1
|
Doi T, Ishikawa T, Moriguchi M, Itoh Y. Current status of cancer genome medicine for pancreatic ductal adenocarcinoma. Jpn J Clin Oncol 2025:hyaf012. [PMID: 39893577 DOI: 10.1093/jjco/hyaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis; however, advancements in cancer genome profiling using next-generation sequencing have provided new perspectives. KRAS mutations are the most frequently observed genomic alterations in patients with PDAC. However, until recently, it was not considered a viable therapeutic target. Although KRAS G12C mutations for which targeted therapies are already available are infrequent in PDAC, treatments targeting KRAS G12D and pan-KRAS are still under development. Similarly, new treatment methods for KRAS, such as chimeric antigen receptor T-cell therapy, have been developed. Several other potential therapeutic targets have been identified for KRAS wild-type PDAC. For instance, immune checkpoint inhibitors have demonstrated efficacy in PDAC treatment with microsatellite instability-high/deficient mismatch repair and tumor mutation burden-high profiles. However, for other PDAC cases with low immunogenicity, combination therapies that enhance the effectiveness of immune checkpoint inhibitors are being considered. Additionally, homologous recombination repair deficiencies, including BRCA1/2 mutations, are prevalent in PDAC and serve as important biomarkers for therapies involving poly (adenosine diphosphate-ribose) polymerase inhibitors and platinum-based therapies. Currently, olaparib is available for maintenance therapy of BRCA1/2 mutation-positive PDAC. Further therapeutic developments are ongoing for genetic abnormalities involving BRAF V600E and the fusion genes RET, NTRK, NRG, ALK, FGFR2, and ROS1. Overcoming advanced PDAC remains a formidable challenge; however, this review outlines the latest therapeutic strategies that are expected to lead to significant advancements.
Collapse
Affiliation(s)
- Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Cancer Genome Medical Center, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Medical Oncology Unit, University Hospital, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Milella M, Orsi G, di Marco M, Salvatore L, Procaccio L, Noventa S, Bozzarelli S, Garajova I, Vasile E, Giordano G, Macchini M, Cavaliere A, Gaule M, Bergamo F, Chiaravalli M, Palloni A, Carloni R, Bittoni A, Niger M, Rapposelli IG, Rodriquenz MG, Scartozzi M, Mosconi S, Giommoni E, Bernardini I, Paratore C, Spallanzani A, Bencardino K, Forti L, Tamburini E, Lonardi S, Scarpa A, Cascinu S, Tortora G, Sperduti I, Reni M. Real-World Impact of Olaparib Exposure in Advanced Pancreatic Cancer Patients Harboring Germline BRCA1-2 Pathogenic Variants. Cancer Med 2025; 14:e70364. [PMID: 39861955 PMCID: PMC11761426 DOI: 10.1002/cam4.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 10/13/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication. METHODS Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed. RESULTS Of 114, 53 BRCA-mutant pancreatic cancer patients had received olaparib for metastatic disease. OS was significantly longer in patients who were exposed to olaparib (hazard ratio [HR] 0.568, 95% confidence interval [CI] 0.351-0.918, log-rank p = 0.02) in any setting/line of treatment; similar results were obtained for patients who received olaparib as maintenance treatment (in any line of treatment), patients who had stage IV disease at diagnosis, and patients who did not experience progressive disease as their best response to first-line chemotherapy. Exposure to olaparib in the first-line maintenance setting after platinum-based chemotherapy, however, did not significantly impact survival. At multivariate analysis, CA19.9 levels at diagnosis and response to first-line chemotherapy were independently prognostic; however, when response to chemotherapy was excluded, any exposure to olaparib was a significant independent predictor of longer OS, together with CA19.9 levels. CONCLUSION The real-world data presented here support the use of olaparib for metastatic disease in germline BRCA-mutant pancreatic cancer patients, as it may significantly prolong survival.
Collapse
|
3
|
Su D, Ruan Y, Shi Y, Cao D, Wu T, Dang T, Wang H, Xin Y, Ma M, Meng H, Liu C, Zhang Y. Molecular Subtyping and Genomic Profiling Expand Precision Medicine in KRAS Wild-Type Pancreatic Cancer. Cancer Sci 2025. [PMID: 39833990 DOI: 10.1111/cas.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis and limited treatment options. While the majority of PDAC cases harbor KRAS mutations, approximately 8%-10% are KRAS wild-type (KRAS-WT). These KRAS-WT tumors often contain actionable mutations and gene fusions, making them more suitable for precision therapies. Identifying these molecular alterations is crucial for improving outcomes in this subset of patients. This retrospective study involved 34 patients with KRAS-WT PDAC. Genomic profiling was performed using next-generation sequencing (NGS) and RNA sequencing to detect mutations and fusions. Comparative analysis was conducted with TCGA-PAAD data, and immune infiltration was assessed using bioinformatic deconvolution methods. Targetable alterations were identified in multiple pathways. Key mutations included ATM (18%), PIK3CA (15%), and ROS1 (15%), while actionable gene fusions such as CCDC6-RET and ETV6-NTRK3 were present in 10.3% of patients. The gene mutations associated with homologous recombination deficiency (HRD) are predicted to increase sensitivity to platinum-based chemotherapy (p = 0.047). Tumors with epigenetic regulatory genes mutations (e.g., ARID1A, KMT2C/D) exhibited enhanced immune cell infiltration, highlighting potential responsiveness to immune checkpoint inhibitors (ICIs). Kinase fusions (NTRK and RET) were linked to response to larotinib and RET-specific inhibitors, respectively. KRAS-WT PDAC contains actionable mutations and fusions, offering significant potential for targeted and immune-based therapies. Further clinical studies are needed to validate these therapeutic approaches.
Collapse
Affiliation(s)
- Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yingfei Shi
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Dandan Cao
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Hong Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yaqun Xin
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Ming Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
4
|
George TJ, Lee JH, DeRemer DL, Hosein PJ, Staal S, Markham MJ, Jones D, Daily KC, Chatzkel JA, Ramnaraign BH, Close JL, Ezenwajiaku N, Murphy MC, Allegra CJ, Rogers S, Zhang Z, Li D, Srinivasan G, Shaheen M, Hromas R. Phase II Trial of the PARP Inhibitor, Niraparib, in BAP1 and Other DNA Damage Response Pathway-Deficient Neoplasms. JCO Precis Oncol 2024; 8:e2400406. [PMID: 39626160 PMCID: PMC11616782 DOI: 10.1200/po-24-00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE BRCA1-associated protein 1 (BAP1) is a critical cell cycle and DNA damage response (DDR) regulator with mutations (mBAP1) causing a functional protein loss. PARP inhibitors (PARPis) demonstrate synthetic lethality in mBAP1 preclinical models, independent of underlying BRCA status. This study aimed to explore the clinical activity of niraparib in patients with advanced tumors likely to harbor mBAP1. METHODS This was a phase II multicenter trial in which refractory solid tumor patients were assigned to cohort A (histology-specific tumors likely to harbor mBAP1) or cohort B (histology-agnostic tumors with other known non-BRCA-confirmed DDR mutations). All patients received niraparib 300 mg orally once daily on a 28-day cycle. The primary end point was objective response rate, and secondary end points included progression-free survival (PFS) and overall survival. RESULTS From August 2018 through December 2021, 37 patients were enrolled with 31 evaluable for response (cohort A, n = 18; cohort B, n = 13). In cohort A, the best response was one partial response (PR; 6%), eight stable disease (SD; 44%), and nine progressive disease (PD; 50%). This cohort stopped at the first stage following the prespecified Simon's design. mBAP1 was confirmed in 7/9 patients (78%) with PR or SD but in only 3/9 (33%) in those with PD. The median PFS in patients with mBAP1 (n = 10) was 6.7 months (95% CI, 1.0 to 9.2) versus 1.8 months (95% CI, 0.9 to 4.5) for wild-type (n = 8; P = .020). In cohort B, the best response was six SD (46%) and seven PD (54%), with SD in those with ATM, CHEK2, PTEN, RAD50, and ARID1A mutations. CONCLUSION Niraparib failed to meet the prespecified efficacy end point for response. However, clinical benefit was suggested in a proportion of patients who had a confirmed mBAP1, supporting further investigation.
Collapse
Affiliation(s)
- Thomas J. George
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Ji-Hyun Lee
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - David L. DeRemer
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL
| | - Peter J. Hosein
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Steven Staal
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Merry Jennifer Markham
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Dennie Jones
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Karen C. Daily
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Jonathan A. Chatzkel
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Brian H. Ramnaraign
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Julia L. Close
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Nkiruka Ezenwajiaku
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Martina C. Murphy
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Carmen J. Allegra
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Sherise Rogers
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, FL
- University of Florida Health Cancer Center, Gainesville, FL
| | - Zhongyue Zhang
- University of Florida Health Cancer Center, Gainesville, FL
| | - Derek Li
- University of Florida Health Cancer Center, Gainesville, FL
- Department of Biostatistics, University of Florida, Gainesville, FL
| | | | - Montaser Shaheen
- Mays Cancer Center, University of Texas at San Antonio, San Antonio, TX
| | - Robert Hromas
- Mays Cancer Center, University of Texas at San Antonio, San Antonio, TX
- Department of Medicine, College of Medicine, University of Texas at San Antonio, San Antonio, TX
| |
Collapse
|
5
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Doi T, Ishikawa T, Sakakida T, Itani J, Sone D, Morita R, Kataoka S, Miyake H, Seko Y, Yamaguchi K, Moriguchi M, Sogame Y, Konishi H, Murashima K, Iwasaku M, Takayama K, Itoh Y. Real-world genome profiling in Japanese patients with pancreatic ductal adenocarcinoma focusing on HRD implications. Cancer Sci 2024; 115:3729-3739. [PMID: 39315592 PMCID: PMC11531956 DOI: 10.1111/cas.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges due to its high mortality, making it a critical area of research. This retrospective observational study aimed to analyze real-world data from comprehensive genome profiling (CGP) of Japanese patients with PDAC, mainly focusing on differences in gene detection rates among panels and the implications for homologous recombination deficiency (HRD) status. This study enrolled 2568 patients with PDAC who had undergone CGP between June 2019 and December 2021 using data from the nationwide Center for Cancer Genomics and Advanced Therapeutics database. Two types of CGP assays (tissue and liquid biopsies) were compared and a higher detection rate of genetic abnormalities in tissue specimens was revealed. HRD-related gene alterations were detected in 23% of patients, with BRCA1/2 mutations accounting for 0.9% and 2.9% of patients, respectively. Treatment outcome analysis indicated that patients with BRCA1/2 mutations had a longer time to treatment discontinuation with FOLFIRINOX than gemcitabine plus nab-paclitaxel as first-line therapy (9.3 vs. 5.6 months, p = 0.028). However, no significant differences were observed in the treatment response among the other HRD-related genes. Logistic regression analysis identified younger age and family history of breast, prostate, and ovarian cancers as predictive factors for HRD-related gene alterations. Despite the lack of progression-free survival data and the inability to discriminate between germline and somatic mutations, this study provides valuable insights into the clinical implications of CGP in Japanese patients with PDAC. Further research is warranted to optimize panel selection and elucidate the efficacy of platinum-based therapies depending on the HRD status.
Collapse
Affiliation(s)
- Toshifumi Doi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Medical Oncology UnitUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Tomoki Sakakida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Junichiro Itani
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Daiki Sone
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Ryuichi Morita
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Seita Kataoka
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hayato Miyake
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yoshio Sogame
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kyoko Murashima
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Iwasaku
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Koichi Takayama
- Cancer Genome Medical CenterUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Medical Oncology UnitUniversity Hospital, Kyoto Prefectural University of MedicineKyotoJapan
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
7
|
Lansbergen MF, Dings MPG, Manoukian P, Fariña A, Waasdorp C, Hooijer GKJ, Verheij J, Koster J, Zwijnenburg DA, Wilmink JW, Medema JP, Dijk F, van Laarhoven HWM, Bijlsma MF. Transcriptome-based classification to predict FOLFIRINOX response in a real-world metastatic pancreatic cancer cohort. Transl Res 2024; 273:137-147. [PMID: 39154856 DOI: 10.1016/j.trsl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. This study aims to correlate molecular subtypes in metastatic PDAC with FOLFIRINOX responses using real-world data, providing assistance in counselling patients. We collected 131 RNA-sequenced metastatic biopsies and applied a network-based meta-analysis using published PDAC classifiers. Subsequent survival analysis was performed using the most suitable classifier. For validation, we developed an immunohistochemistry (IHC) classifier using GATA6 and keratin-17 (KRT17), and applied it to 86 formalin-fixed paraffin-embedded samples of advanced PDAC. Lastly, GATA6 knockdown models were generated in PDAC organoids and cell lines. We showed that the PurIST classifier was the most suitable classifier. With this classifier, classical tumors had longer PFS and OS than basal-like tumors (PFS: 216 vs. 78 days, p = 0.0002; OS: 251 vs. 195 days, p = 0.049). The validation cohort showed a similar trend. Importantly, IHC GATA6low patients had significantly shorter survival with FOLFIRINOX (323 vs. 746 days, p = 0.006), but no difference in non-treated patients (61 vs. 54 days, p = 0.925). This suggests that GATA6 H-score predicts therapy response. GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Paul Manoukian
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arantza Fariña
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gerrit K J Hooijer
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frederike Dijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Jia Q, Zhu Y, Yao H, Yin Y, Duan Z, Zheng J, Ma D, Yang M, Yang J, Zhang J, Liu D, Hua R, Huo Y, Fu X, Sun Y, Liu W. Oncogenic GALNT5 confers FOLFIRINOX resistance via activating the MYH9/ NOTCH/ DDR axis in pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:767. [PMID: 39433745 PMCID: PMC11493973 DOI: 10.1038/s41419-024-07110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemotherapy resistance has been a great challenge in pancreatic ductal adenocarcinoma(PDAC) treatments. Current first-line chemotherapy regimens for PDAC include gemcitabine-based regimens such as AG regimen (albumin paclitaxel and gemcitabine), fluorouracil-based regiments such as FOLFIRINOX regimen ((5-fluorouracil5-FU), oxaliplatin, Irinotecan) and platinum-based regimens for patients with BRCA mutations. large amounts of work have been done on exploring the mechanism underlying resistance of gemcitabine-based and platinum-based regimens, while little research has been achieved on the mechanism of FOLFIRINOX regimens resistance. Hence, we identified Polypeptide N-Acetylgalactosaminyltransferase 5, (GALNT5) as a vital regulator and a potential therapeutic target in FOLFIRINOX regimens resistance. Colony formation assays and flow cytometry assays were performed to explore the roles of GALNT5 in cell proliferation and apoptosis in PDAC treated with FOLFIRINOX. IC50 alterations were calculated in GALNT5 knockdown and overexpressed cell lines. RNA-seq followed by GSEA (gene set enrichment analysis) was displayed to explore the potential mechanism. WB (western blotting), real-time PCR, and IF (immunofluorescence) were performed to validate relative pathways. The mouse orthotopic xenograft PDAC model was established to examine GALNT5 functions in vivo. GALNT5 was highly expressed in PDAC tissues and predicted poor prognosis in PDAC. Upregulation of GALNT5 in PDAC cells conferred FOLFIRINOX resistance on PDAC by inhibiting DNA damage. Moreover, GALNT5 interacted with MYH9, thus participating in the activation of the NOTCH pathways, resulting in hampering FOI-induced DNA damage. Functions of GALNT5 promoting FOLFIRINOX resistance were validated in vivo. In this study, we found that aberrantly overexpressed GALNT5 in PDAC took part in the activation of the NOTCH pathway by interacting with MYH9, thus inhibiting the DDR to achieve FOLFIRINOX resistance and causing poor prognosis. We identified GALNT5 as a potential therapeutic target for PDAC patients resistant to FOLFIRINOX chemotherapy.
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- N-Acetylgalactosaminyltransferases/metabolism
- N-Acetylgalactosaminyltransferases/genetics
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Animals
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Mice
- Cell Line, Tumor
- Polypeptide N-acetylgalactosaminyltransferase
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Receptors, Notch/metabolism
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Mice, Nude
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Signal Transduction/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Female
- Xenograft Model Antitumor Assays
- Myosin Heavy Chains
Collapse
Affiliation(s)
- Qinyuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yuheng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Hongfei Yao
- Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P.R. China
| | - Yifan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Jiahao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Ding Ma
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Junfeng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Xueliang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P.R. China.
| |
Collapse
|
9
|
Sudo K, Nakamura Y, Ueno M, Furukawa M, Mizuno N, Kawamoto Y, Okano N, Umemoto K, Asagi A, Ozaka M, Ohtsubo K, Shimizu S, Matsuhashi N, Itoh S, Matsumoto T, Satoh T, Okuyama H, Goto M, Hasegawa H, Yamamoto Y, Odegaard JI, Bando H, Yoshino T, Ikeda M, Morizane C. Clinical utility of BRCA and ATM mutation status in circulating tumour DNA for treatment selection in advanced pancreatic cancer. Br J Cancer 2024; 131:1237-1245. [PMID: 39198618 PMCID: PMC11443054 DOI: 10.1038/s41416-024-02834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Identification of homologous recombination deficiency (HRD) remains a challenge in advanced pancreatic cancer (APC). We investigated the utility of circulating tumour DNA (ctDNA) profiling in the assessment of BRCA1/2 and ATM mutation status and treatment selection in APC. METHODS We analysed clinical and ctDNA data of 702 patients with APC enroled in GOZILA, a ctDNA profiling study using Guardant360. RESULTS Inactivating BRCA1/2 and ATM mutations were detected in 4.8% (putative germline, 3.7%) and 4.4% (putative germline, 0.9%) of patients, respectively. Objective response (63.2% vs. 16.2%) and PFS (HR 0.55, 95% CI 0.32-0.93) on platinum-containing chemotherapy were significantly better in patients with putative germline BRCA1/2 (gBRCA) mutation than those without. In contrast, putative gBRCA mutation had no impact on the efficacy of gemcitabine plus nab-paclitaxel. In 2 patients treated with platinum-containing therapy, putative BRCA2 reversion mutations were detected. Three of seven patients with somatic BRCA mutations responded to platinum-containing therapy, while only one of four with putative germline ATM mutations did. One-third of somatic ATM mutations were in genomic loci associated with clonal haematopoiesis. CONCLUSION Comprehensive ctDNA profiling provides clinically relevant information regarding HRD status. It can be a practical, convenient option for HRD screening in APC.
Collapse
Affiliation(s)
- Kentaro Sudo
- Department of Gastroenterology, Chiba Cancer Center, Chiba, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
- Translational Research Support Office, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan.
| | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masayuki Furukawa
- Department of Hepato-Biliary-Pancreatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Nobumasa Mizuno
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, Sapporo, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Kumiko Umemoto
- Department of Clinical Oncology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Akinori Asagi
- Department of Gastrointestinal Medical Oncology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koushiro Ohtsubo
- Department of Medical Oncology, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery and Pediatric Surgery, Gifu University, Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Matsumoto
- Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Taroh Satoh
- Center for Cancer Genomics and Precision Medicine, Osaka University Hospital, Suita, Japan
| | - Hiroyuki Okuyama
- Department of Medical Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Hiroko Hasegawa
- Department of Gastroenterology and Hepatology, NHO, Osaka National Hospital, Osaka, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, University of Tsukuba Hospital, Tsukuba, Japan
| | | | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Hendley AM, Ashe S, Urano A, Ng M, Phu TA, Peng XL, Luan C, Finger AM, Jang GH, Kerper NR, Berrios DI, Jin D, Lee J, Riahi IR, Gbenedio OM, Chung C, Roose JP, Yeh JJ, Gallinger S, Biankin AV, O'Kane GM, Ntranos V, Chang DK, Dawson DW, Kim GE, Weaver VM, Raffai RL, Hebrok M. nSMase2-mediated exosome secretion shapes the tumor microenvironment to immunologically support pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614610. [PMID: 39399775 PMCID: PMC11468832 DOI: 10.1101/2024.09.23.614610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical. nSMase2 elimination prolongs survival of KPC mice, hinders vasculature development, and fosters a robust immune response. nSMase2 loss leads to recruitment of cytotoxic T cells, N1-like neutrophils, and abundant infiltration of anti-tumorigenic macrophages in the pancreatic preneoplastic microenvironment. Mechanistically, we demonstrate that nSMase2-expressing PDA cell small extracellular vesicles (sEVs) reduce survival of KPC mice; PDA cell sEVs generated independently of nSMase2 prolong survival of KPC mice and reprogram macrophages to a proinflammatory phenotype. Collectively, our study highlights previously unappreciated opposing roles for exosomes, based on biogenesis pathway, during PDA progression. Graphical abstract
Collapse
|
11
|
Zwimpfer TA, Ewald H, Bilir E, Jayawardana M, Appenzeller-Herzog C, Bizzarri N, Razumova Z, Kacperczyk-Bartnik J, Heinzelmann-Schwarz V, Friedlander M, Bowtell DD, Garsed DW. Predictive value of homologous recombination deficiency status for survival outcomes in primary tubo-ovarian high-grade serous carcinoma. Cochrane Database Syst Rev 2024; 9:CD015896. [PMID: 39312297 PMCID: PMC11418971 DOI: 10.1002/14651858.cd015896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (prognosis). The objectives are as follows: To evaluate the predictive value of the prognostic factor HRD status, as determined by various clinically validated HRD assays at the time of staging laparotomy, compared to BRCA1/2 mutation status for progression-free survival and overall survival in patients with tubo-ovarian high-grade serous carcinoma treated in the first-line setting with a combination of surgery and platinum-based chemotherapy and/or maintenance with PARP inhibitors.
Collapse
Affiliation(s)
- Tibor A Zwimpfer
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Gynaecological Cancer Centre, University Hospital Basel, Basel, Switzerland
| | - Hannah Ewald
- University Medical Library, University of Basel, Basel, Switzerland
| | - Esra Bilir
- Department of Global Health, Koç University Graduate School of Health Sciences, Istanbul, Turkey
- Department of Gynecologic Oncology, Koc University School of Medicine, Istanbul, Turkey
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madawa Jayawardana
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | | | - Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Zoia Razumova
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - David Dl Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
12
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Kawamoto Y, Yamai T, Ikezawa K, Seiki Y, Watsuji K, Hirao T, Urabe M, Kai Y, Takada R, Mukai K, Nakabori T, Uehara H, Inoue T, Fujisawa F, Ohkawa K. Clinical significance of germline breast cancer susceptibility gene (gBRCA) testing and olaparib as maintenance therapy for patients with pancreatic cancer. BMC Cancer 2024; 24:1000. [PMID: 39134950 PMCID: PMC11321060 DOI: 10.1186/s12885-024-12722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Germline breast cancer susceptibility gene (gBRCA) mutation in patients with pancreatic cancer (PC) is not common in clinical practice. Therefore, factors that efficiently show gBRCA mutations and the real-world outcomes of olaparib maintenance therapy have not been fully established. In the present study, we clarified the indicators for the effective detection of gBRCA mutation and the efficacy and safety of olaparib as maintenance therapy. METHODS We retrospectively analyzed 84 patients with PC who underwent gBRCA testing (BRACAnalysis, Myriad Genetics, Salt Lake City, UT, USA) at our institute between January 2021 and March 2022. For each patient, clinical data were extracted from medical records. RESULTS The median patient age was 64 y (29-85 y), and 41 patients (48.8%) were male. The gBRCA mutations were identified in 10 (11.9%) patients; two patients had BRCA1 mutation and eight had BRCA2 mutation. All patients with gBRCA mutation had a family history of any cancer, and eight of them had a family history of Hereditary Breast and Ovarian Cancer syndrome (HBOC)-related cancer. The gBRCA mutation rate was higher for patients with PC with a family history of HBOC-related cancer compared to that in patients with PC having a family history of other cancers and no family history of cancer (22.9% vs. 4.1%; P = 0.014). In our study, eight out of 10 patients with gBRCA-positive PC received olaparib after platinum-based chemotherapy. The best responses to platinum-based chemotherapy included a complete response in one patient (12.5%) and a partial response in seven patients (87.5%). The median duration of treatment with platinum-based chemotherapy plus olaparib was 17.5 months (8-87 months), and the duration of treatment with olaparib maintenance therapy was 11 months (1-30 months). During olaparib maintenance therapy, three patients showed no disease progression. One of these three patients underwent conversion surgery after receiving olaparib for 12 months. CONCLUSIONS The gBRCA testing should be considered proactively, especially in patients with PC with a family history of HBOC-related cancer.
Collapse
Affiliation(s)
- Yasuharu Kawamoto
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Takuo Yamai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
- Department of Gastroenterology, Osaka General Medical Center, Osaka, Japan
| | - Kenji Ikezawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan.
| | - Yusuke Seiki
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Ko Watsuji
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Takeru Hirao
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Makiko Urabe
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Yugo Kai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Ryoji Takada
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Kaori Mukai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Tasuku Nakabori
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Hiroyuki Uehara
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| | - Tazuko Inoue
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Fumie Fujisawa
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Shiga General Hospital, Shiga, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chou-ku, Osaka, 541-8567, Japan
| |
Collapse
|
14
|
Tsang ES, Dhawan MS, Pacaud R, Thomas S, Grabowsky J, Wilch L, Karipineni S, Kelley RK, Ko AH, Collisson E, Chapman JS, Ueda S, Bergsland EK, Munster P. Synthetic Lethality Beyond BRCA: A Phase I Study of Rucaparib and Irinotecan in Metastatic Solid Tumors With Homologous Recombination-Deficiency Mutations Beyond BRCA1/2. JCO Precis Oncol 2024; 8:e2300494. [PMID: 38865673 DOI: 10.1200/po.23.00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 06/14/2024] Open
Abstract
PURPOSE Combining poly ADP-ribose polymerase (PARP) and topoisomerase I inhibitors has demonstrated synergistic effects in in vivo models. This phase I trial evaluated rucaparib and irinotecan in metastatic solid tumors with homologous recombination deficiency. METHODS This study enrolled patients in three cohorts to determine the tolerability and preliminary efficacy of (1) rucaparib 400 mg PO twice a day (days 1-7, 15-21) and irinotecan 65 mg/m2 intravenously once every 2 weeks; (2) rucaparib 400 mg PO twice a day (D1-7, 15-21) and irinotecan 100 mg/m2 once every 2 weeks; and (3) rucaparib 400 mg per os twice a day (D1-7) and irinotecan 100 mg/m2 once every 3 weeks. RESULTS Twenty patients were enrolled: 95% with previous platinum, 40% with previous irinotecan, and 20% with previous PARP inhibitor. The maximally tolerated was determined as rucaparib 400 mg twice a day days 1-7 and irinotecan 100 mg/m2 once every 3 weeks. Four dose-limiting toxicities (all grade 3-4 neutropenia) occurred during dose escalation with only neutropenia as other grade 3-4 toxicities (25%; grade 3 [n = 3], grade 4 [n = 2]). Treatment-related grade 1-2 adverse events included neutropenia (45%), diarrhea (45%), nausea (40%), and fatigue (30%). Of 17 patients with evaluable disease, six patients (35%) derived clinical benefit (n = 2 with PR, n = 4 with stable disease for over 6 months). Three patients remained on study >1 year: two with ATM mutations (small bowel carcinoma and pancreatic neuroendocrine tumor) and one patient with a PALB2 mutation (primary peritoneal cancer). CONCLUSION Pulse dosing of rucaparib and once every 3 weeks irinotecan was well tolerated for up to 18 months with durable responses in BRCA-, PALB2-, and ATM-mutated cancers despite progression on previous platinum.
Collapse
Affiliation(s)
- Erica S Tsang
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Mallika S Dhawan
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Romain Pacaud
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Scott Thomas
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Jennifer Grabowsky
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Lauren Wilch
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Silpa Karipineni
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Robin Kate Kelley
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Andrew H Ko
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Eric Collisson
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Jocelyn S Chapman
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Stefanie Ueda
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Emily K Bergsland
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| | - Pamela Munster
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
15
|
Xu Z, Jiang W, Liu L, Qiu Y, Wang J, Dai S, Guo J, Xu J. Dual-loss of PBRM1 and RAD51 identifies hyper-sensitive subset patients to immunotherapy in clear cell renal cell carcinoma. Cancer Immunol Immunother 2024; 73:95. [PMID: 38607586 DOI: 10.1007/s00262-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Youqi Qiu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Siyuan Dai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Newhook TE, Tsai S, Meric-Bernstam F. Precision Oncology in Hepatopancreatobiliary Cancer Surgery. Surg Oncol Clin N Am 2024; 33:343-367. [PMID: 38401914 DOI: 10.1016/j.soc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Advances in technology have allowed for the characterization of tumors at the genomic, transcriptomic, and proteomic levels. There are well-established targets for biliary tract cancers, with exciting new targets emerging in pancreatic ductal adenocarcinoma and potential targets in hepatocellular carcinoma. Taken together, these data suggest an important role for molecular profiling for personalizing cancer therapy in advanced disease and need for design of novel neoadjuvant studies to leverage these novel therapeutics perioperatively in the surgical patient.
Collapse
Affiliation(s)
- Timothy E Newhook
- Department of Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Susan Tsai
- Division of Surgical Oncology, Department of Surgery, Ohio State University Comprehensive Cancer Center, N924 Doan Hall, 410 West 10th Avenue, Columbus, OH 43210, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, FC8.3044, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Ikezawa K, Urabe M, Kai Y, Takada R, Akita H, Nagata S, Ohkawa K. Comprehensive review of pancreatic acinar cell carcinoma: epidemiology, diagnosis, molecular features and treatment. Jpn J Clin Oncol 2024; 54:271-281. [PMID: 38109477 PMCID: PMC10925851 DOI: 10.1093/jjco/hyad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Pancreatic acinar cell carcinoma is a rare form (0.2-4.3%) of pancreatic neoplasm with unique clinical and molecular characteristics, which largely differ from pancreatic ductal adenocarcinoma. Pancreatic acinar cell carcinoma occurs more frequently in males and can occur in children. Serum lipase is elevated in 24-58% of patients with pancreatic acinar cell carcinoma. Pancreatic acinar cell carcinomas tend to be large at diagnosis (median tumour size: ~5 cm) and are frequently located in the pancreas head. Radiologically, pancreatic acinar cell carcinoma generally exhibits a solid appearance; however, necrosis, cystic changes and intratumoral haemorrhage can occur in larger lesions. Immunostaining is essential for the definitive diagnosis of pancreatic acinar cell carcinoma. Compared with pancreatic ductal adenocarcinoma, pancreatic acinar cell carcinoma has a more favourable prognosis. Although radical surgery is recommended for patients with pancreatic acinar cell carcinoma who do not have distant metastases, the recurrence rate is high. The effectiveness of adjuvant therapy for pancreatic acinar cell carcinoma is unclear. The response to FOLFIRINOX is generally favourable, and some patients achieve a complete response. Pancreatic acinar cell carcinoma has a different genomic profile compared with pancreatic ductal adenocarcinoma. Although genomic analyses have shown that pancreatic acinar cell carcinoma rarely has KRAS, TP53 and CDKN2A mutations, it has a higher prevalence of homologous recombination-related genes, including BRCA1/2 and ATM, than pancreatic ductal adenocarcinoma, suggesting high sensitivity to platinum-containing regimens and PARP inhibitors. Targeted therapies for genomic alternations are beneficial. Therefore, genetic testing is important for patients with pancreatic acinar cell carcinoma to choose the optimal therapeutic strategy.
Collapse
Affiliation(s)
- Kenji Ikezawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Makiko Urabe
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yugo Kai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Ryoji Takada
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Shigenori Nagata
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
18
|
Anbil S, Reiss KA. Targeting BRCA and PALB2 in Pancreatic Cancer. Curr Treat Options Oncol 2024; 25:346-363. [PMID: 38311708 DOI: 10.1007/s11864-023-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 02/06/2024]
Abstract
OPINION STATEMENT An important subgroup of pancreatic ductal adenocarcinomas (PDACs) harbor pathogenic variants in BRCA1, BRCA2, or PALB2. These tumors are exquisitely sensitive to platinum-based chemotherapy and patients may experience deep and durable responses to this treatment. PARP inhibitors offer potential respite from the cumulative toxicities of chemotherapy as they significantly extend progression-free survival compared to a chemotherapy holiday. Given the lack of proven survival benefit, the decision to use a maintenance PARP inhibitor rather than continue chemotherapy should be individualized. Interestingly, in both published clinical trials of maintenance PARP inhibitors, there is a striking range of interpatient benefit: Even in the platinum-sensitive setting, roughly 25% of tumors appear to be PARP inhibitor refractory (progressive disease within 2 months of starting treatment), 50% sustain moderate benefit (up to 2 years), and 25% are hyper-responsive (more than 2 years of benefit). This finding highlights the need to refine our understanding of which patients will respond to maintenance PARP inhibitors, both by being able to identify biallelic loss and by deepening our knowledge of resistance mechanisms and who develops them. Recent data supports that reversion mutations are common in PARP inhibitor refractory patients, but we have little understanding of the mechanisms that drive delayed resistance and long-term responses. Identifying which patients are more prone to certain mechanisms of resistance and tackling them with specific treatment strategies are areas of active investigation. Additionally, given that PARP inhibitors have limited overall efficacy for most patients, upfront combination strategies are an important future strategy.
Collapse
Affiliation(s)
- Sriram Anbil
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA
| | - Kim A Reiss
- Abramson Cancer Center, 10th Floor Perelman Center South, The University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19121, USA.
| |
Collapse
|
19
|
Cheng SM, Su YY, Chiang NJ, Wang CJ, Chao YJ, Huang CJ, Tsai HJ, Chen SH, Chang CY, Tsai CR, Li YJ, Yen CJ, Chuang SC, Chang JSM, Shan YS, Hwang DY, Chen LT. Germline mutations of homologous recombination genes and clinical outcomes in pancreatic cancer: a multicenter study in Taiwan. J Biomed Sci 2024; 31:21. [PMID: 38350919 PMCID: PMC10865564 DOI: 10.1186/s12929-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Cancer susceptibility germline mutations are associated with pancreatic ductal adenocarcinoma (PDAC). However, the hereditary status of PDAC and its impact on survival is largely unknown in the Asian population. METHODS Exome sequencing was performed on 527 blood samples from PDAC individuals and analyzed for mutations in 80 oncogenic genes. Pathogenic and likely pathogenic (P/LP) germline variants were diagnosed according to the ACMG variant classification categories. The association between germline homologous recombination gene mutations (gHRmut, including BAP1, BRCA1, BRCA2, PALB2, ATM, BLM, BRIP1, CHEK2, NBN, MUTYH, FANCA and FANCC) and the treatment outcomes was explored in patients with stage III/IV diseases treated with first-line (1L) platinum-based versus platinum-free chemotherapy. RESULTS Overall, 104 of 527 (19.7%) patients carried germline P/LP variants. The most common mutated genes were BRCA2 (3.60%), followed by ATR (2.66%) and ATM (1.9%). After a median follow-up duration of 38.3-months (95% confidence interval, 95% CI 35.0-43.7), the median overall survival (OS) was not significantly different among patients with gHRmut, non-HR germline mutations, or no mutation (P = 0.43). Among the 320 patients with stage III/IV disease who received 1L combination chemotherapy, 32 (10%) had gHRmut. Of them, patients receiving 1L platinum-based chemotherapy exhibited a significantly longer median OS compared to those with platinum-free chemotherapy, 26.1 months (95% CI 12.7-33.7) versus 9.6 months (95% CI 5.9-17.6), P = 0.001. However, the median OS of patients without gHRmut was 14.5 months (95% CI 13.2-16.9) and 12.6 months (95% CI 10.8-14.7) for patients receiving 1L platinum-based and platinum-free chemotherapy, respectively (P = 0.22). These results were consistent after adjusting for potential confounding factors including age, tumor stage, performance status, and baseline CA 19.9 in the multivariate Cox regression analysis. CONCLUSIONS Our study showed that nearly 20% of Taiwanese PDAC patients carried germline P/LP variants. The longer survival observed in gHRmut patients treated with 1L platinum-based chemotherapy highlights the importance of germline testing for all patients with advanced PDAC at diagnosis.
Collapse
Affiliation(s)
- Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yung-Yeh Su
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Deparment of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Jung Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Jui Chao
- Department of Surgery, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Jui Huang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Deparment of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Deparment of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Yen Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chia-Rung Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yi-Jie Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chia-Jui Yen
- Deparment of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chang Chuang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeffrey Shu-Ming Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Surgery, National Cheng-Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center for Biomarkers and Biotech Drugs, Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Precision Medicine Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.
- Deparment of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Internal Medicine, Kaohsiung Medical University Hospital and Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
LaRose M, Manji GA, Bates SE. Beyond BRCA: Diagnosis and management of homologous recombination repair deficient pancreatic cancer. Semin Oncol 2024; 51:36-44. [PMID: 38171988 DOI: 10.1053/j.seminoncol.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Approximately 4%-7% of patients diagnosed with pancreatic adenocarcinoma (PDAC) are found to harbor deleterious germline mutations in BRCA1 and/or BRCA2. Loss of function of BRCA1 and/or BRCA2 results in deficiency in homologous recombination repair (HRR), a critical DNA repair pathway, and confers sensitivity to certain DNA damaging agents, including platinum chemotherapy and PARP inhibitors. The PARP inhibitor olaparib is food and drug administration (FDA) approved for use in pancreatic cancer based on the POLO trial, which found that maintenance olaparib significantly prolonged progression free survival compared to placebo among patients with germline BRCA1 or BRCA2 mutations and metastatic PDAC that had not progressed following frontline platinum-based chemotherapy. Recently, there has been considerable interest in identifying patients without BRCA inactivation whose tumors also exhibit properties of HRR deficiency and thus may be susceptible to therapies with proven benefit in cancers harboring BRCA mutations. Here, we discuss methods for identification of HRR-deficiency and review the management of HRR-deficient cancers with a focus on HRR-deficient PDAC.
Collapse
Affiliation(s)
- Meredith LaRose
- Columbia University Irving Medical Center, New York NY, USA.
| | - Gulam A Manji
- Columbia University Irving Medical Center, New York NY, USA
| | - Susan E Bates
- Columbia University Irving Medical Center, New York NY, USA
| |
Collapse
|
21
|
Kramer C, Lanjouw L, Ruano D, Ter Elst A, Santandrea G, Solleveld-Westerink N, Werner N, van der Hout AH, de Kroon CD, van Wezel T, Berger L, Jalving M, Wesseling J, Smit V, de Bock GH, van Asperen CJ, Mourits M, Vreeswijk M, Bart J, Bosse T. Causality and functional relevance of BRCA1 and BRCA2 pathogenic variants in non-high-grade serous ovarian carcinomas. J Pathol 2024; 262:137-146. [PMID: 37850614 DOI: 10.1002/path.6218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023]
Abstract
The identification of causal BRCA1/2 pathogenic variants (PVs) in epithelial ovarian carcinoma (EOC) aids the selection of patients for genetic counselling and treatment decision-making. Current recommendations therefore stress sequencing of all EOCs, regardless of histotype. Although it is recognised that BRCA1/2 PVs cluster in high-grade serous ovarian carcinomas (HGSOC), this view is largely unsubstantiated by detailed analysis. Here, we aimed to analyse the results of BRCA1/2 tumour sequencing in a centrally revised, consecutive, prospective series including all EOC histotypes. Sequencing of n = 946 EOCs revealed BRCA1/2 PVs in 125 samples (13%), only eight of which were found in non-HGSOC histotypes. Specifically, BRCA1/2 PVs were identified in high-grade endometrioid (3/20; 15%), low-grade endometrioid (1/40; 2.5%), low-grade serous (3/67; 4.5%), and clear cell (1/64; 1.6%) EOCs. No PVs were identified in any mucinous ovarian carcinomas tested. By re-evaluation and using loss of heterozygosity and homologous recombination deficiency analyses, we then assessed: (1) whether the eight 'anomalous' cases were potentially histologically misclassified and (2) whether the identified variants were likely causal in carcinogenesis. The first 'anomalous' non-HGSOC with a BRCA1/2 PV proved to be a misdiagnosed HGSOC. Next, germline BRCA2 variants, found in two p53-abnormal high-grade endometrioid tumours, showed substantial evidence supporting causality. One additional, likely causal variant, found in a p53-wildtype low-grade serous ovarian carcinoma, was of somatic origin. The remaining cases showed retention of the BRCA1/2 wildtype allele, suggestive of non-causal secondary passenger variants. We conclude that likely causal BRCA1/2 variants are present in high-grade endometrioid tumours but are absent from the other EOC histotypes tested. Although the findings require validation, these results seem to justify a transition from universal to histotype-directed sequencing. Furthermore, in-depth functional analysis of tumours harbouring BRCA1/2 variants combined with detailed revision of cancer histotypes can serve as a model in other BRCA1/2-related cancers. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cjh Kramer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - L Lanjouw
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - N Solleveld-Westerink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Werner
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A H van der Hout
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C D de Kroon
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lpv Berger
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J Wesseling
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vthbm Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - G H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - C J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mje Mourits
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mpg Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - J Bart
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - T Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Soliman N, Saharia A, Abdelrahim M, Connor AA. Molecular profiling in the management of hepatocellular carcinoma. Curr Opin Organ Transplant 2024; 29:10-22. [PMID: 38038621 DOI: 10.1097/mot.0000000000001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to both summarize the current knowledge of hepatocellular carcinoma molecular biology and to suggest a framework in which to prospectively translate this knowledge into patient care. This is timely as recent guidelines recommend increased use of these technologies to advance personalized liver cancer care. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in hepatocellular carcinoma, largely owing to next generation sequencing technologies, and nascent efforts to translate these into contemporary practice. SUMMARY Early efforts of translating molecular profiling to hepatocellular carcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking are a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care.
Collapse
|
23
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
24
|
Tsang ES, Gallinger S. Deciphering the Pathways to PARP Sensitivity in Pancreatic Cancer. Clin Cancer Res 2023; 29:5005-5007. [PMID: 37787975 DOI: 10.1158/1078-0432.ccr-23-2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
A recent article analyzed paired cell-free DNA among patients with platinum-sensitive BRCA- or PALB2-mutated pancreatic cancer who received maintenance olaparib. Reversion mutations were linked with worse outcomes. These types of paired correlative studies are needed to improve our understanding of drug resistance and guide future clinical trials. See related article by Brown et al., p. 5207.
Collapse
Affiliation(s)
- Erica S Tsang
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Zhou Y, Jin J, Ji Y, Zhang J, Fu N, Chen M, Wang J, Qin K, Jiang Y, Cheng D, Deng X, Shen B. TP53 missense mutation reveals gain-of-function properties in small-sized KRAS transformed pancreatic ductal adenocarcinoma. J Transl Med 2023; 21:872. [PMID: 38037073 PMCID: PMC10691048 DOI: 10.1186/s12967-023-04742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Although the molecular features of pancreatic ductal adenocarcinoma (PDAC) have been well described, the impact of detailed gene mutation subtypes on disease progression remained unclear. This study aimed to evaluate the impact of different TP53 mutation subtypes on clinical characteristics and outcomes of patients with PDAC. METHODS We included 639 patients treated with PDAC in Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine between Jan 2019 and Jun 2021. The genomic alterations of PDAC were analyzed, and the association of TP53 mutation subtypes and other core gene pathway alterations with patients' clinical characteristics were evaluated by Chi-squared test, Kaplan-Meier method and Cox regression model. RESULTS TP53 missense mutation was significantly associated with poor differentiation in KRASmut PDAC (50.7% vs. 36.1%, P = 0.001). In small-sized (≤ 2 cm) KRASmut tumors, significantly higher LNs involvement (54.8% vs. 23.5%, P = 0.010) and distal metastic rate (20.5% vs. 2.9%, P = 0.030) were observed in those with TP53 missense mutation instead of truncating mutation. Compared with TP53 truncating mutation, missense mutation was significantly associated with reduced DFS (6.6 [5.6-7.6] vs. 9.2 [5.2-13.3] months, HR 0.368 [0.200-0.677], P = 0.005) and OS (9.6 [8.0-11.1] vs. 18.3 [6.7-30.0] months, HR 0.457 [0.248-0.842], P = 0.012) in patients who failed to receive chemotherapy, while higher OS (24.2 [20.8-27.7] vs. 23.8 [19.0-28.5] months, HR 1.461 [1.005-2.124], P = 0.047) was observed in TP53missense cases after chemotherapy. CONCLUSIONS TP53 missense mutation was associated with poor tumor differentiation, and revealed gain-of-function properties in small-sized KRAS transformed PDAC. Nonetheless, it was not associated with insensitivity to chemotherapy, highlighting the neoadjuvant therapy before surgery as the potential optimized strategy for the treatment of a subset of patients.
Collapse
Affiliation(s)
- Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabin Jin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqiang Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ningzhen Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengmin Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Qin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongfeng Cheng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Lee M, Eng G, Handte-Reinecker A, Deshpande VS, Yilmaz OH, Gala MK. Germline Determinants of Esophageal Adenocarcinoma. Gastroenterology 2023; 165:1276-1279.e7. [PMID: 37507074 PMCID: PMC10592248 DOI: 10.1053/j.gastro.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Minyi Lee
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; MD-PhD Program, Boston University School of Medicine, Boston, Massachusetts
| | - George Eng
- Division of Gastroenterology and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Anna Handte-Reinecker
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vikram S Deshpande
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Omer H Yilmaz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Manish K Gala
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Boursi B, Wileyto EP, Mamtani R, Domchek SM, Golan T, Hood R, Reiss KA. Analysis of BRCA1- and BRCA2-Related Pancreatic Cancer and Survival. JAMA Netw Open 2023; 6:e2345013. [PMID: 38010655 PMCID: PMC10682833 DOI: 10.1001/jamanetworkopen.2023.45013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
This cohort study compares the outcomes of patients with BRCA1 and BRCA-related pancreatic cancers using 2 large data sets.
Collapse
Affiliation(s)
- Ben Boursi
- Department of Oncology, Sheba Medical Center, Tel HaShomer, Israel
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia
| | - E. Paul Wileyto
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Ronac Mamtani
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Susan M. Domchek
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Talia Golan
- Department of Oncology, Sheba Medical Center, Tel HaShomer, Israel
| | - Ryan Hood
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| | - Kim A. Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia
| |
Collapse
|
28
|
Zheng B, Yi K, Zhang Y, Pang T, Zhou J, He J, Lan H, Xian H, Li R. Multi-omics analysis of multiple myeloma patients with differential response to first-line treatment. Clin Exp Med 2023; 23:3833-3846. [PMID: 37515690 DOI: 10.1007/s10238-023-01148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
The genome backgrounds of multiple myeloma (MM) would affect the efficacy of specific treatment. However, the mutational and transcriptional landscapes in MM patients with differential response to first-line treatment remains unclear. We collected paired whole-exome sequencing (WES) and transcriptomic data of over 200 MM cases from MMRF-COMPASS project. R package, maftools was applied to analyze the somatic mutations and mutational signatures across MM samples. Differential expressed genes (DEG) was calculated using R package, DESeq2. The feature selection of the predictive model was determined by LASSO regression. In silico analysis revealed newly discovered recurrent mutated genes such as TTN, MUC16. TP53 mutation was observed more frequent in nonCR (complete remission) group with poor prognosis. DNA repair-associated mutational signatures were enriched in CR patients. Transcriptomic profiling showed that the activity of NF-kappa B and TGF-β pathways was suppressed in CR patients. A transcriptome-based response predictive model was constructed and showed promising predictive accuracy in MM patients receiving first-line treatment. Our study delineated distinctive mutational and transcriptional landscapes in MM patients with differential response to first-line treatment. Furthermore, we constructed a 20-gene predictive model which showed promising accuracy in predicting treatment response in newly diagnosed MM patients.
Collapse
Affiliation(s)
- Bo Zheng
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China.
| | - Ke Yi
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Yajun Zhang
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Tongfang Pang
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Jieyi Zhou
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Jie He
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Hongyan Lan
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Hongming Xian
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China
| | - Rong Li
- Nuclear Radiation Injury Protection and Treatment Department, Navy Medical Center of PLA, Naval Medical University, Huaihai West Road No. 338, Shanghai, 200050, China.
| |
Collapse
|
29
|
Karamitopoulou E. Emerging Prognostic and Predictive Factors in Pancreatic Cancer. Mod Pathol 2023; 36:100328. [PMID: 37714333 DOI: 10.1016/j.modpat.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
Pancreatic cancer is a lethal disease with increasing incidence and high recurrence rates and is currently resistant to conventional therapies. Moreover, it displays extensive morphologic and molecular intratumoral and intertumoral heterogeneity and a mostly low mutational burden, failing to induce significant antitumor immunity. Thus, immunotherapy has shown limited effect in pancreatic cancer, except in rare tumors with microsatellite instability, constituting <1% of the cases. Currently, new methods, including single-cell and single-nucleus RNA sequencing, have refined and expanded the 2-group molecular classification based on bulk RNA sequencing (classical and basal-like subtypes), identifying hybrid forms and providing us with a comprehensive map of the tumor cell subsets that drive gene expression during tumor evolution, simultaneously giving us insight into therapy resistance and metastasis. Additionally, deeper profiling of the tumor microenvironment of pancreatic cancer by using spatial analyses and multiplex imaging techniques has improved our understanding of the heterogeneous distribution of both adaptive and innate immune components with their protumor and antitumor properties. By integrating host immune response patterns, as defined by spatial transcriptomic and proteomic analysis and multiplex immunofluorescence, with molecular and morphologic features of the tumors, we can increasingly understand the genetic, immunologic, and morphologic background of pancreatic cancer and recognize the potential predictors for different treatment modalities.
Collapse
Affiliation(s)
- Eva Karamitopoulou
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland; Pathology Institute Enge, Zurich, Switzerland.
| |
Collapse
|
30
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko FMS, Patel K, Mining SK. Mutational spectrum of DNA damage and mismatch repair genes in prostate cancer. Front Genet 2023; 14:1231536. [PMID: 37732318 PMCID: PMC10507418 DOI: 10.3389/fgene.2023.1231536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Over the past few years, a number of studies have revealed that a significant number of men with prostate cancer had genetic defects in the DNA damage repair gene response and mismatch repair genes. Certain of these modifications, notably gene alterations known as homologous recombination (HRR) genes; PALB2, CHEK2 BRCA1, BRCA2, ATM, and genes for DNA mismatch repair (MMR); MLH1, MSH2, MSH6, and PMS2 are connected to a higher risk of prostate cancer and more severe types of the disease. The DNA damage repair (DDR) is essential for constructing and diversifying the antigen receptor genes required for T and B cell development. But this DDR imbalance results in stress on DNA replication and transcription, accumulation of mutations, and even cell death, which compromises tissue homeostasis. Due to these impacts of DDR anomalies, tumor immunity may be impacted, which may encourage the growth of tumors, the release of inflammatory cytokines, and aberrant immune reactions. In a similar vein, people who have altered MMR gene may benefit greatly from immunotherapy. Therefore, for these treatments, mutational genetic testing is indicated. Mismatch repair gene (MMR) defects are also more prevalent than previously thought, especially in patients with metastatic disease, high Gleason scores, and diverse histologies. This review summarizes the current information on the mutation spectrum and clinical significance of DDR mechanisms, such as HRR and MMR abnormalities in prostate cancer, and explains how patient management is evolving as a result of this understanding.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | | | - Fidelice M. S. Mafumiko
- Government Chemist Laboratory Authority, Directorate of Forensic Science and DNA Services, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| | - Simeon K. Mining
- Department of Pathology, Moi Teaching and Referral Hospital, Moi University, Eldoret, Kenya
| |
Collapse
|
31
|
Sijithra PC, Santhi N, Ramasamy N. A review study on early detection of pancreatic ductal adenocarcinoma using artificial intelligence assisted diagnostic methods. Eur J Radiol 2023; 166:110972. [PMID: 37454557 DOI: 10.1016/j.ejrad.2023.110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, chemo-refractory and recalcitrant cancer and increases the number of deaths. With just around 1 in 4 individuals having respectable tumours, PDAC is frequently discovered when it is in an advanced stage. Accordingly, ED of PDAC improves patient survival. Subsequently, this paper reviews the early detection of PDAC, initially, the work presented an overview of PDAC. Subsequently, it reviews the molecular biology of pancreatic cancer and the development of molecular biomarkers are represented. This article illustrates the importance of identifying PDCA, the Immune Microenvironment of Pancreatic Cancer. Consequently, in this review, traditional and non-traditional imaging techniques are elucidated, traditional and non-traditional methods like endoscopic ultrasound, Multidetector CT, CT texture analysis, PET-CT, magnetic resonance imaging, diffusion-weighted imaging, secondary signs of pancreatic cancer, and molecular imaging. The use of artificial intelligence in pancreatic cancer, novel MRI techniques, and the future directions of AI for PDAC detection and prognosis is then described. Additionally, the research problem definition and motivation, current trends and developments, state of art of survey, and objective of the research are demonstrated in the review. Consequently, this review concluded that Artificial Intelligence Assisted Diagnostic Methods with MRI images can be proposed in future to improve the specificity and the sensitivity of the work, and to classify malignant PDAC with greater accuracy.
Collapse
Affiliation(s)
- P C Sijithra
- Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kanyakumari District, Tamilnadu, India.
| | - N Santhi
- Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kanyakumari District, Tamilnadu, India
| | - N Ramasamy
- Department of Mechanical Engineering, Noorul Islam Centre for Higher Education, Kanyakumari District, Tamilnadu, India
| |
Collapse
|
32
|
Wineland D, Le AN, Hausler R, Kelly G, Barrett E, Desai H, Wubbenhorst B, Pluta J, Bastian P, Symecko H, D'Andrea K, Doucette A, Gabriel P, Reiss KA, Nayak A, Feldman M, Domchek SM, Nathanson KL, Maxwell KN. Biallelic BRCA Loss and Homologous Recombination Deficiency in Nonbreast/Ovarian Tumors in Germline BRCA1/2 Carriers. JCO Precis Oncol 2023; 7:e2300036. [PMID: 37535879 PMCID: PMC10581613 DOI: 10.1200/po.23.00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE Breast and ovarian tumors in germline BRCA1/2 carriers undergo allele-specific loss of heterozygosity, resulting in homologous recombination deficiency (HRD) and sensitivity to poly-ADP-ribose polymerase (PARP) inhibitors. This study investigated whether biallelic loss and HRD also occur in primary nonbreast/ovarian tumors that arise in germline BRCA1/2 carriers. METHODS A clinically ascertained cohort of BRCA1/2 carriers with a primary nonbreast/ovarian cancer was identified, including canonical (prostate and pancreatic cancers) and noncanonical (all other) tumor types. Whole-exome sequencing or clinical sequencing results (n = 45) were analyzed. A pan-cancer analysis of nonbreast/ovarian primary tumors from germline BRCA1/2 carriers from The Cancer Genome Atlas (TCGA, n = 73) was used as a validation cohort. RESULTS Ages of nonbreast/ovarian cancer diagnosis in germline BRCA1/2 carriers were similar to controls for the majority of cancer types. Nine of 45 (20%) primary nonbreast/ovarian tumors from germline BRCA1/2 carriers had biallelic loss of BRCA1/2 in the clinical cohort, and 23 of 73 (32%) in the TCGA cohort. In the combined cohort, 35% and 27% of primary canonical and noncanonical BRCA tumor types, respectively, had biallelic loss. High HRD scores (HRDex > 42) were detected in 81% of tumors with biallelic BRCA loss compared with 22% (P < .001) of tumors without biallelic BRCA loss. No differences in genomic profile, including mutational signatures, mutation spectrum, tumor mutational burden, or microsatellite instability, were found in primary nonbreast/ovarian tumors with or without biallelic BRCA1/2 loss. CONCLUSION A proportion of noncanonical primary tumors have biallelic loss and evidence of HRD. Our data suggest that assessment of biallelic loss and HRD could supplement identification of germline BRCA1/2 mutations in selection of patients for platinum or PARP inhibitor therapy.
Collapse
Affiliation(s)
- Dylane Wineland
- Arcadia University and Chester County Hospital, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh N. Le
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ryan Hausler
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emanuel Barrett
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heena Desai
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul Bastian
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Heather Symecko
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Doucette
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Gabriel
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kim A. Reiss
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Wilbur HC, Durham JN, Lim SJ, Purtell K, Bever KM, Laheru DA, De Jesus-Acosta A, Azad NS, Wilt B, Diaz LA, Le DT, Wang H. Gemcitabine, Docetaxel, Capecitabine, Cisplatin, Irinotecan as First-line Treatment for Metastatic Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:1672-1677. [PMID: 37645623 PMCID: PMC10461640 DOI: 10.1158/2767-9764.crc-23-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Purpose Treatment of advanced pancreatic cancer with a single therapeutic at a maximal dose has been largely ineffective at increasing survival. Combination therapies are commonly studied but often limited by toxicity. We previously showed that low-dose multiagent therapy with gemcitabine, docetaxel (taxotere), capecitabine (xeloda), and cisplatin (GTX-C) was safe, well tolerated, and effective (NCT01459614). Here, we hypothesize that adding irinotecan to GTX-C may improve survival with minimal toxicity. Experimental Design Patients with treatment-naïve metastatic pancreatic adenocarcinoma were treated with gemcitabine, docetaxel (taxotere), capecitabine (xeloda), cisplatin, and irinotecan (GTX-CI). Treatment consisted of capecitabine 500 mg twice daily on days 1-14 and gemcitabine 300 to 500 mg/m2, docetaxel 20 mg/m2, cisplatin 15 to 20 mg/m2, and irinotecan 20 to 60 mg/m2 on days 4 and 11 of a 21-day cycle. The primary objective was 9-month overall survival (OS). Secondary objectives included response rate (RR), disease control rate (DCR), progression-free survival (PFS), and OS. Results The regimen was well tolerated. The recommended phase II dose was gemcitabine 500 mg/m2, docetaxel 20 mg/m2, capecitabine 500 mg po bid, cisplatin 20 mg/m2, and irinotecan 20 mg/m2. Median follow-up in phase II was 11.02 months (2.37-45.17). Nine-month OS rate was 57% [95% confidence interval (CI): (41-77)]. RR was 57% [95% CI: (37-75) 50% PR and 7% CR]. DCR was 87% [95% CI: (69-96)]. Median OS and PFS were 11.02 [95% CI: (8.54-21.09)] and 8.34 [95% CI: (6.34-NA)] months, respectively. Conclusions The addition of irinotecan to GTX-C was safe and well tolerated. While the study did not meet its primary objective, the responses were clinically meaningful using a well-tolerated regimen. Significance We aimed to optimize the previously reported efficacious regimen of low-dose multiagent therapy with GTX-C for the treatment of metastatic pancreatic ductal adenocarcinoma by adding irinotecan. The primary objective was not met, but GTX-CI was well tolerated. The RR of 57%, median PFS of 8.3 months, median OS of 11 months, and 36-month OS rate of 19% suggest clinical benefit. Further optimization of this regimen is warranted.
Collapse
Affiliation(s)
- H. Catherine Wilbur
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Jennifer N. Durham
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Su Jin Lim
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Katrina Purtell
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Katherine M. Bever
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Daniel A. Laheru
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Ana De Jesus-Acosta
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Nilofer S. Azad
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Bradley Wilt
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Luis A. Diaz
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dung T. Le
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Hao Wang
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Walker EJ, Ko AH. Maintenance Treatment for Metastatic Pancreatic Cancer: Balancing Therapeutic Intensity with Tolerable Toxicity. Cancers (Basel) 2023; 15:3657. [PMID: 37509318 PMCID: PMC10377699 DOI: 10.3390/cancers15143657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metastatic pancreatic ductal adenocarcinoma is typically treated with multi-agent chemotherapy until disease progression or intolerable cumulative toxicity. For patients whose disease shows ongoing control or response beyond a certain timeframe (≥3-4 months), options include pausing chemotherapy with close monitoring or de-escalating to maintenance therapy with the goal of prolonging progression-free and overall survival while preserving quality of life. There is currently no universally accepted standard of care and a relative dearth of randomized clinical trials in the maintenance setting. Conceptually, such therapy can entail continuing the least toxic components of a first-line regimen and/or introducing novel agent(s) such as the poly(ADP-ribose) polymerase inhibitor olaparib, which is presently the only approved drug for maintenance treatment and is limited to a genetically defined subset of patients. In addition to identifying new therapeutic candidates and combinations in the maintenance setting, including targeted agents and immunotherapies, future research should focus on better understanding this unique biologic niche and how treatment in the maintenance setting may be distinct from resistant/refractory disease; identifying molecular predictors for more effective pairing of specific treatments with patients most likely to benefit; and establishing patient-reported outcomes in clinical trials to ensure accurate capture of quality of life metrics.
Collapse
Affiliation(s)
- Evan J Walker
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Andrew H Ko
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
35
|
Salimy S, Lanjanian H, Abbasi K, Salimi M, Najafi A, Tapak L, Masoudi-Nejad A. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Heliyon 2023; 9:e17653. [PMID: 37455955 PMCID: PMC10344710 DOI: 10.1016/j.heliyon.2023.e17653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Precise prognostic classification of patients and identifying survival subgroups and their associated genes can be important clinical references when designing treatment strategies for cancer patients. Multi-omics and data integration techniques are powerful tools to achieve this goal. This study aimed to introduce a machine learning method to integrate three types of biological data, and investigate the performance of two other methods, in identifying the survival dependency of patients. The data included TCGA RNA-seq gene expression, DNA methylation, and clinical data from 368 patients with colon cancer also we use an independent external validation data set, containing 232 samples. Three methods including, hyper-parameter optimized autoencoders (HPOAE), normal autoencoder, and penalized principal component analysis (PPCA) were used for simultaneous data integration and estimation under a COX hazards model. The HPOAE was thought to outperform other methods. The HPOAE had the Log Rank Mantel-Cox value of 14.27 ± 2, and a Breslow-Generalized Wilcoxon value of 13.13 ± 1. Ten miRNA, 11 methylated genes, and 28 mRNA all by (importance of marginal cutoff > 0.95) were identified. The study demonstrated that hsa-miR-485-5p targets both ZMYM1 and tp53, the latter of which has been previously associated with cancer in numerous studies. Furthermore, compared to other methods, the HPOAE exhibited a greater capacity for identifying survival subgroups and the genes associated with them in patients with colon cancer. However, all of the results were obtained by computational methods, and clinical and experimental studies are needed to validate these results.
Collapse
Affiliation(s)
- Siamak Salimy
- Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, University of Tehran, Kish International Campus, Kish, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics & Artificial Intelligent in Medicine (LBBai), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Department of Bioinformatics, University of Tehran, Kish International Campus, Kish, Iran
| |
Collapse
|
36
|
Oh G, Wang A, Wang L, Li J, Werba G, Weissinger D, Zhao E, Dhara S, Hernandez RE, Ackermann A, Porcella S, Kalfakakou D, Dolgalev I, Kawaler E, Golan T, Welling TH, Sfeir A, Simeone DM. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J Clin Invest 2023; 133:e165934. [PMID: 36976649 PMCID: PMC10232002 DOI: 10.1172/jci165934] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.
Collapse
Affiliation(s)
| | | | - Lidong Wang
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Jiufeng Li
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Gregor Werba
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Daniel Weissinger
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Ende Zhao
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Surajit Dhara
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | - Amanda Ackermann
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Sarina Porcella
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Igor Dolgalev
- Department of Pathology, NYU Langone Health, New York, New York, USA
| | - Emily Kawaler
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | | | | | - Agnel Sfeir
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Diane M. Simeone
- Department of Surgery and
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
- Department of Pathology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
37
|
Keane F, O’Connor CA, Park W, Seufferlein T, O’Reilly EM. Pancreatic Cancer: BRCA Targeted Therapy and Beyond. Cancers (Basel) 2023; 15:2955. [PMID: 37296917 PMCID: PMC10251879 DOI: 10.3390/cancers15112955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death in the US by 2030, despite accounting for only 5% of all cancer diagnoses. Germline gBRCA1/2-mutated PDAC represents a key subgroup with a favorable prognosis, due at least in part to additional approved and guideline-endorsed therapeutic options compared with an unselected PDAC cohort. The relatively recent incorporation of PARP inhibition into the treatment paradigm for such patients has resulted in renewed optimism for a biomarker-based approach to the management of this disease. However, gBRCA1/2 represents a small subgroup of patients with PDAC, and efforts to extend the indication for PARPi beyond BRCA1/2 mutations to patients with PDAC and other genomic alterations associated with deficient DNA damage repair (DDR) are ongoing, with several clinical trials underway. In addition, despite an array of approved therapeutic options for patients with BRCA1/2-associated PDAC, both primary and acquired resistance to platinum-based chemotherapies and PARPi presents a significant challenge in improving long-term outcomes. Herein, we review the current treatment landscape of PDAC for patients with BRCA1/2 and other DDR gene mutations, experimental approaches under investigation or in development, and future directions.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
| | - Catherine A. O’Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thomas Seufferlein
- Department of Internal Medicine, Ulm University Hospital, 89081 Ulm, Germany;
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
38
|
Zhen DB, Safyan RA, Konick EQ, Nguyen R, Prichard CC, Chiorean EG. The role of molecular testing in pancreatic cancer. Therap Adv Gastroenterol 2023; 16:17562848231171456. [PMID: 37197396 PMCID: PMC10184226 DOI: 10.1177/17562848231171456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highly aggressive and has few treatment options. To personalize therapy, it is critical to delineate molecular subtypes and understand inter- and intra-tumoral heterogeneity. Germline testing for hereditary genetic abnormalities is recommended for all patients with PDA and somatic molecular testing is recommended for all patients with locally advanced or metastatic disease. KRAS mutations are present in 90% of PDA, while 10% are KRAS wild type and are potentially targetable with epidermal growth factor receptor blockade. KRASG12C inhibitors have shown activity in G12C-mutated cancers, and novel G12D and pan-RAS inhibitors are in clinical trials. DNA damage repair abnormalities, germline or somatic, occur in 5-10% of patients and are likely to benefit from DNA damaging agents and maintenance therapy with poly-ADP ribose polymerase inhibitors. Fewer than 1% of PDA harbor microsatellite instability high status and are susceptible to immune checkpoint blockade. Albeit very rare, occurring in <1% of patients with KRAS wild-type PDAs, BRAF V600E mutations, RET and NTRK fusions are targetable with cancer agnostic Food and Drug Administration-approved therapies. Genetic, epigenetic, and tumor microenvironment targets continue to be identified at an unprecedented pace, enabling PDA patients to be matched to targeted and immune therapeutics, including antibody-drug conjugates, and genetically engineered chimeric antigen receptor or T-cell receptor - T-cell therapies. In this review, we highlight clinically relevant molecular alterations and focus on targeted strategies that can improve patient outcomes through precision medicine.
Collapse
Affiliation(s)
- David B. Zhen
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachael A. Safyan
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Q. Konick
- University of Washington, School of Medicine Seattle, WA, USA
| | - Ryan Nguyen
- University of Washington, School of Medicine Seattle, WA, USA
| | | | - E. Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Center, 825 Eastlake Avenue East, LG-465, Seattle, WA 98109, USA Fred Hutchinson
| |
Collapse
|
39
|
Brown TJ, Reiss KA, O'Hara MH. Advancements in Systemic Therapy for Pancreatic Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e397082. [PMID: 37192430 DOI: 10.1200/edbk_397082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Outcomes for patients with advanced pancreatic cancer have improved in the past 12 years, mainly because of progress made in systemic therapies. New treatment strategies for advanced pancreatic cancer include switch maintenance with cytotoxic therapies, induction maintenance, and the utilization of targeted agents for patients with actionable variants, as well as ongoing development of cytotoxic regimens, such as NALIRIFOX. The activity of immunotherapy has been disappointing to date, but novel combinations and identifying appropriate patient populations may further unlock its potential.
Collapse
Affiliation(s)
- Timothy J Brown
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| | - Kim A Reiss
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
40
|
Springfeld C, Ferrone CR, Katz MHG, Philip PA, Hong TS, Hackert T, Büchler MW, Neoptolemos J. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol 2023; 20:318-337. [PMID: 36932224 DOI: 10.1038/s41571-023-00746-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Patients with localized pancreatic ductal adenocarcinoma (PDAC) are best treated with surgical resection of the primary tumour and systemic chemotherapy, which provides considerably longer overall survival (OS) durations than either modality alone. Regardless, most patients will have disease relapse owing to micrometastatic disease. Although currently a matter of some debate, considerable research interest has been focused on the role of neoadjuvant therapy for all forms of resectable PDAC. Whilst adjuvant combination chemotherapy remains the standard of care for patients with resectable PDAC, neoadjuvant chemotherapy seems to improve OS without necessarily increasing the resection rate in those with borderline-resectable disease. Furthermore, around 20% of patients with unresectable non-metastatic PDAC might undergo resection following 4-6 months of induction combination chemotherapy with or without radiotherapy, even in the absence of a clear radiological response, leading to improved OS outcomes in this group. Distinct molecular and biological responses to different types of therapies need to be better understood in order to enable the optimal sequencing of specific treatment modalities to further improve OS. In this Review, we describe current treatment strategies for the various clinical stages of PDAC and discuss developments that are likely to determine the optimal sequence of multimodality therapies by integrating the fundamental clinical and molecular features of the cancer.
Collapse
Affiliation(s)
- Christoph Springfeld
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip A Philip
- Wayne State University School of Medicine, Department of Oncology, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Theodore S Hong
- Research and Scientific Affairs, Gastrointestinal Service Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - John Neoptolemos
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
41
|
Masuda S, Koizumi K, Shionoya K, Jinushi R, Makazu M, Nishino T, Kimura K, Sumida C, Kubota J, Ichita C, Sasaki A, Kobayashi M, Kako M, Haruki U. Comprehensive review on endoscopic ultrasound-guided tissue acquisition techniques for solid pancreatic tumor. World J Gastroenterol 2023; 29:1863-1874. [PMID: 37032729 PMCID: PMC10080698 DOI: 10.3748/wjg.v29.i12.1863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is speculated to become the second leading cause of cancer-related mortality by 2030, a high mortality rate considering the number of cases. Surgery and chemotherapy are the main treatment options, but they are burdensome for patients. A clear histological diagnosis is needed to determine a treatment plan, and endoscopic ultrasound (EUS)-guided tissue acquisition (TA) is a suitable technique that does not worsen the cancer-specific prognosis even for lesions at risk of needle tract seeding. With the development of personalized medicine and precision treatment, there has been an increasing demand to increase cell counts and collect specimens while preserving tissue structure, leading to the development of the fine-needle biopsy (FNB) needle. EUS-FNB is rapidly replacing EUS-guided fine-needle aspiration (FNA) as the procedure of choice for EUS-TA of pancreatic cancer. However, EUS-FNA is sometimes necessary where the FNB needle cannot penetrate small hard lesions, so it is important clinicians are familiar with both. Given these recent dev-elopments, we present an up-to-date review of the role of EUS-TA in pancreatic cancer. Particularly, technical aspects, such as needle caliber, negative pressure, and puncture methods, for obtaining an adequate specimen in EUS-TA are discussed.
Collapse
Affiliation(s)
- Sakue Masuda
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Kazuya Koizumi
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Kento Shionoya
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Ryuhei Jinushi
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Makomo Makazu
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Takashi Nishino
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Karen Kimura
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Chihiro Sumida
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Jun Kubota
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Chikamasa Ichita
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Akiko Sasaki
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Masahiro Kobayashi
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Makoto Kako
- Department of Gastroenterology, Shonan Kamakura General Hospital, Kanagawa 247-8533, Japan
| | - Uojima Haruki
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Kanagawa 252-0375, Japan
| |
Collapse
|
42
|
Tsang ES, Csizmok V, Williamson LM, Pleasance E, Topham JT, Karasinska JM, Titmuss E, Schrader I, Yip S, Tessier-Cloutier B, Mungall K, Ng T, Sun S, Lim HJ, Loree JM, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Homologous recombination deficiency signatures in gastrointestinal and thoracic cancers correlate with platinum therapy duration. NPJ Precis Oncol 2023; 7:31. [PMID: 36964191 PMCID: PMC10039042 DOI: 10.1038/s41698-023-00368-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023] Open
Abstract
There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.
Collapse
Affiliation(s)
- Erica S Tsang
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | | | | | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Intan Schrader
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Sun
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Howard J Lim
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Jonathan M Loree
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
- Pancreas Centre BC, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Zeng TM, Yang G, Lou C, Wei W, Tao CJ, Chen XY, Han Q, Cheng Z, Shang PP, Dong YL, Xu HM, Guo LP, Chen DS, Song YJ, Qi C, Deng WL, Yuan ZG. Clinical and biomarker analyses of sintilimab plus gemcitabine and cisplatin as first-line treatment for patients with advanced biliary tract cancer. Nat Commun 2023; 14:1340. [PMID: 36906670 PMCID: PMC10008621 DOI: 10.1038/s41467-023-37030-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
The prognosis of biliary tract cancer (BTC) remains unsatisfactory. This single-arm, phase II clinical trial (ChiCTR2000036652) investigated the efficacy, safety, and predictive biomarkers of sintilimab plus gemcitabine and cisplatin as the first-line treatment for patients with advanced BTCs. The primary endpoint was overall survival (OS). Secondary endpoints included toxicities, progression-free survival (PFS), and objective response rate (ORR); multi-omics biomarkers were assessed as exploratory objective. Thirty patients were enrolled and received treatment, the median OS and PFS were 15.9 months and 5.1 months, the ORR was 36.7%. The most common grade 3 or 4 treatment-related adverse events were thrombocytopenia (33.3%), with no reported deaths nor unexpected safety events. Predefined biomarker analysis indicated that patients with homologous recombination repair pathway gene alterations or loss-of-function mutations in chromatin remodeling genes presented better tumor response and survival outcomes. Furthermore, transcriptome analysis revealed a markedly longer PFS and tumor response were associated with higher expression of a 3-gene effector T cell signature or an 18-gene inflamed T cell signature. Sintilimab plus gemcitabine and cisplatin meets pre-specified endpoints and displays acceptable safety profile, multiomics potential predictive biomarkers are identified and warrant further verification.
Collapse
Affiliation(s)
- Tian-Mei Zeng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Guang Yang
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Cheng Lou
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Wei Wei
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Chen-Jie Tao
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Xi-Yun Chen
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Qin Han
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Zhuo Cheng
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Pei-Pei Shang
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Yu-Long Dong
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - He-Ming Xu
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Lie-Ping Guo
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China
| | - Dong-Sheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Yun-Jie Song
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Chuang Qi
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Wang-Long Deng
- Jiangsu Simcere Diagnostics Co., Ltd, The State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing, China
| | - Zhen-Gang Yuan
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second military medical univercity, Shanghai, China.
| |
Collapse
|
44
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
45
|
Abou Khouzam R, Lehn JM, Mayr H, Clavien PA, Wallace MB, Ducreux M, Limani P, Chouaib S. Hypoxia, a Targetable Culprit to Counter Pancreatic Cancer Resistance to Therapy. Cancers (Basel) 2023; 15:cancers15041235. [PMID: 36831579 PMCID: PMC9953896 DOI: 10.3390/cancers15041235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and it is a disease of dismal prognosis. While immunotherapy has revolutionized the treatment of various solid tumors, it has achieved little success in PDAC. Hypoxia within the stroma-rich tumor microenvironment is associated with resistance to therapies and promotes angiogenesis, giving rise to a chaotic and leaky vasculature that is inefficient at shuttling oxygen and nutrients. Hypoxia and its downstream effectors have been implicated in immune resistance and could be contributing to the lack of response to immunotherapy experienced by patients with PDAC. Paradoxically, increasing evidence has shown hypoxia to augment genomic instability and mutagenesis in cancer, suggesting that hypoxic tumor cells could have increased production of neoantigens that can potentially enable their clearance by cytotoxic immune cells. Strategies aimed at relieving this condition have been on the rise, and one such approach opts for normalizing the tumor vasculature to reverse hypoxia and its downstream support of tumor pathogenesis. An important consideration for the successful implementation of such strategies in the clinic is that not all PDACs are equally hypoxic, therefore hypoxia-detection approaches should be integrated to enable optimal patient selection for achieving improved patient outcomes.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Jean-Marie Lehn
- Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Michael Bradley Wallace
- Gastroenterology, Mayo Clinic, Jacksonville, FL 32224, USA
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates
| | - Michel Ducreux
- Department of Cancer Medicine, Gustave Roussy Cancer Institute, F-94805 Villejuif, France
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Department of Surgery & Transplantation, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, F-94805 Villejuif, France
- Correspondence: (P.L.); (S.C.); Tel.: +41-78-859-68-07 (P.L.); +33-(0)1-42-11-45-47 (S.C.)
| |
Collapse
|
46
|
Yamai T, Ikezawa K, Sugimoto N, Urabe M, Kai Y, Takada R, Nakabori T, Uehara H, Kawamura T, Kunimasa K, Yamamoto S, Wakamatsu T, Hayashi T, Kukita Y, Fujisawa F, Inoue T, Yamaguchi Y, Yamasaki T, Honma K, Ohkawa K. Utility of Comprehensive Genomic Profiling Tests for Patients with Incurable Pancreatic Cancer in Clinical Practice. Cancers (Basel) 2023; 15:cancers15030970. [PMID: 36765927 PMCID: PMC9913675 DOI: 10.3390/cancers15030970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Although comprehensive genomic profiling (CGP) tests have been covered under the Japanese national health insurance program since 2018, the utility and issues of CGP tests have not been clarified. We retrospectively reviewed 115 patients with incurable pancreatic cancer (IPC) who underwent CGP tests in a Japanese cancer referral center from November 2019 to August 2021. We evaluated the results of CGP tests, treatments based on CGP tests, and survival time. Eight cases (6.9%) were diagnosed as tumor mutation burden-high (TMB-H) and/or microsatellite instability-high (MSI-H). The gene mutation rates of KRAS/TP53/CDKN2A/SMAD4 were 93.0/83.0/53.0/25.2%, respectively. Twenty-five patients (21.7%) had homologous recombination deficiency (HRD)-related genetic mutations. Four patients (3.5%) having TMB-H and/or MSI-H were treated with pembrolizumab, and only two patients (1.7%) participated in the clinical trials. Patient characteristics were not significantly different between patients with and without HRD-related gene mutations. The median OS was significantly longer in the HRD (+) group than in the HRD (-) group (749 days vs. 519 days, p = 0.047). In multivariate analysis, HRD-related gene mutation was an independent prognostic factor associated with favorable OS. CGP tests for patients with IPC have the potential utility of detecting HRD-related gene mutations as prognostic factors as well as a therapeutic search.
Collapse
Affiliation(s)
- Takuo Yamai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Kenji Ikezawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-6-6945-1181; Fax: +81-6-6945-1834
| | - Naotoshi Sugimoto
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Makiko Urabe
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Yugo Kai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Ryoji Takada
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tasuku Nakabori
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Hiroyuki Uehara
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Sachiko Yamamoto
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Toru Wakamatsu
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Fumie Fujisawa
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tazuko Inoue
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Yuko Yamaguchi
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tomoyuki Yamasaki
- Department of Endocrinology/Metabolism Internal Medicine, Clinical Examination, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Kazuyoshi Ohkawa
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan
| |
Collapse
|
47
|
Golan T, Raitses-Gurevich M, Beller T, Carroll J, Brody JR. Strategies for the Management of Patients with Pancreatic Cancer with PARP Inhibitors. Cancer Treat Res 2023; 186:125-142. [PMID: 37978134 DOI: 10.1007/978-3-031-30065-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A subset of patients with pancreatic adenocarcinomas (PDAC) harbor mutations that are exploitable in the context of DNA-damage response and repair (DDR) inhibitory strategies. Between 8-18% of PDACs harbor specific mutations in the DDR pathway such as BRCA1/2 mutations, and a higher prevalence exists in high-risk populations (e.g., Ashkenazi Jews). Herein, we will review the current trials and data on the treatment of PDAC patients who harbor such mutations and who appear sensitive to platinum and/or poly ADP ribose polymerase inhibitor (PARPi) based therapies due to a concept known as synthetic lethality. Although this current best-in-class precision treatment shows clinical promise, the specter of resistance limits the extent of therapeutic responses. We therefore also evaluate promising pre-clinical and clinical approaches in the pipeline that may either work with existing therapies to break resistance or work separately with combination therapies against this subset of PDACs.
Collapse
Affiliation(s)
- Talia Golan
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Maria Raitses-Gurevich
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Beller
- Cancer Center, Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Carroll
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Brody
- Department of Surgery, Brenden Colson Center for Pancreatic Care, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
48
|
NGS-based targeted gene mutational profiles in Korean patients with pancreatic cancer. Sci Rep 2022; 12:20937. [PMID: 36463295 PMCID: PMC9719465 DOI: 10.1038/s41598-022-24732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
According to molecular profiling studies, a considerable number of patients with pancreatic cancer harbor potentially actionable mutations. However, there are limited relevant data from the Korean population. We assessed the molecular profiles of patients with pancreatic cancer in Korea. This study collected molecular profiling data from patients with pancreatic cancer who visited Seoul National University Bundang Hospital between March 2018 and August 2020. Formalin-fixed, paraffin-embedded tumor specimens were sequenced using a targeted next-generation sequencing (NGS) platform. Cancer-associated mutations were analyzed, and potentially actionable mutations were identified. Potentially actionable mutations were classified into "highly actionable" and "modifies options" based on the Know Your Tumor registry study. In total, 87 patients with NGS tumor panel data were identified. Sixty-one patients (70.1%) had metastatic disease at the time of tissue acquisition. Tissues were obtained from the primary tumors and metastatic sites in 41 (47.1%) and 46 (52.9%) patients, respectively. At least one pathogenic mutation was reported in 86 patients (98.9%). The frequencies of four common mutations in our cohort were similar to those in The Cancer Genome Atlas data. Potentially actionable mutations were identified in 27 patients (31.0%). Of these, mutations categorized as highly actionable and modifies options were identified in 12 (13.8%) and 18 patients (20.7%), respectively. The most frequent highly actionable mutations were located in DNA damage response genes, such as BRCA1, BRCA2, or ATM (n = 6, 6.9%). Two patients with germline BRCA1 mutations received maintenance poly(adenosine diphosphate-ribose) polymerase inhibitor therapy. One patient has been receiving maintenance treatment for 18 months while remaining in radiologically complete remission. Mutational profiles using targeted NGS in Korean patients with pancreatic cancer were similar to those in Western patients. The present study supports the clinical potential and possible expanded clinical use of genetic profiling.
Collapse
|
49
|
Perera S, Jang GH, Wang Y, Kelly D, Allen M, Zhang A, Denroche RE, Dodd A, Ramotar S, Hutchinson S, Tehfe M, Ramjeesingh R, Biagi J, Lam B, Wilson J, Fischer SE, Zogopoulos G, Notta F, Gallinger S, Grant RC, Knox JJ, O'Kane GM. hENT1 Expression Predicts Response to Gemcitabine and Nab-Paclitaxel in Advanced Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2022; 28:5115-5120. [PMID: 36222851 DOI: 10.1158/1078-0432.ccr-22-2576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel (GnP) remain standard first-line options for patients with advanced pancreatic ductal adenocarcinoma (PDAC). Human equilibrative nucleoside transporter 1 (hENT1) was hypothesized to be a biomarker of gemcitabine in the adjuvant setting, with conflicting results. In this study, we explore hENT1 mRNA expression as a predictive biomarker in advanced PDAC. EXPERIMENTAL DESIGN COMPASS was a prospective observational trial of patients with advanced PDAC. A biopsy was required prior to initiating chemotherapy, as determined by treating physician. Biopsies underwent laser capture microdissection prior to whole genome and RNA sequencing. The cut-off thresholds for hENT1 expression were determined using the maximal χ2 statistic. RESULTS 253 patients were included in the analyses with a median follow-up of 32 months, with 138 patients receiving mFFX and 92 receiving GnP. In the intention to treat population, median overall survival (OS) was 10.0 months in hENT1high versus 7.9 months in hENT1low (P = 0.02). In patients receiving mFFX, there was no difference in overall response rate (ORR; 35% vs. 28%, P = 0.56) or median OS (10.6 vs. 10.5 months, P = 0.45). However, in patients treated with GnP, the ORR was significantly higher in hENT1high compared with hENT1low tumors (43% vs. 21%, P = 0.038). Median OS in this GnP-treated cohort was 10.6 months in hENT1high versus 6.7 months hENT1low (P < 0.001). In an interaction analysis, hENT1 was predictive of treatment response to GnP (interaction P = 0.002). CONCLUSIONS In advanced PDAC, hENT1 mRNA expression predicts ORR and OS in patients receiving GnP.
Collapse
Affiliation(s)
- Sheron Perera
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Yifan Wang
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Surgery, McGill University, Montreal, Québec, Canada
| | - Deirdre Kelly
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Michael Allen
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Anna Dodd
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Ramotar
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shawn Hutchinson
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mustapha Tehfe
- Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ravi Ramjeesingh
- Nova Scotia Cancer Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Biagi
- Queen's University, Cancer Center of Southeastern Ontario, Kingston, Ontario, Canada
| | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Julie Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - George Zogopoulos
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Surgery, McGill University, Montreal, Québec, Canada
| | - Faiyaz Notta
- University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert C Grant
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jennifer J Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Park W, O'Connor CA, Bandlamudi C, Forman D, Chou JF, Umeda S, Reyngold M, Varghese AM, Keane F, Balogun F, Yu KH, Kelsen DP, Crane C, Capanu M, Iacobuzio-Donahue C, O'Reilly EM. Clinico-genomic Characterization of ATM and HRD in Pancreas Cancer: Application for Practice. Clin Cancer Res 2022; 28:4782-4792. [PMID: 36040493 PMCID: PMC9634347 DOI: 10.1158/1078-0432.ccr-22-1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Characterizing germline and somatic ATM variants (gATMm, sATMm) zygosity and their contribution to homologous recombination deficiency (HRD) is important for therapeutic strategy in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Clinico-genomic data for patients with PDAC and other cancers with ATM variants were abstracted. Genomic instability scores (GIS) were derived from ATM-mutant cancers and overall survival (OS) was evaluated. RESULTS Forty-six patients had PDAC and pathogenic ATM variants including 24 (52%) stage III/IV: gATMm (N = 24), and sATMm (N = 22). Twenty-seven (59%) had biallelic, 15 (33%) monoallelic, and 4 indeterminate (8%) variants. Median OS for advanced-stage cohort at diagnosis (N = 24) was 19.7 months [95% confidence interval (CI): 12.3-not reached (NR)], 27.1 months (95% CI: 22.7-NR) for gATMm (n = 11), and 12.3 months for sATMm (n = 13; 95% CI: 11.9-NR; P = 0.025). GIS was computed for 33 patients with PDAC and compared with other ATM-mutant cancers enriched for HRD. The median was lower (median, 11; range, 2-29) relative to breast (18, 3-55) or ovarian (25, 3-56) ATM-mutant cancers (P < 0.001 and P = 0.003, respectively). Interestingly, biallelic pathogenic ATM variants were mutually exclusive with TP53. Other canonical driver gene (KRAS, CDKN2A, SMAD4) variants were less frequent in ATM-mutant PDAC. CONCLUSIONS ATM variants in PDAC represent a distinct biologic group and appear to have favorable OS. Nonetheless, pathogenic ATM variants do not confer an HRD signature in PDAC and ATM should be considered as a non-core HR gene in this disease.
Collapse
Affiliation(s)
- Wungki Park
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- Parker Institute of Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine A O'Connor
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chaitanya Bandlamudi
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniella Forman
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Marsha Reyngold
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M Varghese
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fiyinfolu Balogun
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H Yu
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David P Kelsen
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher Crane
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|