhesion kinase, which regulate cell migration and controlled matrix adhesion during restitution. Microfluidic organ-on-a-chip and gut-on-a-chip models continued in development to support reductionist studies of epithelial-bacterial and/or epithelial-immune cell interactions during mucosal barrier disruption. In fact, these models may allow personalized medicine studies in the future using patient-derived cells to evaluate injury and repair mechanisms. Work done in the past year evaluated the safety and efficacy of acid blocking drugs on ulcer healing, with new animal studies providing evidence that each drug affects the microbiome in a different way that can be correlated with its efficacy in ulcer healing. Lastly, work to understand the way in which mature epithelial cells or committed stem cells dedifferentiate, reprogram, proliferate, and then regenerate the gastroduodenal mucosa after injury was a major focus of studies in the past year. SUMMARY Recent studies highlight novel mechanisms that promote restitution and mucosal regeneration after injury of the gastroduodenal mucosa.
Collapse
Affiliation(s)
- Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Alvina FB, Chen TCY, Lim HYG, Barker N. Gastric epithelial stem cells in development, homeostasis and regeneration. Development 2023; 150:dev201494. [PMID: 37746871 DOI: 10.1242/dev.201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.
Collapse
Affiliation(s)
- Fidelia B Alvina
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Tanysha Chi-Ying Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Republic of Singapore
| |
Collapse
|
22
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
23
|
Liu M, Liu Q, Zou Q, Li J, Chu Z, Xiang J, Chen WQ, Miao ZF, Wang B. The composition and roles of gastric stem cells in epithelial homeostasis, regeneration, and tumorigenesis. Cell Oncol (Dordr) 2023; 46:867-883. [PMID: 37010700 DOI: 10.1007/s13402-023-00802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
The epithelial lining of the stomach undergoes rapid turnover to preserve its structural and functional integrity, a process driven by long-lived stem cells residing in the antral and corpus glands. Several subpopulations of gastric stem cells have been identified and their phenotypic and functional diversities linked to spatiotemporal specification of stem cells niches. Here, we review the biological features of gastric stem cells at various locations of the stomach under homeostatic conditions, as demonstrated by reporter mice, lineage tracing, and single cell sequencing. We also review the role of gastric stem cells in epithelial regeneration in response to injury. Moreover, we discuss emerging evidence demonstrating that accumulation of oncogenic drivers or alteration of stemness signaling pathways in gastric stem cells promotes gastric cancer. Given a fundamental role of the microenvironment, this review highlights the role reprogramming of niche components and signaling pathways under pathological conditions in dictating stem cell fate. Several outstanding issues are raised, such as the relevance of stem cell heterogeneity and plasticity, and epigenetic regulatory mechanisms, to Helicobacter pylori infection-initiated metaplasia-carcinogenesis cascades. With the development of spatiotemporal genomics, transcriptomics, and proteomics, as well as multiplexed screening and tracing approaches, we anticipate that more precise definition and characterization of gastric stem cells, and the crosstalk with their niche will be delineated in the near future. Rational exploitation and proper translation of these findings may bring forward novel modalities for epithelial rejuvenation and cancer therapeutics.
Collapse
Affiliation(s)
- Meng Liu
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qiang Zou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
| | - Jinyang Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Zhaole Chu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Junyu Xiang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Wei-Qing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China.
- Jinfeng Laboratory, Chongqing, 401329, P. R. China.
| |
Collapse
|
24
|
Dong J, Wu X, Zhou X, Gao Y, Wang C, Wang W, He W, Li J, Deng W, Liao J, Wu X, Lu Y, Chen AK, Wen L, Fu W, Tang F. Spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Protein Cell 2023; 14:433-447. [PMID: 37402315 PMCID: PMC10319429 DOI: 10.1093/procel/pwac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/30/2022] [Indexed: 07/20/2023] Open
Abstract
Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiya He
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Jingyun Li
- Biomedical Pioneering Innovation Center, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
| | - Wenjun Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510799, China
| | - Jiayu Liao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 510799, China
| | - Xiaotian Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yongqu Lu
- Biomedical Pioneering Innovation Center, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of General Surgery, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | | | | |
Collapse
|
25
|
Li ML, Hong XX, Zhang WJ, Liang YZ, Cai TT, Xu YF, Pan HF, Kang JY, Guo SJ, Li HW. Helicobacter pylori plays a key role in gastric adenocarcinoma induced by spasmolytic polypeptide-expressing metaplasia. World J Clin Cases 2023; 11:3714-3724. [PMID: 37383139 PMCID: PMC10294147 DOI: 10.12998/wjcc.v11.i16.3714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 04/23/2023] [Indexed: 06/02/2023] Open
Abstract
Heliobacter pylori (H. pylori), a group 1 human gastric carcinogen, is significantly associated with chronic gastritis, gastric mucosal atrophy, and gastric cancer. Approximately 20% of patients infected with H. pylori develop precancerous lesions, among which metaplasia is the most critical. Except for intestinal metaplasia (IM), which is characterized by goblet cells appearing in the stomach glands, one type of mucous cell metaplasia, spasmolytic polypeptide-expressing metaplasia (SPEM), has attracted much attention. Epidemiological and clinicopathological studies suggest that SPEM may be more strongly linked to gastric adenocarcinoma than IM. SPEM, characterized by abnormal expression of trefoil factor 2, mucin 6, and Griffonia simplicifolia lectin II in the deep glands of the stomach, is caused by acute injury or inflammation. Although it is generally believed that the loss of parietal cells alone is a sufficient and direct cause of SPEM, further in-depth studies have revealed the critical role of immunosignals. There is controversy regarding whether SPEM cells originate from the transdifferentiation of mature chief cells or professional progenitors. SPEM plays a functional role in the repair of gastric epithelial injury. However, chronic inflammation and immune responses caused by H. pylori infection can induce further progression of SPEM to IM, dysplasia, and adenocarcinoma. SPEM cells upregulate the expression of whey acidic protein 4-disulfide core domain protein 2 and CD44 variant 9, which recruit M2 macrophages to the wound. Studies have revealed that interleukin-33, the most significantly upregulated cytokine in macrophages, promotes SPEM toward more advanced metaplasia. Overall, more effort is needed to reveal the specific mechanism of SPEM malignant progression driven by H. pylori infection.
Collapse
Affiliation(s)
- Mian-Li Li
- Department of Gastroenterology, Shenzhen Hospital of Integrated, Traditional Chinese and Western Medicine, Shenzhen 518033, Guangdong Province, China
| | - Xin-Xin Hong
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Wei-Jian Zhang
- Science and Technology Innovation Center, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Yi-Zhong Liang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Tian-Tian Cai
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Yi-Fei Xu
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Hua-Feng Pan
- Science and Technology Innovation Center, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Jian-Yuan Kang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Shao-Ju Guo
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Hai-Wen Li
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
26
|
Willet SG, Thanintorn N, McNeill H, Huh SH, Ornitz DM, Huh WJ, Hoft SG, DiPaolo RJ, Mills JC. SOX9 Governs Gastric Mucous Neck Cell Identity and Is Required for Injury-Induced Metaplasia. Cell Mol Gastroenterol Hepatol 2023; 16:325-339. [PMID: 37270061 PMCID: PMC10444955 DOI: 10.1016/j.jcmgh.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND & AIMS Acute and chronic gastric injury induces alterations in differentiation within the corpus of the stomach called pyloric metaplasia. Pyloric metaplasia is characterized by the death of parietal cells and reprogramming of mitotically quiescent zymogenic chief cells into proliferative, mucin-rich spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Overall, pyloric metaplastic units show increased proliferation and specific expansion of mucous lineages, both by proliferation of normal mucous neck cells and recruitment of SPEM cells. Here, we identify Sox9 as a potential gene of interest in the regulation of mucous neck and SPEM cell identity in the stomach. METHODS We used immunostaining and electron microscopy to characterize the expression pattern of SRY-box transcription factor 9 (SOX9) during murine gastric development, homeostasis, and injury in homeostasis, after genetic deletion of Sox9 and after targeted genetic misexpression of Sox9 in the gastric epithelium and chief cells. RESULTS SOX9 is expressed in all early gastric progenitors and strongly expressed in mature mucous neck cells with minor expression in the other principal gastric lineages during adult homeostasis. After injury, strong SOX9 expression was induced in the neck and base of corpus units in SPEM cells. Adult corpus units derived from Sox9-deficient gastric progenitors lacked normal mucous neck cells. Misexpression of Sox9 during postnatal development and adult homeostasis expanded mucous gene expression throughout corpus units including within the chief cell zone in the base. Sox9 deletion specifically in chief cells blunts their reprogramming into SPEM. CONCLUSIONS Sox9 is a master regulator of mucous neck cell differentiation during gastric development. Sox9 also is required for chief cells to fully reprogram into SPEM after injury.
Collapse
Affiliation(s)
- Spencer G Willet
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.
| | - Nattapon Thanintorn
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Sung-Ho Huh
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Won Jae Huh
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Jason C Mills
- Section of Gastroenterology, Department of Medicine, Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
27
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
Affiliation(s)
- Xin Zeng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Meihua Yang
- Departments of Neurology, Washington University School of Medicine and Barnes-Jewish Hospital, Saint Louis, 63110, MO, USA
| | - Tingbo Ye
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinmei Feng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Xu
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huaan Yang
- Department of Urologic Surgery, Yubei District People's Hospital, Chongqing, 401120, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, 40016, China
| | - Liming Bao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Rui Li
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinbao Zang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Huang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
28
|
Huebner AJ, Gorelov RA, Deviatiiarov R, Demharter S, Kull T, Walsh RM, Taylor MS, Steiger S, Mullen JT, Kharchenko PV, Hochedlinger K. Dissection of gastric homeostasis in vivo facilitates permanent capture of isthmus-like stem cells in vitro. Nat Cell Biol 2023; 25:390-403. [PMID: 36717627 DOI: 10.1038/s41556-022-01079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/12/2022] [Indexed: 02/01/2023]
Abstract
The glandular stomach is composed of two regenerative compartments termed corpus and antrum, and our understanding of the transcriptional networks that maintain these tissues is incomplete. Here we show that cell types with equivalent functional roles in the corpus and antrum share similar transcriptional states including the poorly characterized stem cells of the isthmus region. To further study the isthmus, we developed a monolayer two-dimensional (2D) culture system that is continually maintained by Wnt-responsive isthmus-like cells capable of differentiating into several gastric cell types. Importantly, 2D cultures can be converted into conventional three-dimensional organoids, modelling the plasticity of gastric epithelial cells in vivo. Finally, we utilized the 2D culture system to show that Sox2 is both necessary and sufficient to generate enterochromaffin cells. Together, our data provide important insights into gastric homeostasis, establish a tractable culture system to capture isthmus cells and uncover a role for Sox2 in enterochromaffin cells.
Collapse
Affiliation(s)
- Aaron J Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rebecca A Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ruslan Deviatiiarov
- Institute of Fundamental Medicine and Biology, Kazan Feberal University, Kazan, Russia
| | - Samuel Demharter
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tobias Kull
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Ryan M Walsh
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Marty S Taylor
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Simon Steiger
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - John T Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- San Diego Institute, Altos Labs, San Diego, CA, USA.
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA, USA.
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
29
|
Liu L, Wang Y, Zhao Y, Zhang W, Liu J, Wang F, Wang P, Tang X. Global knowledge mapping and emerging trends in research between spasmolytic polypeptide-expressing metaplasia and gastric carcinogenesis: A bibliometric analysis from 2002 to 2022. Front Cell Infect Microbiol 2023; 12:1108378. [PMID: 36776551 PMCID: PMC9912936 DOI: 10.3389/fcimb.2022.1108378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/30/2023] Open
Abstract
Background Spasmolytic polypeptide expression metaplasia (SPEM) occurs in the corpus of the stomach and is closely related to inflammations caused by H. pylori infection. Recently, SPEM was suggested as one of the dubious precancerous lesions of gastric cancer (GC). Thus, further research on SPEM cell transdifferentiation and its underlying mechanisms could facilitate the development of new molecular targets improving the therapeutics of GC. Using bibliometrics, we analyzed publications, summarized the research hotspots and provided references for scientific researchers engaged in related research fields. Methods We searched the Web of Science Core Collection (WoSCC) for publications related to SPEM-GC from 2002 to 2022. The VOSviewer, SCImago, CiteSpace and R software were used to visualize and analyze the data. Gene targets identified in the keyword list were analyzed for functional enrichment using the KEGG and GO databases. Results Of the 292 articles identified in the initial search, we observed a stable trend in SPEM-GC research but rapid growth in the number of citations. The United States was the leader in terms of quality publications and international cooperation among them. The total number of articles published by Chinese scholars was second to the United States. Additionally, despite its low centrality and average citation frequency, China has become one of the world's most dynamic countries in academics. In terms of productivity, Vanderbilt University was identified as the most productive institution. Further, we also observed that Gastroenterology was the highest co-cited journal, and Goldenring Jr. was the most prolific author with the largest centrality. Conclusion SPEM could serve as an initial step in diagnosing gastric precancerous lesions. Current hotspots and frontiers of research include SPEM cell lineage differentiation, interaction with H. pylori, disturbances of the mucosal microenvironment, biomarkers, clinical diagnosis and outcomes of SPEM, as well as the development of proliferative SPEM animal models. However, further research and collaboration are still required. The findings presented in this study can be used as reference for the research status of SPEM-GC and determine new directions for future studies.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiong Liu
- Department of Pathology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xudong Tang,
| |
Collapse
|
30
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
31
|
Wizenty J, Sigal M. Gastric Stem Cell Biology and Helicobacter pylori Infection. Curr Top Microbiol Immunol 2023; 444:1-24. [PMID: 38231213 DOI: 10.1007/978-3-031-47331-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori colonizes the human gastric mucosa and persists lifelong. An interactive network between the bacteria and host cells shapes a unique microbial niche within gastric glands that alters epithelial behavior, leading to pathologies such as chronic gastritis and eventually gastric cancer. Gland colonization by the bacterium initiates aberrant trajectories by inducing long-term inflammatory and regenerative gland responses, which involve various specialized epithelial and stromal cells. Recent studies using cell lineage tracing, organoids and scRNA-seq techniques have significantly advanced our knowledge of the molecular "identity" of epithelial and stromal cell subtypes during normal homeostasis and upon infection, and revealed the principles that underly stem cell (niche) behavior under homeostatic conditions as well as upon H. pylori infection. The activation of long-lived stem cells deep in the gastric glands has emerged as a key prerequisite of H. pylori-associated gastric site-specific pathologies such as hyperplasia in the antrum, and atrophy or metaplasia in the corpus, that are considered premalignant lesions. In addition to altering the behaviour of bona fide stem cells, injury-driven de-differentiation and trans-differentation programs, such as "paligenosis", subsequently allow highly specialized secretory cells to re-acquire stem cell functions, driving gland regeneration. This plastic regenerative capacity of gastric glands is required to maintain homeostasis and repair mucosal injuries. However, these processes are co-opted in the context of stepwise malignant transformation in chronic H. pylori infection, causing the emergence, selection and expansion of cancer-promoting stem cells.
Collapse
Affiliation(s)
- Jonas Wizenty
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Division of Gastroenterology and Hepatology, Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
32
|
Potential association of eEF1A dimethylation at lysine 55 in the basal area of Helicobacter pylori-eradicated gastric mucosa with the risk of gastric cancer: a retrospective observational study. BMC Gastroenterol 2022; 22:490. [PMID: 36437464 PMCID: PMC9703661 DOI: 10.1186/s12876-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Although eradication therapy for chronic Helicobacter pylori (H. pylori) reduces the risk of gastric cancer (GC), its effectiveness is not complete. Therefore, it is also critically important to identifying those patients who remain at high risk after H. pylori eradication therapy. Accumulation of protein methylation is strongly implicated in cancer, and recent study showed that dimethylation of eEF1A lysine 55 (eEF1AK55me2) promotes carcinogenesis in vivo. We aimed to investigate the relationship between eEF1A dimethylation and H. pylori status, efficacy of eradication therapy, and GC risk in H. pylori-eradicated mucosa, and to reveal the potential downstream molecules of eEF1A dimethylation. METHODS Records of 115 patients (11 H. pylori-negative, 29 H. pylori-positive, 75 post-eradication patients) who underwent upper gastrointestinal endoscopy were retrospectively reviewed. The eEF1A dimethyl level was evaluated in each functional cell type of gastric mucosa by immunofluorescent staining. We also investigated the relationship between eEF1AK55me2 downregulation by CRISPR/Cas9 mediated deletion of Mettl13, which is known as a dimethyltransferase of eEF1AK55me2. RESULTS The level of eEF1A dimethylation significantly increased in the surface and basal areas of H. pylori-positive mucosa compared with the negative mucosa (surface, p = 0.0031; basal, p = 0.0036, respectively). The eEF1A dimethyl-levels in the surface area were significantly reduced by eradication therapy (p = 0.005), but those in the basal area were maintained even after eradication therapy. Multivariate analysis revealed that high dimethylation of eEF1A in the basal area of the mucosa was the independent factor related to GC incidence (odds ratio = 3.6611, 95% confidence interval = 1.0350-12.949, p = 0.0441). We also showed the relationship between eEF1A dimethylation and expressions of reprogramming factors, Oct4 and Nanog, by immunohistochemistry and in vitro genome editing experiments. CONCLUSIONS The results indicated that H. pylori infection induced eEF1A dimethylation in gastric mucosa. The accumulation of dimethyl-eEF1A in the basal area of the mucosa might contribute to GC risk via regulation of reprograming factors in H. pylori eradicated-gastric mucosa.
Collapse
|
33
|
Limitations of Tamoxifen Application for In Vivo Genome Editing Using Cre/ER T2 System. Int J Mol Sci 2022; 23:ijms232214077. [PMID: 36430553 PMCID: PMC9694728 DOI: 10.3390/ijms232214077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Inducible Cre-dependent systems are frequently used to produce both conditional knockouts and transgenic mice with regulated expression of the gene of interest. Induction can be achieved by doxycycline-dependent transcription of the wild type gene or OH-tamoxifen-dependent nuclear translocation of the chimeric Cre/ERT2 protein. However, both of these activation strategies have some limitations. We analyzed the efficiency of knockout in different tissues and found out that it correlates with the concentration of the hydroxytamoxifen and endoxifen-the active metabolites of tamoxifen-measured by LC-MS in these tissues. We also describe two cases of Cdk8floxed/floxed/Rosa-Cre-ERT2 mice tamoxifen-induced knockout limitations. In the first case, the standard scheme of tamoxifen administration does not lead to complete knockout formation in the brain or in the uterus. Tamoxifen metabolite measurements in multiple tissues were performed and it has been shown that low recombinase activity in the brain is due to the low levels of tamoxifen active metabolites. Increase of tamoxifen dosage (1.5 fold) and duration of activation (from 5 to 7 days) allowed us to significantly improve the knockout rate in the brain, but not in the uterus. In the second case, knockout induction during embryonic development was impossible due to the negative effect of tamoxifen on gestation. Although DNA editing in the embryos was achieved in some cases, the treatment led to different complications of the pregnancy in wild-type female mice. We propose to use doxycycline-induced Cre systems in such models.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Although the mucosal barrier serves as a primary interface between the environment and host, little is understood about the repair of acute, superficial lesions or deeper, persistent lesions that if not healed, can be the site of increased permeability to luminal antigens, inflammation and/or neoplasia development. RECENT FINDINGS Recent studies have focused on focal adhesion kinase, which regulates controlled matrix adhesion during restitution after superficial injury. Actin polymerization regulates cell migration and the importance of actin-related proteins was also highlighted. Work on SARS-CoV-2 infection lent important new insights on gastroduodenal mucosal injury in patients with Covid-19 infection and work done with organoids and intestine-on-a-chip contributed new understanding about how coronaviruses infect gastrointestinal tissues and its resulting barrier dysfunction. A novel risk stratification paradigm was proposed to assist with decision making about repeat endoscopy for patients with gastric or duodenal ulcers and new therapeutic options were studied for ulcer disease. Lastly, work to support the mechanism of metaplasia development after deep injury and parietal cell loss was provided using novel transgenic mouse models. SUMMARY Recent studies highlight novel molecular targets to promote mucosal healing after injury of the gastroduodenal mucosa.
Collapse
Affiliation(s)
- Susan J Hagen
- Department of Surgery, Division of Surgical Sciences, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev 2022; 75:101948. [PMID: 35809361 PMCID: PMC10378711 DOI: 10.1016/j.gde.2022.101948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Recent studies using cell lineage-tracing techniques, organoids, and single-cell RNA sequencing analyses have revealed: 1) adult organs use cell plasticity programs to recruit progenitor cells to regenerate tissues after injury, and 2) plasticity is far more common than previously thought, even in homeostasis. Here, we focus on the complex interplay of normal stem cell differentiation and plasticity in homeostasis and after injury, using the gastric epithelium as a touchstone. We also examine common features of regenerative programs and discuss the evolutionarily conserved, stepwise process of paligenosis which reprograms mature cells into progenitors that can repair damaged tissue. Finally, we discuss how conserved plasticity programs may help us better understand pathological processes like metaplasia.
Collapse
Affiliation(s)
- Mahliyah Adkins-Threats
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA. https://twitter.com/@madkinsthreats
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, USA; Department of Pathology & Immunology, Baylor College of Medicine, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
36
|
Sirajudeen S, Shah I, Ayoub MA, Karam SM, Al Menhali A. Long-Term Vitamin D Deficiency Results in the Inhibition of Cell Proliferation and Alteration of Multiple Gastric Epithelial Cell Lineages in Mice. Int J Mol Sci 2022; 23:ijms23126684. [PMID: 35743124 PMCID: PMC9224370 DOI: 10.3390/ijms23126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control—12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 μEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 μEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| | - Iltaf Shah
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
| | - Sherif M. Karam
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Correspondence:
| |
Collapse
|
37
|
Wuputra K, Ku CC, Pan JB, Liu CJ, Liu YC, Saito S, Kato K, Lin YC, Kuo KK, Chan TF, Chong IW, Lin CS, Wu DC, Yokoyama KK. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med 2022; 12:jpm12060929. [PMID: 35743714 PMCID: PMC9224738 DOI: 10.3390/jpm12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-2192, Japan;
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2729); Fax: +886-7313-3849
| |
Collapse
|
38
|
Caldwell B, Meyer AR, Weis JA, Engevik AC, Choi E. Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut 2022; 71:1068-1077. [PMID: 34497145 PMCID: PMC8901801 DOI: 10.1136/gutjnl-2021-325310] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Metaplasia arises from differentiated cell types in response to injury and is considered a precursor in many cancers. Heterogeneous cell lineages are present in the reparative metaplastic mucosa with response to injury, including foveolar cells, proliferating cells and spasmolytic polypeptide-expressing metaplasia (SPEM) cells, a key metaplastic cell population. Zymogen-secreting chief cells are long-lived cells in the stomach mucosa and have been considered the origin of SPEM cells; however, a conflicting paradigm has proposed isthmal progenitor cells as an origin for SPEM. DESIGN Gastric intrinsic factor (GIF) is a stomach tissue-specific gene and exhibits protein expression unique to mature mouse chief cells. We generated a novel chief cell-specific driver mouse allele, GIF-rtTA. GIF-GFP reporter mice were used to validate specificity of GIF-rtTA driver in chief cells. GIF-Cre-RnTnG mice were used to perform lineage tracing during homoeostasis and acute metaplasia development. L635 treatment was used to induce acute mucosal injury and coimmunofluorescence staining was performed for various gastric lineage markers. RESULTS We demonstrated that mature chief cells, rather than isthmal progenitor cells, serve as the predominant origin of SPEM cells during the metaplastic process after acute mucosal injury. Furthermore, we observed long-term label-retaining chief cells at 1 year after the GFP labelling in chief cells. However, only a very small subset of the long-term label-retaining chief cells displayed the reprogramming ability in homoeostasis. In contrast, we identified chief cell-originating SPEM cells as contributing to lineages within foveolar cell hyperplasia in response to the acute mucosal injury. CONCLUSION Our study provides pivotal evidence for cell plasticity and lineage contributions from differentiated gastric chief cells during acute metaplasia development.
Collapse
Affiliation(s)
- Brianna Caldwell
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne R Meyer
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Amy C Engevik
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eunyoung Choi
- Section of Surgical Sciences and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Guerini C, Lenti MV, Rossi C, Arpa G, Peri A, Gallotti A, Di Sabatino A, Vanoli A. Case Report: Two Is Not (Always) Better Than One: Pyloric Gland Adenoma of the Gastric Cardia and Concurrent Neuroendocrine Cell Dysplasia Arising From Autoimmune Gastritis. Front Med (Lausanne) 2022; 9:890794. [PMID: 35665334 PMCID: PMC9162265 DOI: 10.3389/fmed.2022.890794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune gastritis is a chronic immune-mediated disorder characterized by varied clinical manifestations and that should be endoscopically managed over time, as the gastric atrophy contributes to microenvironmental alterations of the stomach milieu, and an increased cancer risk has been linked to this condition. Here, we report the unusual case of a woman who developed a cardiac high-grade pyloric adenoma in a context of previously undiagnosed autoimmune gastritis with synchronous neuroendocrine cell hyperplastic and dysplastic lesions.
Collapse
Affiliation(s)
- Camilla Guerini
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
- *Correspondence: Marco Vincenzo Lenti
| | - Chiara Rossi
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Arpa
- Unit of Pathology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Andrea Peri
- Department of Surgery, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Anna Gallotti
- Unit of Radiology, Department of Intensive Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
40
|
Lee JH, Kim S, Han S, Min J, Caldwell B, Bamford AD, Rocha ASB, Park J, Lee S, Wu SHS, Lee H, Fink J, Pilat-Carotta S, Kim J, Josserand M, Szep-Bakonyi R, An Y, Ju YS, Philpott A, Simons BD, Stange DE, Choi E, Koo BK, Kim JK. p57 Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell 2022; 29:826-839.e9. [PMID: 35523142 PMCID: PMC9097776 DOI: 10.1016/j.stem.2022.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
Adult stem cells constantly react to local changes to ensure tissue homeostasis. In the main body of the stomach, chief cells produce digestive enzymes; however, upon injury, they undergo rapid proliferation for prompt tissue regeneration. Here, we identified p57Kip2 (p57) as a molecular switch for the reserve stem cell state of chief cells in mice. During homeostasis, p57 is constantly expressed in chief cells but rapidly diminishes after injury, followed by robust proliferation. Both single-cell RNA sequencing and dox-induced lineage tracing confirmed the sequential loss of p57 and activation of proliferation within the chief cell lineage. In corpus organoids, p57 overexpression induced a long-term reserve stem cell state, accompanied by altered niche requirements and a mature chief cell/secretory phenotype. Following the constitutive expression of p57 in vivo, chief cells showed an impaired injury response. Thus, p57 is a gatekeeper that imposes the reserve stem cell state of chief cells in homeostasis.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Seungmin Han
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Jimin Min
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brianna Caldwell
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Andreia Sofia Batista Rocha
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - JinYoung Park
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Sieun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Juergen Fink
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Sandra Pilat-Carotta
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria; Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea
| | - Manon Josserand
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Réka Szep-Bakonyi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Yohan An
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Anna Philpott
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Benjamin D Simons
- Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Eunyoung Choi
- Department of Surgery and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria; Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea.
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
41
|
Liabeuf D, Oshima M, Stange DE, Sigal M. Stem Cells, Helicobacter pylori, and Mutational Landscape: Utility of Preclinical Models to Understand Carcinogenesis and to Direct Management of Gastric Cancer. Gastroenterology 2022; 162:1067-1087. [PMID: 34942172 DOI: 10.1053/j.gastro.2021.12.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Several genetic and environmental factors increase gastric cancer (GC) risk, with Helicobacter pylori being the main environmental agent. GC is thought to emerge through a sequence of morphological changes that have been elucidated on the molecular level. New technologies have shed light onto pathways that are altered in GC, involving mutational and epigenetic changes and altered signaling pathways. Using various new model systems and innovative approaches, the relevance of such alterations for the emergence and progression of GC has been validated. Here, we highlight the key strategies and the resulting achievements. A major step is the characterization of epithelial stem cell behavior in the healthy stomach. These data, obtained through new reporter mouse lines and lineage tracing, enabled insights into the processes that control cellular proliferation, self-renewal, and differentiation of gastric stem cells. It has become evident that these cells and pathways are often deregulated in carcinogenesis. Second, insights into how H pylori colonizes gastric glands, directly interacts with stem cells, and alters cellular and genomic integrity, as well as the characterization of tissue responses to infection, provide a comprehensive picture of how this bacterium contributes to gastric carcinogenesis. Third, the development of stem cell- and tissue-specific reporter mice have driven our understanding of the signals and mutations that promote different types of GC and now also enable the study of more advanced, metastasized stages. Finally, organoids from human tissue have allowed insights into gastric carcinogenesis by validating mutational and signaling alterations in human primary cells and opening a route to predicting responses to personalized treatment.
Collapse
Affiliation(s)
- Dylan Liabeuf
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Daniel E Stange
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany, German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Sigal
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
42
|
Abstract
Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redif-ferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles J. Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA,Departments of Pathology and Immunology and Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA,Current affiliation: Departments of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
43
|
Sáenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight 2022; 7:153511. [PMID: 35132959 PMCID: PMC8855806 DOI: 10.1172/jci.insight.153511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023] Open
Abstract
Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling–independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Nancy Vargas
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine.,Department of Pathology and Immunology; and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
44
|
Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology 2022; 162:415-430. [PMID: 34728185 PMCID: PMC8792220 DOI: 10.1053/j.gastro.2021.10.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
The mucosa of the body of the stomach (ie, the gastric corpus) uses 2 overlapping, depth-dependent mechanisms to respond to injury. Superficial injury heals via surface cells with histopathologic changes like foveolar hyperplasia. Deeper, usually chronic, injury/inflammation, most frequently induced by the carcinogenic bacteria Helicobacter pylori, elicits glandular histopathologic alterations, initially manifesting as pyloric (also known as pseudopyloric) metaplasia. In this pyloric metaplasia, corpus glands become antrum (pylorus)-like with loss of acid-secreting parietal cells (atrophic gastritis), expansion of foveolar cells, and reprogramming of digestive enzyme-secreting chief cells into deep antral gland-like mucous cells. After acute parietal cell loss, chief cells can reprogram through an orderly stepwise progression (paligenosis) initiated by interleukin-13-secreting innate lymphoid cells (ILC2s). First, massive lysosomal activation helps mitigate reactive oxygen species and remove damaged organelles. Second, mucus and wound-healing proteins (eg, TFF2) and other transcriptional alterations are induced, at which point the reprogrammed chief cells are recognized as mucus-secreting spasmolytic polypeptide-expressing metaplasia cells. In chronic severe injury, glands with pyloric metaplasia can harbor both actively proliferating spasmolytic polypeptide-expressing metaplasia cells and eventually intestine-like cells. Gastric glands with such lineage confusion (mixed incomplete intestinal metaplasia and proliferative spasmolytic polypeptide-expressing metaplasia) may be at particular risk for progression to dysplasia and cancer. A pyloric-like pattern of metaplasia after injury also occurs in other gastrointestinal organs including esophagus, pancreas, and intestines, and the paligenosis program itself seems broadly conserved across tissues and species. Here we discuss aspects of metaplasia in stomach, incorporating data derived from animal models and work on human cells and tissues in correlation with diagnostic and clinical implications.
Collapse
Affiliation(s)
- James R Goldenring
- Nashville Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
45
|
Cho CJ, Park D, Mills JC. ELAPOR1 is a secretory granule maturation-promoting factor that is lost during paligenosis. Am J Physiol Gastrointest Liver Physiol 2022; 322:G49-G65. [PMID: 34816763 PMCID: PMC8698547 DOI: 10.1152/ajpgi.00246.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A single transcription factor, MIST1 (BHLHA15), maximizes secretory function in diverse secretory cells (like pancreatic acinar cells) by transcriptionally upregulating genes that elaborate secretory architecture. Here, we show that the scantly studied MIST1 target, ELAPOR1 (endosome/lysosome-associated apoptosis and autophagy regulator 1), is an evolutionarily conserved, novel mannose-6-phosphate receptor (M6PR) domain-containing protein. ELAPOR1 expression was specific to zymogenic cells (ZCs, the MIST1-expressing population in the stomach). ELAPOR1 expression was lost as tissue injury caused ZCs to undergo paligenosis (i.e., to become metaplastic and reenter the cell cycle). In cultured cells, ELAPOR1 trafficked with cis-Golgi resident proteins and with the trans-Golgi and late endosome protein: cation-independent M6PR. Secretory vesicle trafficking was disrupted by expression of ELAPOR1 truncation mutants. Mass spectrometric analysis of co-immunoprecipitated proteins showed ELAPOR1 and CI-M6PR shared many binding partners. However, CI-M6PR and ELAPOR1 must function differently, as CI-M6PR co-immunoprecipitated more lysosomal proteins and was not decreased during paligenosis in vivo. We generated Elapor1-/- mice to determine ELAPOR1 function in vivo. Consistent with in vitro findings, secretory granule maturation was defective in Elapor1-/- ZCs. Our results identify a role for ELAPOR1 in secretory granule maturation and help clarify how a single transcription factor maintains mature exocrine cell architecture in homeostasis and helps dismantle it during paligenosis.NEW & NOTEWORTHY Here, we find the MIST1 (BHLHA15) transcriptional target ELAPOR1 is an evolutionarily conserved, trans-Golgi/late endosome M6PR domain-containing protein that is specific to gastric zymogenic cells and required for normal secretory granule maturation in human cell lines and in mouse stomach.
Collapse
Affiliation(s)
- Charles J. Cho
- 1Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dongkook Park
- 2Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jason C. Mills
- 1Department of Medicine, Baylor College of Medicine, Houston, Texas,3Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas,4Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
46
|
Sáenz JB. Follow the Metaplasia: Characteristics and Oncogenic Implications of Metaplasia's Pattern of Spread Throughout the Stomach. Front Cell Dev Biol 2021; 9:741574. [PMID: 34869328 PMCID: PMC8633114 DOI: 10.3389/fcell.2021.741574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human stomach functions as both a digestive and innate immune organ. Its main product, acid, rapidly breaks down ingested products and equally serves as a highly effective microbial filter. The gastric epithelium has evolved mechanisms to appropriately handle the myriad of injurious substances, both exogenous and endogenous, to maintain the epithelial barrier and restore homeostasis. The most significant chronic insult that the stomach must face is Helicobacter pylori (Hp), a stomach-adapted bacterium that can colonize the stomach and induce chronic inflammatory and pre-neoplastic changes. The progression from chronic inflammation to dysplasia relies on the decades-long interplay between this oncobacterium and its gastric host. This review summarizes the functional and molecular regionalization of the stomach at homeostasis and details how chronic inflammation can lead to characteristic alterations in these developmental demarcations, both at the topographic and glandular levels. More importantly, this review illustrates our current understanding of the epithelial mechanisms that underlie the pre-malignant gastric landscape, how Hp adapts to and exploits these changes, and the clinical implications of identifying these changes in order to stratify patients at risk of developing gastric cancer, a leading cause of cancer-related deaths worldwide.
Collapse
Affiliation(s)
- José B Sáenz
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
47
|
Douchi D, Yamamura A, Matsuo J, Melissa Lim YH, Nuttonmanit N, Shimura M, Suda K, Chen S, Pang S, Kohu K, Abe T, Shioi G, Kim G, Shabbir A, Srivastava S, Unno M, Bok-Yan So J, Teh M, Yeoh KG, Chuang LSH, Ito Y. Induction of Gastric Cancer by Successive Oncogenic Activation in the Corpus. Gastroenterology 2021; 161:1907-1923.e26. [PMID: 34391772 DOI: 10.1053/j.gastro.2021.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/17/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Metaplasia and dysplasia in the corpus are reportedly derived from de-differentiation of chief cells. However, the cellular origin of metaplasia and cancer remained uncertain. Therefore, we investigated whether pepsinogen C (PGC) transcript-expressing cells represent the cellular origin of metaplasia and cancer using a novel Pgc-specific CreERT2 recombinase mouse model. METHODS We generated a Pgc-mCherry-IRES-CreERT2 (Pgc-CreERT2) knock-in mouse model. Pgc-CreERT2/+ and Rosa-EYFP mice were crossed to generate Pgc-CreERT2/Rosa-EYFP (Pgc-CreERT2/YFP) mice. Gastric tissues were collected, followed by lineage-tracing experiments and histologic and immunofluorescence staining. We further established Pgc-CreERT2;KrasG12D/+ mice and investigated whether PGC transcript-expressing cells are responsible for the precancerous state in gastric glands. To investigate cancer development from PGC transcript-expressing cells with activated Kras, inactivated Apc, and Trp53 signaling pathways, we crossed Pgc-CreERT2/+ mice with conditional KrasG12D, Apcflox, Trp53flox mice. RESULTS Expectedly, mCherry mainly labeled chief cells in the Pgc-CreERT2 mice. However, mCherry was also detected throughout the neck cell and isthmal stem/progenitor regions, albeit at lower levels. In the Pgc-CreERT2;KrasG12D/+ mice, PGC transcript-expressing cells with KrasG12D/+ mutation presented pseudopyloric metaplasia. The early induction of proliferation at the isthmus may reflect the ability of isthmal progenitors to react rapidly to Pgc-driven KrasG12D/+ oncogenic mutation. Furthermore, Pgc-CreERT2;KrasG12D/+;Apcflox/flox mice presented intramucosal dysplasia/carcinoma and Pgc-CreERT2;KrasG12D/+;Apcflox/flox;Trp53flox/flox mice presented invasive and metastatic gastric carcinoma. CONCLUSIONS The Pgc-CreERT2 knock-in mouse is an invaluable tool to study the effects of successive oncogenic activation in the mouse corpus. Time-course observations can be made regarding the responses of isthmal and chief cells to oncogenic insults. We can observe stomach-specific tumorigenesis from the beginning to metastatic development.
Collapse
Affiliation(s)
- Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yi Hui Melissa Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Napat Nuttonmanit
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Mitsuhiro Shimura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Sabirah Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - ShuChin Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kazuyoshi Kohu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Guowei Kim
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | | | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore
| | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:cells10112988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
|
49
|
Hagen SJ. Mucosal defense: gastroduodenal injury and repair mechanisms. Curr Opin Gastroenterol 2021; 37:609-614. [PMID: 34475337 PMCID: PMC8511296 DOI: 10.1097/mog.0000000000000775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW The mucosal barrier serves as a primary interface between the environment and host. In daily life, superficial injury to the gastric or duodenal mucosa occurs regularly but heals rapidly by a process called 'restitution'. Persistent injury to the gastroduodenal mucosa also occurs but initiates a regenerative lesion with specific wound healing mechanisms that attempt to repair barrier function. If not healed, these lesions can be the site of neoplasia development in a chronic inflammatory setting. This review summarizes the past year of advances in understanding mucosal repair in the gastroduodenal mucosa, which occurs as a defense mechanism against injury. RECENT FINDINGS Organoids are an emerging new tool that allows for the correlation of in vivo and in vitro models; organoids represent an important reductionist model to probe specific aspects of injury and repair mechanisms that are limited to epithelial cells. Additionally, proof-of-concept studies show that machine learning algorithms may ultimately assist with identifying novel, targetable pathways to pursue in therapeutic interventions. Gut-on-chip technology and single cell RNA-sequencing contributed to new understanding of gastroduodenal regenerative lesions after injury by identifying networks and interactions that are involved in the repair process. SUMMARY Recent updates provide new possibilities for identifying novel molecular targets for the treatment of acute and superficial mucosal injury, mucosal regeneration, and regenerative lesions in the gastrointestinal tract.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery
- Beth Israel Deaconess Medical Center
- Harvard Medical School, Boston, MA 02215
| |
Collapse
|
50
|
Matsuo J, Douchi D, Myint K, Mon NN, Yamamura A, Kohu K, Heng DL, Chen S, Mawan NA, Nuttonmanit N, Li Y, Srivastava S, Ho SWT, Lee NYS, Lee HK, Adachi M, Tamura A, Chen J, Yang H, Teh M, So JBY, Yong WP, Tan P, Yeoh KG, Chuang LSH, Tsukita S, Ito Y. Iqgap3-Ras axis drives stem cell proliferation in the stomach corpus during homoeostasis and repair. Gut 2021; 70:1833-1846. [PMID: 33293280 PMCID: PMC8458072 DOI: 10.1136/gutjnl-2020-322779] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.
Collapse
Affiliation(s)
- Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daisuke Douchi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Khine Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Naing Naing Mon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyoshi Kohu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dede Liana Heng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sabirah Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nur Astiana Mawan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Napat Nuttonmanit
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Shamaine Wei Ting Ho
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Nicole Yee Shin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Hong Kai Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Makoto Adachi
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Tamura
- Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan,Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan,Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, National University Health System, National University of Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore,Genome Institute of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, National University of Singapore, Singapore,Department of Gastroenterology and Hepatology, National University Hospital, Singapore
| | | | - Sachiko Tsukita
- Strategic Innovation and Research Center, Teikyo University, Tokyo, Japan .,Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|