1
|
Schamschula E, Kinzel M, Wernstedt A, Oberhuber K, Gottschling H, Schnaiter S, Friedrichs N, Merkelbach-Bruse S, Zschocke J, Gallon R, Wimmer K. Teenage-Onset Colorectal Cancers in a Digenic Cancer Predisposition Syndrome Provide Clues for the Interaction between Mismatch Repair and Polymerase δ Proofreading Deficiency in Tumorigenesis. Biomolecules 2022; 12:biom12101350. [PMID: 36291559 PMCID: PMC9599501 DOI: 10.3390/biom12101350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) in adolescents and young adults (AYA) is very rare. Known predisposition syndromes include Lynch syndrome (LS) due to highly penetrant MLH1 and MSH2 alleles, familial adenomatous polyposis (FAP), constitutional mismatch-repair deficiency (CMMRD), and polymerase proofreading-associated polyposis (PPAP). Yet, 60% of AYA-CRC cases remain unexplained. In two teenage siblings with multiple adenomas and CRC, we identified a maternally inherited heterozygous PMS2 exon 12 deletion, NM_000535.7:c.2007-786_2174+493del1447, and a paternally inherited POLD1 variant, NP_002682.2:p.Asp316Asn. Comprehensive molecular tumor analysis revealed ultra-mutation (>100 Mut/Mb) and a large contribution of COSMIC signature SBS20 in both siblings’ CRCs, confirming their predisposition to AYA-CRC results from a high propensity for somatic MMR deficiency (MMRd) compounded by a constitutional Pol δ proofreading defect. COSMIC signature SBS20 as well as SBS26 in the index patient’s CRC were associated with an early mutation burst, suggesting MMRd was an early event in tumorigenesis. The somatic second hits in PMS2 were through loss of heterozygosity (LOH) in both tumors, suggesting PPd-independent acquisition of MMRd. Taken together, these patients represent the first cases of cancer predisposition due to heterozygous variants in PMS2 and POLD1. Analysis of their CRCs supports that POLD1-mutated tumors acquire hypermutation only with concurrent MMRd.
Collapse
Affiliation(s)
- Esther Schamschula
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Kinzel
- Medicover Humangenetik—Berlin-Lichtenberg, 10315 Berlin, Germany
| | - Annekatrin Wernstedt
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Hendrik Gottschling
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schnaiter
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Johannes Zschocke
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katharina Wimmer
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
2
|
Dai Z, Peng X, Guo Y, Shen X, Ding W, Fu J, Liang Z, Song J. Metabolic pathway-based molecular subtyping of colon cancer reveals clinical immunotherapy potential and prognosis. J Cancer Res Clin Oncol 2022; 149:2393-2416. [PMID: 35731273 DOI: 10.1007/s00432-022-04070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Colon cancer presents challenges to clinical diagnosis and management due to its high heterogeneity. For more efficient and convenient diagnosis and treatment of colon cancer, we are committed to characterizing the molecular features of colon cancer by pioneering a classification system based on metabolic pathways. METHODS Based on the 113 metabolic pathways and genes collected in the previous stage, we scored and filtered the metabolic pathways of each sample in the training set by ssGSEA, and obtained 16 metabolic pathways related to colon cancer recurrence. In consistent clustering of training set samples with recurrence-related metabolic pathway scores, we identified two robust molecular subtypes of colon cancer (MC1 and MC2). Furthermore, we performed multi-angle analysis on the survival differences of subtypes, metabolic characteristics, clinical characteristics, functional enrichment, immune infiltration, differences with other subtypes, stemness indices, TIDE prediction, and drug sensitivity, and finally constructed colon cancer prognostic model. RESULTS The results showed that the MC1 subtype had a poor prognosis based on higher immune activity and immune checkpoint gene expression. The MC2 subtype is associated with high metabolic activity and low expression of immune checkpoint genes and a better prognosis. The MC2 subtype was more responsive to PD-L1 immunotherapy than the MC1 subclass. However, we did not observe significant differences in tumor mutational burden between the two. CONCLUSION Two molecular subtypes of colon cancer based on metabolic pathways have distinct immune signatures. Constructing prognostic models based on subtype differential genes provides valuable reference for personalized therapy targeting unique tumor metabolic signatures.
Collapse
Affiliation(s)
- Zhujiang Dai
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Xiang Peng
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Yuegui Guo
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Xia Shen
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wenjun Ding
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Jihong Fu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Zhonglin Liang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Jinglue Song
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China. .,Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|