1
|
Gao H, Sun J, Guo X, Zhang Z, Liu H, Zhang Z, Liu M, Zhou S, Li S, Zhang T. Study on the Extraction of Nervonic Acid from the Oil of Xanthoceras sorbifolium Bunge Seeds. Foods 2024; 13:2757. [PMID: 39272521 PMCID: PMC11394566 DOI: 10.3390/foods13172757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Seven fatty acids were detected by GC-MS in Xanthoceras sorbifolium Bunge seed oil extracted at different temperatures, including Palmitic acid C16:0, Stearic acid C18:0, Oleic acid C18:1, Eicosenoic acid C20:1, Docosenoic acid C22:1, Tetracosenoic acid C24:1, and Linoleic acid C18:2. The highest content of nervonic acid (NA) was found in Xanthoceras sorbifolium Bunge seed oil extracted at 70 °C. Three methods were selected to analyze the extraction rate of nervonic acid in Xanthoceras sorbifolium Bunge seed oil, including urea complexation, low-temperature solvent crystallization, and a combined treatment using these two methods. The final content of nervonic acid obtained was 14.07%, 19.66%, and 40.17%, respectively. The combined treatment method increased the purity of nervonic acid in Xanthoceras sorbifolium Bunge seed oil by 12.62 times. Meanwhile, thermogravimetric behavior analysis of samples extracted using different methods was conducted by thermogravimetric analyzer, which suggested that the thermal stability of the samples extracted by the combined treatment was enhanced. These results can provide a new process parameter and scientific basis for the extraction of NA. At the same time, FTIR and NMR were also used to characterize the combined extraction sample, and the structure of the samples was proved.
Collapse
Affiliation(s)
- Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xuan Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Xia T, Chen L, Fei Z, Liu X, Dai J, Hinkle SN, Zhu Y, Wu J, Weir NL, Tsai MY, Zhang C. A longitudinal study on associations of moderate-to-vigorous physical activity with plasma monounsaturated fatty acids in pregnancy. Front Nutr 2022; 9:983418. [PMID: 36352907 PMCID: PMC9637551 DOI: 10.3389/fnut.2022.983418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2024] Open
Abstract
Background Physical activity (PA) during pregnancy influences women and offspring's health via fatty acids metabolism. However, studies on associations of PA with plasma monounsaturated fatty acids (MUFAs) across pregnancy are sparse. Thus, our study aimed to examine associations of PA with individual plasma phospholipid MUFAs throughout pregnancy in a prospective and longitudinal study in the United States (US). Materials and methods The study included 318 pregnant women from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Fetal Growth Studies-Singletons cohort. PA was measured four times: PA reported at 10-14 gestational weeks (GWs) representing PA in the past year, and at 15-26 GWs, 23-31 GWs, and 33-39 GWs representing PA since the last visit. Plasma phospholipid MUFAs were measured at the same four visits as the measurement of PA. Associations between moderate-to-vigorous PA (MVPA) and the total MUFAs and seven individual plasma phospholipid MUFAs (i.e., palmitoleic acid, 18:1n6-9 trans, 18:1n6c, cis-vaccenic acid, oleic acid, eicosenoic acid, and nervonic acid) were assessed at each visit using multivariable linear regression models adjusting for confounders. Results MVPA (hours/week) reported at 15-26 GWs representing MVPA since the last visit was positively associated with total MUFAs (% of total fatty acids) [adjusted β*102 (standard error (SE)*102) = 10.41 (3.19), P = 0.001] at 15-26 GWs. For individual MUFAs, MVPA reported at 15-26 GWs representing MVPA since the last visit was positively associated with oleic acid [adjusted β*102 (SE*102) = 8.56 (2.65), P = 0.001] and eicosenoic acid [adjusted β*102 (SE*102) = 0.55 (0.20), P = 0.01] at 15-26 GWs. MVPA reported at 23-31 GWs representing MVPA since the last visit was positively associated with palmitoleic acid [adjusted β*102 (SE*102) = 2.24 (0.64), P = 0.001] at 23-31 GWs. MVPA reported at 10-14 GWs and 33-39 GWs was not associated with total or individual MUFAs. Conclusion We found novel positive associations of MVPA with individual MUFAs, such as oleic acid, eicosenoic acid, and palmitoleic acid, during middle-to-late pregnancy. These findings suggest that MVPA represents a potentially modifiable factor for plasma individual MUFA levels during pregnancy.
Collapse
Affiliation(s)
- Tong Xia
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xinyue Liu
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jin Dai
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefanie N. Hinkle
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Jing Wu
- Glotech, Inc., Rockville, MD, United States
| | - Natalie L. Weir
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Y. Tsai
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Cuilin Zhang
- Global Center for Asian Women’s Health, Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Zhang Y, Gan L, Tang J, Liu D, Chen G, Xu B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front Immunol 2022; 13:967371. [PMID: 36059469 PMCID: PMC9437530 DOI: 10.3389/fimmu.2022.967371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) occurs in 50% of patients with systemic lupus erythematosus (SLE), causing considerable morbidity and even mortality. Previous studies had shown the potential of metabolic profiling in the diagnosis of SLE or LN. However, few metabonomics studies have attempted to distinguish SLE from LN based on metabolic changes. The current study was designed to find new candidate serum signatures that could differentiate LN from SLE patients using a non-targeted metabonomics method based on ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).MethodMetabolic profiling of sera obtained from 21 healthy controls, 52 SLE patients and 43 LN patients. We used SPSS 25.0 for statistical analysis. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and metabolic pathway analysis were used to analyze the metabolic data.ResultsUpon comparison of SLE and LN groups, 28 differential metabolites were detected, the majority of which were lipids and amino acids. Glycerolphospholipid metabolism, pentose and glucuronate interconversions and porphyrin and chlorophyll metabolism were obviously enriched in LN patients versus those with SLE. Among the 28 characteristic metabolites, five key serum metabolites including SM d34:2, DG (18:3(9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), nervonic acid, Cer-NS d27:4, and PC (18:3(6Z,9Z,12Z)/18:3(6Z,9Z,12Z) performed higher diagnostic performance in discriminating LN from SLE (all AUC > 0.75). Moreover, combined analysis of neuritic acid, C1q, and CysC (AUC = 0.916) produced the best combined diagnosis.ConclusionThis study identified five serum metabolites that are potential indicators for the differential diagnosis of SLE and LN. Glycerolphospholipid metabolism may play an important role in the development of SLE to LN. The metabolites we screened can provide more references for the diagnosis of LN and more support for the pathophysiological study of SLE progressed to LN.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Lingling Gan
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Dan Liu
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Gang Chen
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Bei Xu
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- *Correspondence: Gang Chen, ; Bei Xu,
| |
Collapse
|
4
|
Liu Y, Li Y, Shen H, Li Y, Xu Y, Zhou M, Xia X, Shi B. Association between the metabolic profile of serum fatty acids and diabetic nephropathy: a study conducted in northeastern China. Ther Adv Endocrinol Metab 2022; 13:20420188221118750. [PMID: 36157308 PMCID: PMC9490461 DOI: 10.1177/20420188221118750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND PURPOSE With the progressive increase in the prevalence of type 2 diabetes mellitus (T2DM), diabetic nephropathy (DN) - one of the most common chronic microvascular complications - has evolved into a significant cause of death worldwide among end-stage renal disease patients. Academic researchers have for decades focused on the development of DN and recently found that free fatty acids (FFAs) constituted an independent risk factor for vascular complications in T2DM patients. It is therefore critical to determine whether the metabolic profile of FFAs is related to DN. METHODS This study comprised 611 research subjects in Dalian, a city in northeast China: 52 DN patients, 115 T2DM patients, and 444 healthy controls. We determined 15 forms of serum FFAs, including arachidonic acid (AA, C20:4), docosahexaenoic acid (DHA, C22:6), erucic acid (C22:1), nervonic acid (NA, C24:1), estimated total omega-3s, total omega-6s, the omega-3/omega-6 ratio, and total FFA content by liquid chromatography-mass spectrometry (LC-MS). RESULTS The levels of NA (mean = 45.27, range = 0.84-76.57) and DHA (mean = 324.58, range = 205.38-450.03) in DN patients were slightly lower than those in T2DM patients or healthy controls. The serum omega-3 polyunsaturated fatty acid (PUFA) DHA (C22:6) was significantly negatively correlated with microalbuminuria (MAU), the albumin/creatinine ratio (ACR), body mass index (BMI), fasting plasma glucose (FPG), and glycosylated hemoglobin (HbA1c). The serum monounsaturated fatty acid (MUFA) NA (C24:1) was significantly negatively correlated with BMI, FPG, and HbA1c. After adjustment of variables, multiple logistic regression analysis revealed significant odds ratios (ORs) [with confidence intervals (CIs)] for DHA (0.991, 0.985-0.997; p = 0.002) and NA (0.978, 0.958-0.999; p = 0.037). CONCLUSION In this study, we ascertained that the contents of NA and DHA in patients with DN were relatively low, and that DHA was negatively correlated with MAU and the ACR. However, large-scale, population-based studies focusing on the role of NA and DHA in the pathogenesis of DN are still required in the future.
Collapse
Affiliation(s)
- Yazhuo Liu
- Department of Endocrinology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yingying Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Hui Shen
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yike Li
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Yanbing Xu
- Department of Clinical Nutrition and Metabolism, Dalian University Affiliated Zhongshan Hospital, Dalian, China
| | - Mi Zhou
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - Xinghai Xia
- Department of Ophthalmology, Penn State Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
5
|
Marczak L, Idkowiak J, Tracz J, Stobiecki M, Perek B, Kostka-Jeziorny K, Tykarski A, Wanic-Kossowska M, Borowski M, Osuch M, Formanowicz D, Luczak M. Mass Spectrometry-Based Lipidomics Reveals Differential Changes in the Accumulated Lipid Classes in Chronic Kidney Disease. Metabolites 2021; 11:275. [PMID: 33925471 PMCID: PMC8146808 DOI: 10.3390/metabo11050275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by the progressive loss of functional nephrons. Although cardiovascular disease (CVD) complications and atherosclerosis are the leading causes of morbidity and mortality in CKD, the mechanism by which the progression of CVD accelerates remains unclear. To reveal the molecular mechanisms associated with atherosclerosis linked to CKD, we applied a shotgun lipidomics approach fortified with standard laboratory analytical methods and gas chromatography-mass spectrometry technique on selected lipid components and precursors to analyze the plasma lipidome in CKD and classical CVD patients. The MS-based lipidome profiling revealed the upregulation of triacylglycerols in CKD and downregulation of cholesterol/cholesteryl esters, sphingomyelins, phosphatidylcholines, phosphatidylethanolamines and ceramides as compared to CVD group and controls. We have further observed a decreased abundance of seven fatty acids in CKD with strong inter-correlation. In contrast, the level of glycerol was elevated in CKD in comparison to all analyzed groups. Our results revealed the putative existence of a functional causative link-the low cholesterol level correlated with lower estimated glomerular filtration rate and kidney dysfunction that supports the postulated "reverse epidemiology" theory and suggest that the lipidomic background of atherosclerosis-related to CKD is unique and might be associated with other cellular factors, i.e., inflammation.
Collapse
Affiliation(s)
- Lukasz Marczak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Jakub Idkowiak
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic
| | - Joanna Tracz
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Maciej Stobiecki
- Department of Natural Products Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (J.I.); (M.S.)
| | - Bartłomiej Perek
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-001 Poznan, Poland;
| | - Katarzyna Kostka-Jeziorny
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Andrzej Tykarski
- Department of Hypertension, Angiology and Internal Disease, Poznan University of Medical Sciences, 61-001 Poznan, Poland; (K.K.-J.); (A.T.)
| | - Maria Wanic-Kossowska
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland;
| | - Marcin Borowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marcin Osuch
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Magdalena Luczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland;
| |
Collapse
|
6
|
Circulating fatty acid profiles are associated with protein energy wasting in maintenance hemodialysis patients: a cross-sectional study. Sci Rep 2021; 11:1416. [PMID: 33446880 PMCID: PMC7809126 DOI: 10.1038/s41598-020-80812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/28/2020] [Indexed: 12/02/2022] Open
Abstract
The metabolic impact of circulating fatty acids (FAs) in patients requiring hemodialysis (HD) is unknown. We investigated the associations between plasma triglyceride (TG) FAs and markers of inflammation, insulin resistance, nutritional status and body composition. Plasma TG-FAs were measured using gas chromatography in 341 patients on HD (age = 55.2 ± 14.0 years and 54.3% males). Cross-sectional associations of TG-FAs with 13 markers were examined using multivariate linear regression adjusted for potential confounders. Higher levels of TG saturated fatty acids were associated with greater body mass index (BMI, r = 0.230), waist circumference (r = 0.203), triceps skinfold (r = 0.197), fat tissue index (r = 0.150), serum insulin (r = 0.280), and homeostatic model assessment of insulin resistance (r = 0.276), but lower malnutrition inflammation score (MIS, r = − 0.160). Greater TG monounsaturated fatty acid levels were associated with lower lean tissue index (r = − 0.197) and serum albumin (r = − 0.188), but higher MIS (r = 0.176). Higher levels of TG n-3 polyunsaturated fatty acids (PUFAs) were associated with lower MIS (r = − 0.168) and interleukin-6 concentrations (r = − 0.115). Higher levels of TG n-6 PUFAs were associated with lower BMI (r = − 0.149) but greater serum albumin (r = 0.112). In conclusion, TG monounsaturated fatty acids were associated with poor nutritional status, while TG n-3 PUFAs were associated with good nutritional status. On the other hand, TG saturated fatty acids and TG n-6 PUFAs had both favorable and unfavorable associations with nutritional parameters.
Collapse
|
7
|
Katoh A, Ikeda H, Matsushima Y, Sasaki M, Okina N, Niiyama H, Harada H, Nishiyama Y, Kai H. Long‐chain fatty acids in sarcopenia patients with cardiovascular diseases: importance of n‐9 monounsaturated fatty acids. JCSM CLINICAL REPORTS 2020. [DOI: 10.1002/crt2.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Atsushi Katoh
- Department of Cardiology Kurume University Medical Center Kurume Japan
| | - Hisao Ikeda
- Department of Cardiology Sugi Hospital Omuta Japan
| | | | - Motoki Sasaki
- Department of Cardiology Kurume University Medical Center Kurume Japan
| | - Norihito Okina
- Department of Cardiology Kurume University Medical Center Kurume Japan
| | - Hiroshi Niiyama
- Department of Cardiology Kurume University Medical Center Kurume Japan
| | - Haruhito Harada
- Department of Cardiology Kurume University Medical Center Kurume Japan
| | | | - Hisashi Kai
- Department of Cardiology Kurume University Medical Center Kurume Japan
| |
Collapse
|
8
|
Szczuko M, Kaczkan M, Małgorzewicz S, Rutkowski P, Dębska-Ślizień A, Stachowska E. The C18:3n6/C22:4n6 ratio is a good lipid marker of chronic kidney disease (CKD) progression. Lipids Health Dis 2020; 19:77. [PMID: 32303226 PMCID: PMC7164198 DOI: 10.1186/s12944-020-01258-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a major challenge for public health due to increased risk of cardiovascular diseases (CVD) and premature death. The aim of this study was to determine the clinical picture of FA and the course of the pathophysiological mechanisms of CKD. Methods The study involved 149 patients with CKD and a control group including 43 people. Fatty acid profiles were investigated using gas chromatography. A total of 30 fatty acids and their derivatives were identified and quantified. The omega3, omega6, SFA, MUFA, and PUFA fatty acid contents were calculated. The correlation matrix was obtained for parameters relating to patients with CKD vs. FA, taking patients’ sex into consideration. The index C18:3n6/C22:4n6 was calculated according to the length of the treatment. Statistica 12.0 software (Tulsa, Oklahoma, USA) was used for the statistical analyses. Results The results showed decreased levels of total PUFA and increased concentrations of MUFA, including the activation of the palmitic and oleic acid pathway. An increase in the levels of n-6 9C22: 4n6 family fatty acids in all the patients and a reduction in the n-3 family (EPA, DHA) were observed. C18:3n6 was negatively correlated and C22:4n6 was positively correlated with the duration of the treatment. The index C18:3n6/C22:4n6 was defined as a new marker in the progression of the disease. Moreover, the index C18:3n6/ C22:4n6 was drastically decreased in later period. Nervonic acid was higher in the CKD group. In the group of men with CKD, there was a negative correlation between the excretion of K+, anthropometric measurements, and the levels of EPA and DHA. Conclusions The course of inflammation in CKD occurs through the decrease in PUFA and the synthesis of MUFA. The dominating cascade of changes is the elongation of GLA-C18:3n6 into DGLA-C20:3n6 and AA-C20:4n6. As CKD progresses, along with worsening anthropometrical parameters and increased secretion of potassium, the activity of Ʌ6-desaturase decreases, reducing the synthesis of EPA and DHA. The synthesis of AdA-C22:4n6 increases and the ratio C18:3n6/C22:4n6 drastically decreases after 5 years. This parameter can be used to diagnose disease progression.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Małgorzata Kaczkan
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition and Dietetics, Medical University of Gdańsk, Gdańsk, Poland
| | - Przemysław Rutkowski
- Department of General Nursery, Medical University of Gdańsk and Diaverum Hemodialysis Unit, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
9
|
Zhu W, Liu Y, Duan X, Xiao C, Lan Y, Luo L, Wu C, Yang Z, Mai X, Lu S, Zhong W, Li S, He Z, Zhang X, Liu Y, Zeng G. Alteration of the gut microbiota by vinegar is associated with amelioration of hyperoxaluria-induced kidney injury. Food Funct 2020; 11:2639-2653. [PMID: 32159193 DOI: 10.1039/c9fo02172h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that the renal function of rats with hyperoxaluria was improved after dietary vinegar intake. However, its underlying mechanisms remain largely unknown. The aim of the present study was to examine changes of gut microbiota and blood and urinary metabolites that associate with changes in kidney function to identify mechanisms involved with vinegar induced amelioration of hyperoxaluria-induced kidney injury. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we evaluated the effects of the vinegar on renal injury. Oral administration of vinegar (2 ml kg-1 day-1) reduced the elevated serum creatinine, BUN, and protected against hyperoxaluria-induced renal injury, renal fibrosis, and inflammation. Gut microbiota analysis of 16S rRNA gene in the hyperoxaluria-induced renal injury rats showed that vinegar treatment altered their microbial composition, especially the recovery of the levels of the Prevotella, Ruminiclostridium, Alistipes and Paenalcaligenes genus, which were significantly increased in the hyperoxaluria-induced renal injury rats. Additionally, liquid chromatography-mass spectrometry (LC-MS)-based metabolome analysis showed that total of 35 serum and 42 urine metabolites were identified to be associated with protective effects of vinegar on hyperoxaluria-induced renal injury rats. Most of these metabolites were involved in thiamine metabolism, glycerol phosphate shuttle, biotin metabolism, phosphatidylcholine biosynthesis and membrane lipid metabolism. Importantly, the effects of vinegar against renal injury were weakened after depletion of gut microbiota by antibiotic treatment. These results suggest that vinegar treatment ameliorates the hyperoxaluria-induced renal injury by improving the gut microbiota and metabolomic profiles.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China510230.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kanemitsu Y, Mishima E, Maekawa M, Matsumoto Y, Saigusa D, Yamaguchi H, Ogura J, Tsukamoto H, Tomioka Y, Abe T, Mano N. Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS. Sci Rep 2019; 9:19075. [PMID: 31836785 PMCID: PMC6910927 DOI: 10.1038/s41598-019-55600-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
Carboxyl-containing metabolites, such as bile acids and fatty acids, have many important functions and microbiota is involved in the production of them. In the previous study, we found that the chronic kidney disease (CKD) model mice raised under germ-free conditions provided more severe renal damage than the mice with commensal microbiota. However, the precise influence by the microbiome and carboxyl-containing metabolites to the renal functions is unknown. In this study, we aimed to develop a novel chemical isotope labeling-LC-MS/MS method using the 2-picolylamine and its isotopologue and applied the analysis of effects of microbiome and CKD pathophysiology. The developed semi-quantitative method provided the high accuracy not inferior to the absolute quantification. By comparing of four groups of mice, we found that both microbiota and renal function can alter the composition and level of these metabolites in both plasma and intestine. In particular, the intestinal level of indole-3-acetic acid, short-chain fatty acids and n-3 type of polyunsaturated fatty acid, which play important roles in the endothelial barrier function, were significantly lower in germ-free conditions mice with renal failure. Accordingly, it is suggested these metabolites might have a renoprotective effect on CKD by suppressing epithelial barrier disruption.
Collapse
Affiliation(s)
- Yoshitomi Kanemitsu
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Eikan Mishima
- Department of Clinical Biology and Hormonal Regulation and Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan.
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation and Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Department of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
11
|
A mini review of nervonic acid: Source, production, and biological functions. Food Chem 2019; 301:125286. [PMID: 31382110 DOI: 10.1016/j.foodchem.2019.125286] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/14/2022]
Abstract
Nervonic acid (NA) has attracted considerable attention because of its close relationship with brain development. Sources of NA include oil crop seeds, oil-producing microalgae, and other microorganisms. Transgenic technology has also been applied to improve the sources and production of NA. NA can be separated and purified by urea adduction fractionation, molecular distillation, and crystallization. Studies on NA functionality involved treatments for demyelinating diseases and acquired immunodeficiency syndrome, as well as prediction of mortality due to cardiovascular diseases and chronic kidney disease. This mini review focuses on the sources, production, and biological functions of NA and provides prospective trends in the investigation of NA.
Collapse
|
12
|
Szczuko M, Kaczkan M, Drozd A, Maciejewska D, Palma J, Owczarzak A, Marczuk N, Rutkowski P, Małgorzewicz S. Comparison of Fatty Acid Profiles in a Group of Female Patients with Chronic Kidney Diseases (CKD) and Metabolic Syndrome (MetS)⁻Similar Trends of Changes, Different Pathophysiology. Int J Mol Sci 2019; 20:ijms20071719. [PMID: 30959940 PMCID: PMC6480133 DOI: 10.3390/ijms20071719] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023] Open
Abstract
Fatty acid (FA) profiles in the plasma of patients with metabolic syndrome and chronic kidney disease (CKD) seem to be identical despite their different etiology (dietary mistakes vs. cachexia). The aim of this study was to compare both profiles and to highlight the differences that could influence the improvement of the treatment of patients in both groups. The study involved 73 women, including 24 patients with chronic kidney disease treated with haemodialysis, 19 patients with metabolic syndrome (MetS), and 30 healthy women in the control group. A total of 35 fatty acids and derivatives were identified and quantified by gas chromatography. Intensified elongation processes from acid C10:0 to C16:0 were noted in both groups (more intense in MetS), as well as an increased synthesis of arachidonic acid (C20:4n6), which was more intense in CKD. Significant correlations of oleic acid (C18:1n9), gamma linoleic acid (C18:3n6), and docosatetraenoate acid (C22:4n6) with parameters of CKD patients were observed. In the MetS group, auxiliary metabolic pathways of oleic acid were activated, which simultaneously inhibited the synthesis of eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) from alpha lipoic acid (ALA). On the other hand, in the group of female patients with CKD, the synthesis of EPA and DHA was intensified. Activation of the synthesis of oleic acid (C18: 1n9 ct) and trans-vaccinic acid (C18:1) is a protective mechanism in kidney diseases and especially in MetS due to the increased concentration of saturated fatty acid (SFA) in plasma. The cause of the increased amount of all FAs in plasma in the CKD group, especially in the case of palmitic (C16:0) and derivatives stearic (C18:0) acids, may be the decomposition of adipose tissue and the progressing devastation of the organism, whereas, in the MetS group, dietary intake seems to be the main reason for the increase in SFA. Moreover, in MetS, auxiliary metabolic pathways are activated for oleic acid, which cause the simultaneous inhibition of EPA and DHA synthesis from ALA, whereas, in the CKD group, we observe an increased synthesis of EPA and DHA. The higher increase of nervonic acid (C24:1) in CKD suggests a higher degree of demyelination and loss of axons.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Małgorzata Kaczkan
- Department of Clinical Nutrition Medical University of Gdańsk, 80-210 Gdańsk, Poland.
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Dominika Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Joanna Palma
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Anna Owczarzak
- Department of Clinical Nutrition Medical University of Gdańsk, 80-210 Gdańsk, Poland.
| | - Natalia Marczuk
- Department of Microbiology and Immunology, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland.
| | - Przemysław Rutkowski
- General Nursery Department, Medical University of Gdańsk, Diaverum Hemodialysis Unit, 80-210 Gdańsk, Poland.
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition Medical University of Gdańsk, 80-210 Gdańsk, Poland.
| |
Collapse
|
13
|
Kim OY, Lee SM, An WS. Impact of Blood or Erythrocyte Membrane Fatty Acids for Disease Risk Prediction: Focusing on Cardiovascular Disease and Chronic Kidney Disease. Nutrients 2018; 10:E1454. [PMID: 30301276 PMCID: PMC6213250 DOI: 10.3390/nu10101454] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Fatty acids (FAs) are essential nutrients and main constituents of cell membranes that are involved in the signaling pathway and associated with health conditions. We investigated if blood or erythrocyte membrane FAs can predict the risk of cardiovascular disease (CVD), chronic kidney disease (CKD), and related complications. Omega-3 (n-3) FAs are important predictors for metabolic syndrome, diabetes, CVD, and CKD risks, and the n-3 index is also a good biomarker for sudden cardiac death in coronary artery disease. Linoleic acid, which is one of the major n-6 FAs reflecting recent dietary FA intake, may predict CVD risk and mortality in the general population and patients with CKD. Monounsaturated FAs (MUFAs) are also related to diabetes or diabetic nephropathy. Oleic acid, a major MUFA, is an emerging marker that is related to acute coronary syndrome, low glomerular filtration rate, and vascular calcification in patients with CKD, and can be modified by n-3 FA supplementation. Saturated FAs, trans-FAs, and FA desaturation/elongation are associated with CVD risk; however, few studies have been conducted on patients with CKD. In summary, blood or erythrocyte membrane FA measurements are important for CVD and CKD risk prediction and management. Further studies are needed to elucidate the FAs for their risk predictions.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Korea.
| | - Su Mi Lee
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea.
| | - Won Suk An
- Department of Internal Medicine, Dong-A University, Busan 49201, Korea.
| |
Collapse
|
14
|
Khor BH, Narayanan SS, Chinna K, Gafor AHA, Daud ZAM, Khosla P, Sundram K, Karupaiah T. Blood Fatty Acid Status and Clinical Outcomes in Dialysis Patients: A Systematic Review. Nutrients 2018; 10:nu10101353. [PMID: 30248953 PMCID: PMC6213187 DOI: 10.3390/nu10101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Blood fatty acids (FAs) are derived from endogenous and dietary routes. Metabolic abnormalities from kidney dysfunction, as well as cross-cultural dietary habits, may alter the FA profile of dialysis patients (DP), leading to detrimental clinical outcomes. Therefore, we aimed to (i) summarize FA status of DP from different countries, (ii) compare blood FA composition between healthy controls and DP, and (iii) evaluate FA profile and clinical endpoints in DP. Fifty-three articles from 1980 onwards, reporting FA profile in hemodialysis and peritoneal DP, were identified from PubMed, Embase, and the Cochrane library. Studies on pediatric, predialysis chronic kidney disease, acute kidney injury, and transplant patients were excluded. Moderate to high levels of n-3 polyunsaturated fatty acids (PUFA) were reported in Japan, Korea, Denmark, and Sweden. Compared to healthy adults, DP had lower proportions of n-3 and n-6 PUFA, but higher proportion of monounsaturated fatty acids. Two studies reported inverse associations between n-3 PUFAs and risks of sudden cardiac death, while one reported eicosapentaenoic acid + docosahexaenoic acid)/arachidonic acid ratio was inversely associated with cardiovascular events. The relationship between all-cause mortality and blood FA composition in DP remained inconclusive. The current evidence highlights a critical role for essential FA in nutritional management of DP.
Collapse
Affiliation(s)
- Ban-Hock Khor
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | | | - Karuthan Chinna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Abdul Halim Abdul Gafor
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Zulfitri Azuan Mat Daud
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
| | - Pramod Khosla
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA.
| | | | - Tilakavati Karupaiah
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
15
|
Seto Y, Morizane C, Ueno K, Sato H, Onoue S. Supersaturable Self-Emulsifying Drug Delivery System of Krill Oil with Improved Oral Absorption and Hypotriglyceridemic Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5352-5358. [PMID: 29754485 DOI: 10.1021/acs.jafc.8b00693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to develop a supersaturable self-emulsifying drug delivery system (S-SEDDS) of krill oil (KO), a rich source of docosahexaenoic acid and eicosapentaenoic acid (EPA), to improve its hypotriglyceridemic function. S-SEDDS of KO (KO/S-SEDDS) was prepared by the addition of lysolecithin, glycerin, and hydroxypropyl methylcellulose (HPMC). Self-emulsifying drug delivery system of KO (KO/SEDDS) and KO with HPMC (KO/HPMC) were also prepared for comparison purposes. The physicochemical and pharmacokinetic properties of KO samples were characterized, and the hypotriglyceridemic function of KO/S-SEDDS was evaluated. Micronized droplets in KO/SEDDS and KO/S-SEDDS with a mean diameter of ca. 270 nm could be observed in comparison to KO and KO/HPMC. Both KO/HPMC and KO/S-SEDDS tended to enhance the dissolution behavior of KO, and the S-SEDDS formulation improved the dissolution behavior of KO as a result of micronized droplets and the addition of HPMC. KO/S-SEDDS (60 mg of EPA/kg) improved the oral absorption of KO based on the pharmacokinetic profiling of EPA, and repeated oral administration of KO/S-SEDDS (250 mg of KO kg-1 day-1) for 7 days had a potent hypotriglyceridemic effect on rats with corn-oil-induced hypertriglyceridemia compared to orally administered KO. On the basis of these findings, the S-SEDDS approach might be an efficacious dosage option to enhance the nutraceutical properties of KO.
Collapse
Affiliation(s)
- Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Chikara Morizane
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Kodai Ueno
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences , University of Shizuoka , 52-1 Yada , Suruga-ku, Shizuoka 422-8526 , Japan
| |
Collapse
|
16
|
Pazda M, Stepnowski P, Sledzinski T, Chmielewski M, Mika A. Suitability of selected chromatographic columns for analysis of fatty acids in dialyzed patients. Biomed Chromatogr 2017; 31. [PMID: 28493452 DOI: 10.1002/bmc.4006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/28/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Gas chromatography-mass spectrometry is a preferred method for fatty acid (FA) analysis in biofluids from patients with metabolic diseases. Complex characteristics of FAs make their analysis particularly challenging. Selection of an appropriate chromatographic column is particularly important component of the process as it provides optimal separation and detection of possibly all FAs present in the sample. However, no accurate protocol for comparative evaluation of capillary columns for the analysis of whole serum FA profile in patients with chronic kidney disease (CKD) has been developed thus far. Therefore, in the present study four columns were examined to select the one providing optimal separation and determination of FA profiles in this group of patients. Moreover, serum FA profiles obtained with the selected column in CKD patients subjected to peritoneal dialysis and healthy controls were compared. Thirty-seven component FAME Mix and sera from CKD patients were used to optimize chromatographic conditions and to select the most appropriate column. The ZB-5 column turned out to be the most appropriate for the analysis of whole FA profile in CKD patients' sera. Then, this column was used to compare FA profiles in patients subjected to peritoneal dialysis and in healthy controls. The analysis demonstrated many abnormalities in the FA profile of CKD patients. Further studies involving larger groups of patients presenting with other stages of CKD are required to explain the impact of the disease progression on composition of serum FAs.
Collapse
Affiliation(s)
- Magdalena Pazda
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Poland
| | - Michal Chmielewski
- Department of Nephrology, Trasplantology and Internal Medicine, Medical University of Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Poland.,Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Poland
| |
Collapse
|
17
|
Individual omega-9 monounsaturated fatty acids and mortality—The Ludwigshafen Risk and Cardiovascular Health Study. J Clin Lipidol 2017; 11:126-135.e5. [DOI: 10.1016/j.jacl.2016.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 11/23/2022]
|
18
|
Zhang ZH, Chen H, Vaziri ND, Mao JR, Zhang L, Bai X, Zhao YY. Metabolomic Signatures of Chronic Kidney Disease of Diverse Etiologies in the Rats and Humans. J Proteome Res 2016; 15:3802-3812. [PMID: 27636000 DOI: 10.1021/acs.jproteome.6b00583] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) has emerged as a major public health problem worldwide. It frequently progresses to end-stage renal disease, which is related to very high cost and mortality. Novel biomarkers can provide insight into the novel mechanism, facilitate early detection, and monitor progression of CKD and its response to therapeutic interventions. To identify potential biomarkers, we applied an UPLC-HDMS together with univariate and multivariate statistical analyses using plasma samples from patients with CKD of diverse etiologies (100 sera in discovery set and 120 sera in validation set) and two different rat models of CKD. Using comprehensive screening and validation workflow, we identified a panel of seven metabolites that were shared by all patients and animals regardless of the underlying cause of CKD. These included ricinoleic acid, stearic acid, cytosine, LPA(16:0), LPA(18:2), 3-methylhistidine, and argininic acid. The combination of these seven biomarkers enabled the discrimination of patients with CKD from healthy subjects with a sensitivity of 83.3% and a specificity of 96.7%. In addition, these biomarkers accurately reflected improvements in renal function in response to the therapeutic interventions. Our results indicated that the identified biomarkers may improve the diagnosis of CKD and provide a novel tool for monitoring of the progression of disease and response to treatment in CKD patients.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| | - Jia-Rong Mao
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine , No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital , No. 21 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd. , No. 1000 Jinhai Road, Shanghai 201203, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.,Division of Nephrology and Hypertension, School of Medicine, University of California Irvine , MedSci 1, C352, UCI Campus, Irvine, California 92897, United States
| |
Collapse
|
19
|
Xiang Z, Sun H, Cai X, Chen D. The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods. Anal Bioanal Chem 2016; 408:2607-19. [PMID: 26873208 DOI: 10.1007/s00216-016-9368-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
Transmission of biological information is a biochemical process of multistep cascade from genes/proteins to metabolites. However, because most metabolites reflect the terminal information of the biochemical process, it is difficult to describe the transmission process of disease information in terms of the metabolomics strategy. In this paper, by incorporating network and metabolomics methods, an integrated approach was proposed to systematically investigate and explain the molecular mechanism of renal interstitial fibrosis. Through analysis of the network, the cascade transmission process of disease information starting from genes/proteins to metabolites was putatively identified and uncovered. The results indicated that renal fibrosis was involved in metabolic pathways of glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and arachidonic acid metabolism, riboflavin metabolism, tyrosine metabolism, and sphingolipid metabolism. These pathways involve kidney disease genes such as TGF-β1 and P2RX7. Our results showed that combining metabolomics and network analysis can provide new strategies and ideas for the interpretation of pathogenesis of disease with full consideration of "gene-protein-metabolite."
Collapse
Affiliation(s)
- Zheng Xiang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaojun Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
20
|
Zhang XJ, Huang LL, Su H, Chen YX, Huang J, He C, Li P, Yang DZ, Wan JB. Characterizing plasma phospholipid fatty acid profiles of polycystic ovary syndrome patients with and without insulin resistance using GC–MS and chemometrics approach. J Pharm Biomed Anal 2014; 95:85-92. [DOI: 10.1016/j.jpba.2014.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/21/2023]
|
21
|
Sertoglu E, Kurt I, Tapan S, Uyanik M, Serdar MA, Kayadibi H, El-Fawaeir S. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem Phys Lipids 2014; 178:11-7. [PMID: 24384240 DOI: 10.1016/j.chemphyslip.2013.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND In this study, we aimed to compare the serum lipid profile and fatty acid (FA) compositions of erythrocyte membrane (EM) and plasma in three different patient groups (group 1: type 2 diabetes mellitus (T2DM)+end-stage renal disease (ESRD), group 2: ESRD, group 4: T2DM) and healthy controls (group 3) simultaneously. METHODS 40 ESRD patients treated with hemodialysis (HD) in Gulhane School of Medicine (20 with T2DM) and 32 controls (17 with T2DM, 15 healthy controls) were included in the study. Plasma and EM FA concentrations were measured by gas chromatography-flame ionization detector (GC-FID). RESULTS Plasma and EM palmitic acid (PA) and stearic acid (SA) levels were significantly higher in T2DM patients compared to controls (p=0.040 and p=0.002 for plasma, p=0.001 and p=0.010 for EM, respectively). EM docosahexaenoic acid (DHA) levels were also significantly lower in patients with ESRD+T2DM and ESRD compared to controls (p=0.004 and p=0.037, respectively). CONCLUSIONS Patients with insulin resistance display a pattern of high long chain saturated FAs (PA, SA and arachidic acids). However, while there are no recognized standards for normal EM DHA content, decreased levels of EM DHA in ESRD patient groups (groups 1 and 2) suggest that there may be reduced endogenous synthesis of DHA in HD subjects, due to the decreased functionality of desaturase and elongase enzymes. Because membrane PUFA content affects membrane fluidity and cell signaling, these findings are worthy of further investigation.
Collapse
Affiliation(s)
- Erdim Sertoglu
- Ankara Mevki Military Hospital, Anittepe Dispensary, Ankara, Turkey.
| | - Ismail Kurt
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Serkan Tapan
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Metin Uyanik
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| | - Muhittin A Serdar
- Acıbadem University School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Huseyin Kayadibi
- Adana Military Hospital, Department of Medical Biochemistry, Adana, Turkey
| | - Saad El-Fawaeir
- Gulhane School of Medicine, Department of Medical Biochemistry, Ankara, Turkey
| |
Collapse
|
22
|
Huang X, Stenvinkel P, Qureshi AR, Risérus U, Cederholm T, Bárány P, Heimbürger O, Lindholm B, Carrero JJ. Essential polyunsaturated fatty acids, inflammation and mortality in dialysis patients. Nephrol Dial Transplant 2012; 27:3615-20. [PMID: 22565059 DOI: 10.1093/ndt/gfs132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA) are essential nutrients with anti-inflammatory and cardioprotective properties. We investigated the association of essential dietary PUFA intake, reflected by plasma fatty acid composition, with inflammation and mortality in dialysis patients. METHODS We recruited 222 Swedish dialysis subjects (39% women) with median age of 57 years and average 12 months of dialysis vintage. Plasma phospholipid PUFA were assessed by gas-liquid chromatography. Overall mortality was assessed after 18.4 (10th-90th percentiles: 2.3-60) months of follow-up. RESULTS Linoleic acid (LA), Mead acid (MA), α-linolenic acid (ALA) and long-chain n-3 PUFA (LC n-3; the sum of eicosapentaenoic, docosapentaenoic and docosahexaenoic acids) represented 19.7, 0.26, 0.26 and 7.64% of all fatty acids in plasma, respectively. This may reflect an adequate n-3 PUFA intake. LA was negatively (β = - 0.21, P = 0.004) but MA positively (β = 0.25, P < 0.001) associated with interleukin (IL)-6 in multivariate analyses. Neither ALA nor LC n-3 were independently associated with IL-6. During follow-up, 61 deaths and 115 kidney transplants occurred. Fully adjusted competing risk models showed that every percent increase in the proportion of plasma LA was associated with 12% reduction in mortality risk before transplantation (hazard ratio 0.88, 95% confidence interval 0.79-0.99). MA was directly associated with mortality. Neither ALA nor LC n-3 predicted outcome. CONCLUSIONS The proportion of plasma phospholipid LA is inversely associated with IL-6 and all-cause mortality in Swedish dialysis patients. We raise the hypothesis that dialysis patients could benefit from increased intake of vegetable oils, the primary source of LA in the Western-type diet.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Block R, Kakinami L, Liebman S, Shearer GC, Kramer H, Tsai M. Cis-vaccenic acid and the Framingham risk score predict chronic kidney disease: the multi-ethnic study of atherosclerosis (MESA). Prostaglandins Leukot Essent Fatty Acids 2012; 86:175-82. [PMID: 22417701 PMCID: PMC3340522 DOI: 10.1016/j.plefa.2012.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Data on the associations of fatty acids with chronic kidney disease (CKD) are sparse. MATERIALS AND METHODS We performed a cross-sectional study of 2792 men and women from the MESA cohort of African-American, Caucasian, Chinese and Hispanic adults without known cardiovascular disease. Plasma phospholipid fatty acid proportions were associated with estimated glomerular filtration rate (eGFR) and the albumin/creatinine ratio. RESULTS Cis-vaccenic acid (18:1n-7), adjusted for other fatty acids using multivariate logistic regression (CI: 1.0-1.4), and step-wise logistic regression (CI: 1.02-1.42), was positively associated with reduced eGFR. The Framingham Risk Score, when adjusting for fatty acid proportions and demographic factors, was positively associated with CKD as measured by the eGFR and the albumin/creatinine ratio. DISCUSSION AND CONCLUSIONS Plasma phospholipid proportions of the 18 carbon monounsaturated cis-vaccenic acid {18:1n-7}) and the Framingham Risk Score are associated with kidney function. The potential role of 18:1n-7 in the development of CKD warrants further investigation.
Collapse
Affiliation(s)
- Robert Block
- Department of Community and Preventive Medicine, Division of Epidemiology, the University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|