1
|
Wang D, Wang W, Song M, Xie Y, Kuang W, Yang P. Regulation of protein phosphorylation by PTPN2 and its small-molecule inhibitors/degraders as a potential disease treatment strategy. Eur J Med Chem 2024; 277:116774. [PMID: 39178726 DOI: 10.1016/j.ejmech.2024.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Protein tyrosine phosphatase nonreceptor type 2 (PTPN2) is an enzyme that dephosphorylates proteins with tyrosine residues, thereby modulating relevant signaling pathways in vivo. PTPN2 acts as tumor suppressor or tumor promoter depending on the context. In some cancers, such as colorectal, and lung cancer, PTPN2 defects could impair the protein tyrosine kinase pathway, which is often over-activated in cancer cells, and inhibit tumor development and progression. However, PTPN2 can also suppress tumor immunity by regulating immune cells and cytokines. The structure, functions, and substrates of PTPN2 in various tumor cells were reviewed in this paper. And we summarized the research status of small molecule inhibitors and degraders of PTPN2. It also highlights the potential opportunities and challenges for developing PTPN2 inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenmu Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingge Song
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yishi Xie
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Zhao X, Wang X, Xu Z, Chang X, Tian Y. PTPN2 dephosphorylates STAT3 to ameliorate anesthesia-induced cognitive decline in aged rats by altering the microglial phenotype and inhibiting inflammation. Biochim Biophys Acta Mol Basis Dis 2024:167545. [PMID: 39481492 DOI: 10.1016/j.bbadis.2024.167545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Perioperative neurocognitive disorders (PNDs) are common neurological complications after anesthesia in the elderly. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates signal transducer and activator of transcription protein 3 (STAT3) signaling to control inflammation in certain organs, but its role in PNDs remains unknown. Herein, we constructed a PND model in 18-month-old rats by treating them with sevoflurane. PND rats developed neuroinflammation, along with a significant decrease in PTPN2 expression and a rise in STAT3 phosphorylation in the hippocampus. Ptpn2 overexpression alleviated the behavioral disorders of PND rats, ameliorated neuronal injury, inhibited neuroinflammation, inflammasome activation, microglial activation, and microglial phenotype switching. Similar results were observed in sevoflurane-treated HMC3 microglia with PTPN2 overexpression, while PTPN2 silencing showed the opposite results. Additionally, PTPN2 seems to be a target of T-box transcription factor 2 (TBX2). These results contribute to the evidence supporting the idea that PTPN2 is a regulatory factor in PND progression.
Collapse
Affiliation(s)
- Xiaochun Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China; Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110002, PR China.
| | - Xueting Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Ziyang Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Xiaohan Chang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
3
|
Bildstein T, Charbit-Henrion F, Azabdaftari A, Cerf-Bensussan N, Uhlig HH. Cellular and molecular basis of proximal small intestine disorders. Nat Rev Gastroenterol Hepatol 2024; 21:687-709. [PMID: 39117867 DOI: 10.1038/s41575-024-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
The proximal part of the small intestine, including duodenum and jejunum, is not only dedicated to nutrient digestion and absorption but is also a highly regulated immune site exposed to environmental factors. Host-protective responses against pathogens and tolerance to food antigens are essential functions in the small intestine. The cellular ecology and molecular pathways to maintain those functions are complex. Maladaptation is highlighted by common immune-mediated diseases such as coeliac disease, environmental enteric dysfunction or duodenal Crohn's disease. An expanding spectrum of more than 100 rare monogenic disorders inform on causative molecular mechanisms of nutrient absorption, epithelial homeostasis and barrier function, as well as inflammatory immune responses and immune regulation. Here, after summarizing the architectural and cellular traits that underlie the functions of the proximal intestine, we discuss how the integration of tissue immunopathology and molecular mechanisms can contribute towards our understanding of disease and guide diagnosis. We propose an integrated mechanism-based taxonomy and discuss the latest experimental approaches to gain new mechanistic insight into these disorders with large disease burden worldwide as well as implications for therapeutic interventions.
Collapse
Affiliation(s)
- Tania Bildstein
- Great Ormond Street Hospital for Children, Department of Paediatric Gastroenterology, London, UK
| | - Fabienne Charbit-Henrion
- Department of Genomic Medicine for Rare Diseases, Necker-Enfants Malades Hospital, APHP, University of Paris-Cité, Paris, France
- INSERM UMR1163, Intestinal Immunity, Institut Imagine, Paris, France
| | - Aline Azabdaftari
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Jeanpierre M, Cognard J, Tusseau M, Riller Q, Bui LC, Berthelet J, Laurent A, Crickx E, Parlato M, Stolzenberg MC, Suarez F, Leverger G, Aladjidi N, Collardeau-Frachon S, Pietrement C, Malphettes M, Froissart A, Bole-Feysot C, Cagnard N, Rodrigues Lima F, Walzer T, Rieux-Laucat F, Belot A, Mathieu AL. Haploinsufficiency in PTPN2 leads to early-onset systemic autoimmunity from Evans syndrome to lupus. J Exp Med 2024; 221:e20232337. [PMID: 39028869 PMCID: PMC11259789 DOI: 10.1084/jem.20232337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
An exome sequencing strategy employed to identify pathogenic variants in patients with pediatric-onset systemic lupus or Evans syndrome resulted in the discovery of six novel monoallelic mutations in PTPN2. PTPN2 is a phosphatase that acts as an essential negative regulator of the JAK/STAT pathways. All mutations led to a loss of PTPN2 regulatory function as evidenced by in vitro assays and by hyperproliferation of patients' T cells. Furthermore, patients exhibited high serum levels of inflammatory cytokines, mimicking the profile observed in individuals with gain-of-function mutations in STAT factors. Flow cytometry analysis of patients' blood cells revealed typical alterations associated with autoimmunity and all patients presented with autoantibodies. These findings further supported the notion that a loss of function in negative regulators of cytokine pathways can lead to a broad spectrum of autoimmune manifestations and that PTPN2 along with SOCS1 haploinsufficiency constitute a new group of monogenic autoimmune diseases that can benefit from targeted therapy.
Collapse
Affiliation(s)
- Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- Department of Medical Genetics, Hospices Civils de Lyon, Bron, France
| | - Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Linh-Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Jérémy Berthelet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Audrey Laurent
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Etienne Crickx
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
- Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-immunes de L’adulte, Hôpital Henri Mondor, Fédération Hospitalo-Universitaire TRUE InnovaTive TheRapy for ImmUne disordErs, Assistance Publique Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France
| | - Marianna Parlato
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Felipe Suarez
- Department of Adult Hematology, Necker-Enfants Malades University Hospital and Centre de Référence des déficits Immunitaires Héréditaires, Assistance Publique Hôpitaux de Paris, INSERM U1163, Imagine Institute, Université Paris Cité, Paris, France
| | - Guy Leverger
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, UMR_S938, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Nathalie Aladjidi
- Centre de Référence National des Cytopénies Auto-immunes de l’Enfant, Bordeaux, France
- Pediatric Oncology Hemato-Immunology Unit, University Hospital, Plurithématique Centre d’Investigation Clinique, 1401, INSERM, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Institute of Pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Société Française de Foetopathologie Paris, Paris, France
| | - Christine Pietrement
- Centre Hospitalier Universitaire de Reims, Service de Pédiatrie Spécialisée et Généralisée, Université Reims Champagne Ardenne, Reims, France
| | - Marion Malphettes
- Service d’Immunopathologie Clinique, Saint Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Antoine Froissart
- Service Médecine Interne, Hôpital Intercommunal de Créteil, Créteil, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | | | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France, IHU-Imagine, Université de Paris, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
- National Referee Centre for Pediatric-Onset Rheumatism and Autoimmune Diseases, Hospices Civils de Lyon, Pediatric Nephrology, Rheumatology, Dermatology Unit, Mother and Children University Hospital; Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, CNRS, UMR5308, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
5
|
Tobin JM, Cooper MA. PTPN2 deficiency: Amping up JAK/STAT. J Exp Med 2024; 221:e20240980. [PMID: 39028870 PMCID: PMC11259788 DOI: 10.1084/jem.20240980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Identification of monogenic causes of immune dysregulation provides insight into human immune response and signaling pathways associated with autoimmunity. Here, Jeanpierre et al. (https://doi.org/10.1084/jem.20232337) identify new germline variants in the gene encoding PTPN2 associated with loss of regulatory function, enhanced JAK/STAT signaling, and early-onset autoimmunity.
Collapse
Affiliation(s)
- Joshua M. Tobin
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Tusseau M, Belot A. [Rare Autoimmune Diseases Role of Genetics - Example of Systemic Lupus Erythematosus]. Biol Aujourdhui 2024; 218:9-18. [PMID: 39007772 DOI: 10.1051/jbio/2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Indexed: 07/16/2024]
Abstract
Systemic lupus erythematosus (SLE) presents a complex clinical landscape with diverse manifestations, suggesting a multifactorial etiology. However, the identification of rare monogenic forms of the disease has shed light on specific genetic defects underlying SLE pathogenesis, offering valuable insights into its underlying mechanisms and clinical heterogeneity. By categorizing these monogenic forms based on the implicated signaling pathways, such as apoptotic body clearance, type I interferon signaling, JAK-STAT pathway dysregulation, innate immune receptor dysfunction and lymphocytic abnormalities, a more nuanced understanding of SLE's molecular basis emerges. Particularly in pediatric populations, where monogenic forms are more prevalent, routine genetic testing becomes increasingly important, with a diagnostic yield of approximately 10% depending on the demographic and methodological factors involved. This approach not only enhances diagnostic accuracy but also informs personalized treatment strategies tailored to the specific molecular defects driving the disease phenotype.
Collapse
Affiliation(s)
- Maud Tusseau
- Laboratoire de génétique des cancers et maladies multifactorielles, Service de génétique médicale, Hospices Civils de Lyon, Bron, France - Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard, Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France - Centre de référence des maladies rhumatologiques inflammatoires, des maladies auto-immunes et interféronopathies systémiques de l'enfant, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France - Service de néphrologie, rhumatologie, dermatologie pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
7
|
Tusseau M, Khaldi-Plassart S, Cognard J, Viel S, Khoryati L, Benezech S, Mathieu AL, Rieux-Laucat F, Bader-Meunier B, Belot A. Mendelian Causes of Autoimmunity: the Lupus Phenotype. J Clin Immunol 2024; 44:99. [PMID: 38619739 DOI: 10.1007/s10875-024-01696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by its large heterogeneity in terms of clinical presentation and severity. The pathophysiology of SLE involves an aberrant autoimmune response against various tissues, an excess of apoptotic bodies, and an overproduction of type-I interferon. The genetic contribution to the disease is supported by studies of monozygotic twins, familial clustering, and genome-wide association studies (GWAS) that have identified numerous risk loci. In the early 70s, complement deficiencies led to the description of familial forms of SLE caused by a single gene defect. High-throughput sequencing has recently identified an increasing number of monogenic defects associated with lupus, shaping the concept of monogenic lupus and enhancing our insights into immune tolerance mechanisms. Monogenic lupus (moSLE) should be suspected in patients with either early-onset lupus or syndromic lupus, in male, or in familial cases of lupus. This review discusses the genetic basis of monogenic SLE and proposes its classification based on disrupted pathways. These pathways include defects in the clearance of apoptotic cells or immune complexes, interferonopathies, JAK-STATopathies, TLRopathies, and T and B cell dysregulations.
Collapse
Affiliation(s)
- Maud Tusseau
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Samira Khaldi-Plassart
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Jade Cognard
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Sebastien Viel
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Liliane Khoryati
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Sarah Benezech
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France
| | - Fréderic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Department for Immunology, Hematology and Pediatric Rheumatology, Necker Hospital, APHP, Institut IMAGINE, Paris, France
| | - Alexandre Belot
- Centre International de Recherche en Infectiologie, Inserm, U1111, University Claude Bernard, Lyon 1, Centre National de La Recherche Scientifique, UMR5308, ENS de Lyon, Lyon, France.
- National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center, Hospices Civils de Lyon, Lyon, France.
- Pediatric Nephrology, Rheumatology, Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
8
|
Baumgartner CK, Ebrahimi-Nik H, Iracheta-Vellve A, Hamel KM, Olander KE, Davis TGR, McGuire KA, Halvorsen GT, Avila OI, Patel CH, Kim SY, Kammula AV, Muscato AJ, Halliwill K, Geda P, Klinge KL, Xiong Z, Duggan R, Mu L, Yeary MD, Patti JC, Balon TM, Mathew R, Backus C, Kennedy DE, Chen A, Longenecker K, Klahn JT, Hrusch CL, Krishnan N, Hutchins CW, Dunning JP, Bulic M, Tiwari P, Colvin KJ, Chuong CL, Kohnle IC, Rees MG, Boghossian A, Ronan M, Roth JA, Wu MJ, Suermondt JSMT, Knudsen NH, Cheruiyot CK, Sen DR, Griffin GK, Golub TR, El-Bardeesy N, Decker JH, Yang Y, Guffroy M, Fossey S, Trusk P, Sun IM, Liu Y, Qiu W, Sun Q, Paddock MN, Farney EP, Matulenko MA, Beauregard C, Frost JM, Yates KB, Kym PR, Manguso RT. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 2023; 622:850-862. [PMID: 37794185 PMCID: PMC10599993 DOI: 10.1038/s41586-023-06575-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.
Collapse
Affiliation(s)
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Ohio State University Comprehensive Cancer Center and Pelotonia Institute for Immuno-Oncology, Columbus, OH, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Pfizer, Groton, CT, USA
| | | | - Kira E Olander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Omar I Avila
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Sarah Y Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ashwin V Kammula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Audrey J Muscato
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Prasanthi Geda
- AbbVie, North Chicago, IL, USA
- Bristol Myers Squibb, Summit, NJ, USA
| | | | - Zhaoming Xiong
- AbbVie, North Chicago, IL, USA
- Ipsen Biosciences, Cambridge, MA, USA
| | | | | | - Mitchell D Yeary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - James C Patti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tyler M Balon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | - Navasona Krishnan
- AbbVie, North Chicago, IL, USA
- Monte Rosa Therapeutics, Boston, MA, USA
| | | | | | | | - Payal Tiwari
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kayla J Colvin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ian C Kohnle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Melissa Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Meng-Ju Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Collins K Cheruiyot
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Debattama R Sen
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel K Griffin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nabeel El-Bardeesy
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Yi Yang
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Im-Meng Sun
- Calico Life Sciences, South San Francisco, CA, USA
| | - Yue Liu
- Calico Life Sciences, South San Francisco, CA, USA
| | - Wei Qiu
- AbbVie, North Chicago, IL, USA
| | - Qi Sun
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Clay Beauregard
- Calico Life Sciences, South San Francisco, CA, USA
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Kathleen B Yates
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Robert T Manguso
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research and Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Roca-Rivada A, Marín-Cañas S, Colli ML, Vinci C, Sawatani T, Marselli L, Cnop M, Marchetti P, Eizirik DL. Inhibition of the type 1 diabetes candidate gene PTPN2 aggravates TNF-α-induced human beta cell dysfunction and death. Diabetologia 2023; 66:1544-1556. [PMID: 36988639 DOI: 10.1007/s00125-023-05908-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
AIMS/HYPOTHESIS TNF-α plays a role in pancreatic beta cell loss in type 1 diabetes mellitus. In clinical interventions, TNF-α inhibition preserves C-peptide levels in early type 1 diabetes. In this study we evaluated the crosstalk of TNF-α, as compared with type I IFNs, with the type 1 diabetes candidate gene PTPN2 (encoding protein tyrosine phosphatase non-receptor type 2 [PTPN2]) in human beta cells. METHODS EndoC-βH1 cells, dispersed human pancreatic islets or induced pluripotent stem cell (iPSC)-derived islet-like cells were transfected with siRNAs targeting various genes (siCTRL, siPTPN2, siJNK1, siJNK3 or siBIM). Cells were treated for 48 h with IFN-α (2000 U/ml) or TNF-α (1000 U/ml). Cell death was evaluated using Hoechst 33342 and propidium iodide staining. mRNA levels were assessed by quantitative reverse transcription PCR (qRT-PCR) and protein expression by immunoblot. RESULTS PTPN2 silencing sensitised beta cells to cytotoxicity induced by IFN-α and/or TNF-α by 20-50%, depending on the human cell model utilised; there was no potentiation between the cytokines. We silenced c-Jun N-terminal kinase (JNK)1 or Bcl-2-like protein 2 (BIM), and this abolished the proapoptotic effects of IFN-α, TNF-α or the combination of both after PTPN2 inhibition. We further observed that PTPN2 silencing increased TNF-α-induced JNK1 and BIM phosphorylation and that JNK3 is necessary for beta cell resistance to IFN-α cytotoxicity. CONCLUSIONS/INTERPRETATION We show that the type 1 diabetes candidate gene PTPN2 is a key regulator of the deleterious effects of TNF-α in human beta cells. It is conceivable that people with type 1 diabetes carrying risk-associated PTPN2 polymorphisms may particularly benefit from therapies inhibiting TNF-α.
Collapse
Affiliation(s)
- Arturo Roca-Rivada
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium.
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Maikel L Colli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Chiara Vinci
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
10
|
Rodari MM, Cazals-Hatem D, Uzzan M, Martin Silva N, Khiat A, Ta MC, Lhermitte L, Touzart A, Hanein S, Rouillon C, Joly F, Elmorjani A, Steffann J, Cerf-Bensussan N, Parlato M, Charbit-Henrion F. Insights into the expanding intestinal phenotypic spectrum of SOCS1 haploinsufficiency and therapeutic options. J Clin Immunol 2023:10.1007/s10875-023-01495-7. [PMID: 37156989 DOI: 10.1007/s10875-023-01495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Hyper activation of the JAK-STAT signaling underlies the pathophysiology of many human immune-mediated diseases. Herein, the study of 2 adult patients with SOCS1 haploinsufficiency illustrates the severe and pleomorphic consequences of its impaired regulation in the intestinal tract. METHODS Two unrelated adult patients presented with gastrointestinal manifestations, one with Crohn's disease-like ileo-colic inflammation refractory to anti-TNF and the other with lymphocytic leiomyositis causing severe chronic intestinal pseudo-occlusion. Next-generation sequencing was used to identify the underlying monogenic defect. One patient received anti-IL-12/IL-23 treatment while the other received the JAK1 inhibitor, ruxolitinib. Peripheral blood, intestinal tissues, and serum samples were analyzed before-and-after JAK1 inhibitor therapy using mass cytometry, histology, transcriptomic, and Olink assay. RESULTS Novel germline loss-of-function variants in SOCS1 were identified in both patients. The patient with Crohn-like disease achieved clinical remission with anti-IL-12/IL-23 treatment. In the second patient with lymphocytic leiomyositis, ruxolitinib induced rapid resolution of the obstructive symptoms, significant decrease of the CD8+ T lymphocyte muscular infiltrate, and normalization of serum and intestinal cytokines. Decreased frequencies of circulating Treg cells, MAIT cells, and NK cells, with altered CD56bright:CD16lo:CD16hi NK subtype ratios were not modified by ruxolitinib. CONCLUSION SOCS1 haploinsufficiency can result in a broad spectrum of intestinal manifestations and need to be considered as differential diagnosis in cases of severe treatment-refractory enteropathies, including the rare condition of lymphocytic leiomyositis. This provides the rationale for genetic screening and considering JAK inhibitors in such cases.
Collapse
Affiliation(s)
- Marco M Rodari
- Université Paris-Cité, Institut Imagine, Laboratory of Intestinal Immunity, INSERM U1163, Paris, France
| | - Dominique Cazals-Hatem
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Mathieu Uzzan
- Department of Gastroenterology, IBD unit, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
- Paris Est Créteil University UPEC, Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Gastroenterology department, Fédération Hospitalo-Universitaire TRUE InnovaTive theRapy for immUne disordErs, F-94010, Créteil, France
| | | | - Anis Khiat
- Université Paris-Cité, Institut Imagine, Laboratory of Intestinal Immunity, INSERM U1163, Paris, France
| | - Minh Chau Ta
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Ludovic Lhermitte
- Université Paris Cité, Institut Necker Enfants-Malades INEM, Institut National de La Santé Et de La Recherche Médicale (Inserm), U1151, Paris, France
| | - Aurore Touzart
- Université Paris Cité, Institut Necker Enfants-Malades INEM, Institut National de La Santé Et de La Recherche Médicale (Inserm), U1151, Paris, France
- Laboratory of Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades 75743, Paris, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, INSERM UMR1163, Imagine, Université Paris-Cité and Structure Fédérative de Recherche Necker, 75015, Paris, France
| | - Cléa Rouillon
- Department of Gastroenterology, Caen University Hospital, Caen, France
| | - Francisca Joly
- Department of Gastroenterology, IBD unit, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Adrienne Elmorjani
- Genomic Medecine of Rare Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Steffann
- Genomic Medecine of Rare Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris-Cité, Institut Imagine, Laboratory of Intestinal Immunity, INSERM U1163, Paris, France
| | - Marianna Parlato
- Université Paris-Cité, Institut Imagine, Laboratory of Intestinal Immunity, INSERM U1163, Paris, France.
| | - Fabienne Charbit-Henrion
- Université Paris-Cité, Institut Imagine, Laboratory of Intestinal Immunity, INSERM U1163, Paris, France.
- Genomic Medecine of Rare Diseases, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
11
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
12
|
Zhang M, Xiong Y, Tu J, Tang B, Zhang Z, Yu J, Shen L, Luo Q, Ye J. Hypoxia disrupts the nasal epithelial barrier by inhibiting PTPN2 in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 118:110054. [PMID: 36963262 DOI: 10.1016/j.intimp.2023.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND Hypoxia is involved in inflammation and immune response; however, its role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) is not fully understood. We aimed to investigate the mechanisms by which hypoxia disrupts the nasal epithelial barrier in CRSwNP. METHODS The expression of hypoxia-inducible factor-1α (HIF-1α), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and tight junction (TJ) components (claudin-4, occludin, and ZO-1) was detected in nasal polyps using immunohistochemistry, western blotting, and qRT-PCR. Primary human nasal epithelial cells (HNECs), BEAS-2B cells, and an eosinophilic CRSwNP (Eos CRSwNP) mouse model were used to explore the potential mechanisms by which hypoxia disrupts the nasal epithelial barrier. RESULTS HIF-1α expression in the non-Eos and Eos CRSwNP groups was higher than in the control group, and the expression of PTPN2 and TJs in the non-Eos and Eos CRSwNP groups were lower than those in the control group. Hypoxia decreased the expression of PTPN2 and TJs and increased epithelial cell permeability in HNECs, which was blocked by the HIF-1α inhibitor PX-478. PTPN2 overexpression inhibited hypoxia-induced downregulation of TJ expression in BEAS-2B cells, whereas PTPN2-knockdown aggravated the effects of hypoxia. In the Eos CRSwNP mouse model, both PX-478 and PTPN2 overexpression reduced the formation of nasal polypoid lesions, permeability of the nasal epithelium, and restored TJ expression. CONCLUSIONS Our data indicate that hypoxia-induced HIF-1α downregulates TJ expression by inhibiting PTPN2, thereby disrupting the nasal epithelial barrier and promoting CRSwNP development. HIF-1α and PTPN2 may be potential targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yishan Xiong
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China; Institute of Jiangxi Otorhinolaryngology Head & Neck Surgery, Nanchang, Jiangxi Province, China.
| |
Collapse
|
13
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Tang X, Sui X, Liu Y. Immune checkpoint PTPN2 predicts prognosis and immunotherapy response in human cancers. Heliyon 2023; 9:e12873. [PMID: 36685446 PMCID: PMC9852697 DOI: 10.1016/j.heliyon.2023.e12873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Background PTPN2, a member of the non-receptor protein tyrosine phosphatases family, holds a crucial role in tumorigenesis and cancer immunotherapy. However, most studies on the role of PTPN2 in cancer are limited to specific cancer types. Therefore, this study aimed to investigate the prognostic significance of PTPN2 in human cancers and its function in the tumor microenvironment. Methods To shed light on this matter, we investigated the expression level, prognostic value, genomic alterations, molecular function, immune function, and immunotherapeutic predictive ability of PTPN2 in human cancers using the TCGA, GTEx, CGGA, GEO, cBioPortal, STRING, TISCH, TIMER2.0, ESTIMATE, and TIDE databases. Furthermore, the CCK-8 assay was utilized to detect the effect of PTPN2 on cell proliferation. Cell immunofluorescence analysis was performed to probe the cellular localization of PTPN2. Western blot was applied to examine the molecular targets downstream of PTPN2. Finally, a Nomogram model was constructed using the TCGA-LGG cohort and evaluated with calibration curves and time-dependent ROCs. Results PTPN2 was highly expressed in most cancers and was linked to poor prognosis in ACC, GBM, LGG, KICH, and PAAD, while the opposite was true in OV, SKCM, and THYM. PTPN2 knockdown promoted the proliferation of melanoma cells, while significantly inhibiting proliferation in colon cancer and glioblastoma cells. In addition, TC-PTP, encoded by the PTPN2 gene, was primarily localized in the nucleus and cytoplasm and could negatively regulate the JAK/STAT and MEK/ERK pathways. Strikingly, PTPN2 knockdown significantly enhanced the abundance of PD-L1. PTPN2 was abundantly expressed in Mono/Macro cells and positively correlated with multiple immune infiltrating cells, especially CD8+ T cells. Notably, DLBC, LAML, OV, and TGCT patients in the PTPN2-high group responded better to immunotherapy, while the opposite was true in ESCA, KIRC, KIRP, LIHC, and THCA. Finally, the construction of a Nomogram model on LGG exhibited a high prediction accuracy. Conclusion Immune checkpoint PTPN2 is a powerful biomarker for predicting prognosis and the efficacy of immunotherapy in cancers. Mechanistically, PTPN2 negatively regulates the JAK/STAT and MEK/ERK pathways and the abundance of PD-L1.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Xue Sui
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, Shandong 256603, China
| | - Yongshuo Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China,Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China,Corresponding author. Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| |
Collapse
|
15
|
Stem-Cell-Derived β-Like Cells with a Functional PTPN2 Knockout Display Increased Immunogenicity. Cells 2022; 11:cells11233845. [PMID: 36497105 PMCID: PMC9737324 DOI: 10.3390/cells11233845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Type 1 diabetes is a polygenic disease that results in an autoimmune response directed against insulin-producing beta cells. PTPN2 is a known high-risk type 1 diabetes associated gene expressed in both immune- and pancreatic beta cells, but how genes affect the development of autoimmune diabetes is largely unknown. We employed CRISPR/Cas9 technology to generate a functional knockout of PTPN2 in human pluripotent stem cells (hPSC) followed by differentiating stem-cell-derived beta-like cells (sBC) and detailed phenotypical analyses. The differentiation efficiency of PTPN2 knockout (PTPN2 KO) sBC is comparable to wild-type (WT) control sBC. Global transcriptomics and protein assays revealed the increased expression of HLA Class I molecules in PTPN2 KO sBC at a steady state and upon exposure to proinflammatory culture conditions, indicating a potential for the increased immune recognition of human beta cells upon differential PTPN2 expression. sBC co-culture with autoreactive preproinsulin-reactive T cell transductants confirmed increased immune stimulations by PTPN2 KO sBC compared to WT sBC. Taken together, our results suggest that the dysregulation of PTPN2 expression in human beta cell may prime autoimmune T cell reactivity and thereby contribute to the development of type 1 diabetes.
Collapse
|
16
|
Bolton C, Smillie CS, Pandey S, Elmentaite R, Wei G, Argmann C, Aschenbrenner D, James KR, McGovern DPB, Macchi M, Cho J, Shouval DS, Kammermeier J, Koletzko S, Bagalopal K, Capitani M, Cavounidis A, Pires E, Weidinger C, McCullagh J, Arkwright PD, Haller W, Siegmund B, Peters L, Jostins L, Travis SPL, Anderson CA, Snapper S, Klein C, Schadt E, Zilbauer M, Xavier R, Teichmann S, Muise AM, Regev A, Uhlig HH. An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology 2022; 162:859-876. [PMID: 34780721 DOI: 10.1053/j.gastro.2021.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.
Collapse
Affiliation(s)
- Chrissy Bolton
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Institute of Child Health, University College London, London, UK
| | - Christopher S Smillie
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sumeet Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Gabrielle Wei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Dermot P B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah-Tiqva, Israel, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | | | - Melania Capitani
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Athena Cavounidis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health Department of Gastroenterology, Rheumatology and Infectious Disease, Campus Benjamin Franklin, Berlin, Germany
| | - James McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Wolfram Haller
- Department of Gastroenterology and Nutrition, Birmingham Children's Hospital, Birmingham, UK
| | - Britta Siegmund
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health Department of Gastroenterology, Rheumatology and Infectious Disease, Campus Benjamin Franklin, Berlin, Germany
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luke Jostins
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Simon P L Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Biomedical Research Center, University of Oxford, Oxford, UK
| | - Carl A Anderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Scott Snapper
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge, UK; Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ramnik Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton UK
| | - Aleixo M Muise
- Gastroenterology Division, The Hospital for Sick Children, Toronto, Ontario, Canada; SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
17
|
Nian Q, Berthelet J, Parlato M, Mechaly AE, Liu R, Dupret J, Cerf‐Bensussan N, Haouz A, Rodrigues Lima F. Structural characterization of a pathogenic mutant of human protein tyrosine phosphatase PTPN2 (Cys216Gly) that causes very early onset autoimmune enteropathy. Protein Sci 2022; 31:538-544. [PMID: 34806245 PMCID: PMC8820110 DOI: 10.1002/pro.4246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
PTPN2 is an important protein tyrosine phosphatase (PTP) that plays a key role in cell signaling. Deletions or inactivating mutations of PTPN2 have been described in different pathologies and underline its critical role in hematopoiesis, autoimmunity, and inflammation. Surprisingly, despite the major pathophysiological implications of PTPN2, the structural analysis of this PTP and notably of its pathogenic mutants remains poorly documented. Contrary to other human PTP enzymes, to date, only one structure of PTPN2 (wild-type form) has been reported. Here, we report the first crystal structure of a pathogenic mutant of PTPN2 (Cys216Gly) that causes an autoimmune enteropathy. We show in particular that this mutant adopts a classical PTP fold. More importantly, albeit inactive, the mutant retains its ability to bind substrates and to adopt the characteristic catalytically competent closed form of PTP enzymes. This novel PTPN2 structure may serve as a new tool to better understand PTP structures and the structural impacts of pathogenic mutations. Moreover, the C216G PTPN2 structure could also be helpful to design specific ligands/inhibitors.
Collapse
Affiliation(s)
- Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of China and Chinese Academy of Sciences Sichuan Translational Medicine Research HospitalChengduChina,Université de Paris, CNRS, Unité de Biologie Fonctionnelle et AdaptativeParisFrance
| | - Jérémy Berthelet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et AdaptativeParisFrance,Present address:
Université de Paris, CNRS, Centre Epigénétique et Destin CellulaireParisFrance
| | | | - Ariel E. Mechaly
- Institut Pasteur, Plate‐forme de Cristallographie‐C2RT, CNRS UMR 3528ParisFrance
| | - Rongxing Liu
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et AdaptativeParisFrance
| | - Jean‐Marie Dupret
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et AdaptativeParisFrance
| | | | - Ahmed Haouz
- Institut Pasteur, Plate‐forme de Cristallographie‐C2RT, CNRS UMR 3528ParisFrance
| | | |
Collapse
|
18
|
van Schewick CM, Lowe DM, Burns SO, Workman S, Symes A, Guzman D, Moreira F, Watkins J, Clark I, Grimbacher B. Bowel Histology of CVID Patients Reveals Distinct Patterns of Mucosal Inflammation. J Clin Immunol 2021; 42:46-59. [PMID: 34599484 PMCID: PMC8821476 DOI: 10.1007/s10875-021-01104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/18/2021] [Indexed: 01/22/2023]
Abstract
Diarrhea is the commonest gastrointestinal symptom in patients with common variable immunodeficiency (CVID). Different pathologies in patients' bowel biopsies have been described and links with infections have been demonstrated. The aim of this study was to analyze the bowel histology of CVID patients in the Royal-Free-Hospital (RFH) London CVID cohort. Ninety-five bowel histology samples from 44 adult CVID patients were reviewed and grouped by histological patterns. Reasons for endoscopy and possible causative infections were recorded. Lymphocyte phenotyping results were compared between patients with different histological features. There was no distinctive feature that occurred in most diarrhea patients. Out of 44 patients (95 biopsies), 38 lacked plasma cells. In 14 of 21 patients with nodular lymphoid hyperplasia (NLH), this was the only visible pathology. In two patients, an infection with Giardia lamblia was associated with NLH. An IBD-like picture was seen in two patients. A coeliac-like picture was found in six patients, four of these had norovirus. NLH as well as inflammation often occurred as single features. There was no difference in blood lymphocyte phenotyping results comparing groups of histological features. We suggest that bowel histology in CVID patients with abdominal symptoms falls into three major histological patterns: (i) a coeliac-like histology, (ii) IBD-like changes, and (iii) NLH. Most patients, but remarkably not all, lacked plasma cells. CVID patients with diarrhea may have an altered bowel histology due to poorly understood and likely diverse immune-mediated mechanisms, occasionally driven by infections.
Collapse
Affiliation(s)
- Cornelia M van Schewick
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Translational Cell Research, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - David M Lowe
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Sarita Workman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Andrew Symes
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - David Guzman
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Fernando Moreira
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | | | - Ian Clark
- Pathology Department, Royal Free Hospital, London, UK.
- Department of Pathology, Health Science Center, The University of Tennessee, 930 Madison Ave, Suite 500, Memphis, TN, 38163, USA.
| | - Bodo Grimbacher
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Translational Cell Research, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany.
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Sweat YY, Turner JR. PTPN2 mutations cause epithelium-intrinsic barrier loss that synergizes with mucosal immune hyperactivation. J Clin Invest 2021; 131:e151414. [PMID: 34623321 PMCID: PMC8409575 DOI: 10.1172/jci151414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is clear that excessive mucosal immune activation and intestinal barrier dysfunction both contribute to inflammatory bowel disease (IBD) pathogenesis. T cell protein tyrosine phosphatase (TCPTP), which extinguishes signaling in immune cells, is linked to IBD and other immune-mediated diseases. In this issue of the JCI, Marchelletta and Krishnan et al. demonstrate that, in intestinal epithelial cells, TCPTP regulates tight junction permeability in vivo. Intestinal epithelial TCPTP loss potentiated cytokine-induced barrier loss, and this synergized with effects of TCPTP loss in immune cells. This work implicates a single mutation as the cause of distinct functional aberrations in diverse cell types and demonstrates how one genetic defect can drive multihit disease pathogenesis.
Collapse
|
20
|
Marchelletta RR, Krishnan M, Spalinger MR, Placone TW, Alvarez R, Sayoc-Becerra A, Canale V, Shawki A, Park YS, Bernts LH, Myers S, Tremblay ML, Barrett KE, Krystofiak E, Kachar B, McGovern DP, Weber CR, Hanson EM, Eckmann L, McCole DF. T cell protein tyrosine phosphatase protects intestinal barrier function by restricting epithelial tight junction remodeling. J Clin Invest 2021; 131:138230. [PMID: 34623320 DOI: 10.1172/jci138230] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.
Collapse
Affiliation(s)
- Ronald R Marchelletta
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Taylaur W Placone
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Rocio Alvarez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Ali Shawki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Young Su Park
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lucas Hp Bernts
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Stephen Myers
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kim E Barrett
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Evan Krystofiak
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Bechara Kachar
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Elaine M Hanson
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
21
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
22
|
Wang YN, Liu S, Jia T, Feng Y, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Glucose Metabolism. Front Cell Dev Biol 2021; 9:682947. [PMID: 34268308 PMCID: PMC8276021 DOI: 10.3389/fcell.2021.682947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
T cell protein tyrosine phosphatase (TCPTP), a vital regulator in glucose metabolism, inflammatory responses, and tumor processes, is increasingly considered a promising target for disease treatments and illness control. This review discusses the structure, substrates and main biological functions of TCPTP, as well as its regulatory effect in glucose metabolism, as an attempt to be referenced for formulating treatment strategies of metabolic disorders. Given the complicated regulation functions in different tissues and organs of TCPTP, the development of drugs inhibiting TCPTP with a higher specificity and a better biocompatibility is recognized as a promising therapeutic strategy for diabetes or obesity. Besides, treatments targeting TCPTP in a specific tissue or organ are suggested to be considerably promising.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
23
|
Spalinger MR, Sayoc-Becerra A, Ordookhanian C, Canale V, Santos AN, King SJ, Krishnan M, Nair MG, Scharl M, McCole DF. The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-macrophage Interactions. J Crohns Colitis 2021; 15:471-484. [PMID: 32909045 PMCID: PMC7944512 DOI: 10.1093/ecco-jcc/jjaa182] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. METHODS Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. RESULTS Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. CONCLUSIONS PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.
Collapse
Affiliation(s)
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Christ Ordookhanian
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Alina N Santos
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Michael Scharl
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
24
|
Wang YN, Liu S, Jia T, Feng Y, Zhang W, Xu X, Zhang D. T Cell Protein Tyrosine Phosphatase in Osteoimmunology. Front Immunol 2021; 12:620333. [PMID: 33692794 PMCID: PMC7938726 DOI: 10.3389/fimmu.2021.620333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Osteoimmunology highlights the two-way communication between bone and immune cells. T cell protein tyrosine phosphatase (TCPTP), also known as protein-tyrosine phosphatase non-receptor 2 (PTPN2), is an intracellular protein tyrosine phosphatase (PTP) essential in regulating immune responses and bone metabolism via dephosphorylating target proteins. Tcptp knockout in systemic or specific immune cells can seriously damage the immune function, resulting in bone metabolism disorders. This review provided fresh insights into the potential role of TCPTP in osteoimmunology. Overall, the regulation of osteoimmunology by TCPTP is extremely complicated. TCPTP negatively regulates macrophages activation and inflammatory factors secretion to inhibit bone resorption. TCPTP regulates T lymphocytes differentiation and T lymphocytes-related cytokines signaling to maintain bone homeostasis. TCPTP is also expected to regulate bone metabolism by targeting B lymphocytes under certain time and conditions. This review offers a comprehensive update on the roles of TCPTP in osteoimmunology, which can be a promising target for the prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shiyue Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tingting Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yao Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|